Novel Atom Economic Reaction: Comprehensive Utilization of S-Alkylisothiouronium Salt in the Synthesis of Thioether and Guanidinium Salt

Pengchao Gao, Penglin Leng, Qi Sun, Xin Wang, Zemei Ge* and Runtao Li*

State key laboratory of natural and biomimetic drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China

E-mail: zmge@bjmu.edu.cn; <u>lirt@mail.bjmu.edu.cn</u>;

Fax: 86 10 82716956; Tel: 86 82801504

1. Experimental part

All reagents were commercially available. The waste free reactions were monitored by thin layer chromatography. ¹H NMR spectra were recorded on 400MHz Bruker spectrometers with TMS as an internal standard

Compounds**1a-f**⁵, **2a-c**¹⁹, **3a-c**^{10,17}, **4a-r**¹⁹⁻²⁶, **5a-e**¹⁵⁻¹⁸, **6**²⁸, **7**²⁹, **8**²⁹, **9**³⁰, **10**³¹, **11**³² are known. **12** is a new compound. Characterization data (¹H NMR, ¹³C NMR, MP, ESI-MS) are reported below.

Typical procedure for the symbiotic reaction

To the mixed solvent (10 mL, $H_2O/EtOH = 1:1$) was added the S-alkylisothiouronium salt (4.4 mmol), the amine (4.0 mmol) and the Michael receptor (4.0 mmol), TEA (4.0 mmol). The mixture was stirred at 30 °C for 6 h, then 5 mL H_2O was added and the mixture was extracted with EtOAc (15 mL \times 3). The remaining aqueous layer was concentrated under reduced pressure using a rotary evaporator and the resulting solid was washed with a small amount of ethanol, then recrystallized from hot water to give the corresponding guanidinium salt (5). The combined organic layer was dried over anhydrous Na_2SO_4 and concentrated under reduced pressure, and the residue was purified by column chromatography (petroleum ether/ethyl acetate) to afford the corresponding thia-Michael addition product (4).

Methyl 3-(benzylthio)propanoate(4a)

Isolated in 83.4% yield, yellow oil, Lit¹⁹, ¹H NMR (400MHz, CDCl₃): δ 7.25 (m, 5H), 3.66 (s, 2H), 3.61 (s, 3H), 2.61 (t, 2H, J = 7.3Hz), 2.48 (t, 2H, J = 7.3Hz). ¹³C NMR (100MHz, CDCl₃): δ 172.37, 138.05, 128.85, 128.57, 127.11, 51.80, 36.30, 34.29, 26.19

3-(Benzylthio)cyclohexanone(4b)

Isolated in 82.3% yield, yellow oil, Lit¹⁹, ¹H NMR (400MHz, CDCl₃): δ 7.18 (m 5H), 3.67 (s, 2H), 2.85 (m 1H), 2.57 (m, 1H), 2.26 (m, 3H), 1.99 (m, 2H), 1.61 (m, 2H). ¹³C NMR (100MHz, CDCl₃): δ 208.68, 137.93, 128.75, 128.62, 127.16, 47.80, 41,97, 40.95, 34.93, 31.28, 24.12

3-(Benzylthio)propanenitrile(4c)

Isolated in 80.1% yield, yellow oil, Lit¹⁹, ¹H NMR (400MHz, CDCl₃): δ 7.24 (m, 5H), 3.69 (s, 2H), 2.54 (t, 2H, J = 7.2Hz), 2.38 (t, 2H, J = 7.2Hz). ¹³C NMR (100MHz, CDCl₃): δ 137.43, 128.93, 128.79, 127.48, 118.50, 36.30, 26,64, 18.61

Methyl 3-(methylthio)propanoate(4d)

Isolated in 61.8% yield, pale yellow oil, Lit¹⁹, ¹H NMR (400MHz, CDCl₃): δ 3.63 (s, 3H), 2.70 (t, 2H, J = 7.4Hz), 2.56 (t, 2H, J = 7.4Hz), 2.05 (s, 3H). ¹³C NMR (100MHz, CDCl₃): δ 171.38, 50.75, 33.22, 28.06, 14.46

3-(Methylthio)cyclohexanone(4e)

Isolated in 72.6% yield, yellow oil, Lit¹⁹, ¹H NMR (400MHz, CDCl₃): δ 2.90-2.93 (m, 1H), δ 2.61-2.66 (m, 1H), δ 2.26-2.34 (m, 3H), δ 2.05-2.10 (m, 5H), δ 1.63-1.68 (m, 2H). ¹³C NMR (100MHz, CDCl₃): δ = 208.73, 47.50, 44.12, 40.86, 30.90, 24.05, 13.48

3-(Methylthio)propanenitrile(4f)

Isolated in 58.9% yield, colorless oil, Lit¹⁹, ¹H NMR (400MHz, CDCl₃): δ 2.71 (t, 2H, J = 7.5Hz), 2.60 (t, 2H, J = 7.5Hz), 2.13 (s, 3H). ¹³C NMR (100MHz, CDCl₃): δ 117.39, 28.65, 17.43, 14.58

Methyl 3-(ethylthio)propanoate(4g)

Isolated in 68.5% yield, pale yellow oil, Lit²⁰, ¹H NMR (400MHz, CDCl₃): δ 3.63 (s, 3H), 2.71-2.75 (m, 2H), 2.48-2.55 (m, 4H), 1.17-1.21 (m, 3H). ¹³C NMR (100MHz, CDCl₃): δ 172.45, 51.75, 34.65, 26.49, 25.94, 14.64

3-(Ethylthio)cyclohexanone(4h)

Isolated in 81.5% yield, brown oil, Lit²¹, ¹H NMR (400MHz, CDCl₃): δ 3.03 (m, 1H), 2.61-2.65 (m, 1H), 2.50 (q, 2H, J = 7.4Hz), 2.28-2.30 (m, 3H), 2.06-2.09 (m, 2H), 1.63-1.68 (m, 2H), 1.19 (t, 3H, J = 7.4Hz). ¹³C NMR (100MHz, CDCl₃): δ 207.93, 47.14, 41.34, 39.96, 30.55, 23.40, 23.23, 13.78

3-(Ethylthio)propanenitrile(4i)

Isolated in 77.1% yield, colorless oil, Lit²², ¹H NMR (400MHz, CDCl₃): δ 2.74 (t, 2H, J = 7.1Hz), 2.57 (m, 4H), 1.22 (t, 3H, J = 7.4Hz). ¹³C NMR (100MHz, CDCl₃): δ 118.52, 27.09, 26.00, 18.86, 14.56

Methyl 3-(cyclopentylthio)propanoate(4j)

Isolated in 68.1% yield, pale yellow oil, Lit¹⁹, ¹H NMR (400MHz, CDCl₃): δ 3.72 (s, 3H), 2.81 (t, 2H, J = 7.4Hz), 2.63 (t, 2H, J = 7.4Hz), 2.55 (m, 1H), 1.63 (m, 2H), 1.36(m, 6H). ¹³C NMR (100MHz, CDCl₃): δ 171.40, 59.57, 50.70, 33.71, 28.24, 25.94, 21.30

3-(Cyclopentylthio)cyclohexanone(4k)

Isolated in 75.7% yield, yellow oil, Lit¹⁹, ¹H NMR(400MHz,CDCl₃): δ 2.98 (m, 1H), 2.60-2.65 (m, 1H), 2.45 (m, 2H), 2.27-2.33 (m, 3H), 2.04-2.08 (m, 2H), 1.62-1.67 (m, 2H), 1.49-1.57 (m, 2H), 1.24-1.29 (m, 3H), 0.82 (t, 2H, J = 7.0Hz). ¹³C NMR (100MHz, CDCl₃): δ 208.76, 48.16, 42.68, 40.90, 31.57, 31.04, 30.43, 24.18, 22.22

3-(Cyclopentylthio)propanenitrile(4l)

Isolated in 68.1% yield, pale yellow oil, Lit¹⁹, ¹H NMR (400MHz, CDCl₃): δ 2.71 (t, 2H, J = 7.2Hz), 2.57 (t, 2H, J = 7.2Hz), 2.52 (m, 1H), 1.53 (m, 2H), 1.28(m, 6H). ¹³C NMR (100MHz, CDCl₃): δ 118.45, 30.90, 29.11, 27.59, 22.24, 18.91

Methyl 3-(allylthio)propanoate(4m)

Isolated in 71.2% yield, pale yellow oil, Lit²³, ¹H NMR (400MHz, CDCl₃): δ 5.61-5.80 (m, 1H), 5.05 (d, 2H, J = 18.7Hz), 3.62 (s, 3H), 3.08 (d, 2H, J = 6.9Hz), 2.66 (t, 2H, J = 7.2Hz), 2.52 (t, 2H, J = 7.2Hz). ¹³CNMR (100MHz, CDCl₃): δ 172.27, 134.13, 117.18, 51.69, 34.76, 34.37, 25.53

3-(Allylthio)cyclohexanone(4n)

Isolated in 82.8% yield, pale yellow oil, Lit²³, ¹H NMR (400MHz, CDCl₃): δ 5.91-5.64 (m, 1H), 5.11 (d, 2H, J = 13.9Hz), 3.19 (d, 2H, J = 7.1Hz), 3.09-2.95 (m, 1H), 2.68 (dd, 1H, J = 14.3, 4.5Hz), 2.45-2.25 (m, 3H), 2.18-2.01 (m, 2H), 1.78-1.60 (m, 2H). ¹³C NMR (100MHz, CDCl₃): δ 208.86, 134.23, 117.24, 47.92, 41.40, 40.97, 33.58, 31.36, 24.21

3-(Allylthio)propanenitrile(40)

Isolated in 66.5% yield, pale red oil, Lit²⁴, ¹H NMR (400MHz, CDCl₃): δ 5.72 (m, 1H), 5.09 (d, 2H, J = 12.8Hz), 3.15 (d, 2H, J = 7.2Hz), 2.66 (t, 2H, J = 7.0Hz), 2.56 (t, 2H, J = 7.0Hz). ¹³C NMR (100MHz, CDCl₃): δ 133.63, 118.41, 118.01, 34.75, 25.86, 18.66

Methyl 3-(butylthio)propanoate(4p)

Isolated in 78.8% yield, pale yellow oil, Lit²⁵, ¹H NMR(400MHz,CDCl₃): δ 3.67 (s, 3H), 2.75 (t, 2H, J = 7.4Hz), 2.58 (t, 2H, J = 7.3Hz), 2.50 (t, 2H, J = 7.3Hz), 1.54 (m, 2H), 1.37 (m, 2H), 0.89 (s, 3H, J = 7.4Hz). ¹³C NMR (100MHz, CDCl₃): δ 172.37, 51.66, 54.69, 31.79, 31.59, 36.92, 21.90, 13.59

3-(Butylthio)cyclohexanone(4q)

Isolated in 72.4% yield, yellow oil, Lit²⁵, ¹H NMR(400MHz,CDCl₃): δ 2.62-2.65 (m, 1H), 2.48 (m, 3H), 2.28-2.31 (m, 3H), 2.07-2.09 (m, 2H), 1.64-1.67 (m, 2H), 1.48 (m, 2H), 1.32 (m, 2H), 0.84 (t, 3H, J = 7.1Hz). ¹³C NMR (100MHz, CDCl₃): δ 207.91, 47.25, 41.76, 39.95, 30.78, 30.66, 29.21, 23.26, 21.03, 12.64

3-(Butylthio)propanenitrile(4r)

Isolated in 63.5% yield, yellow oil, Lit²⁶, ¹H NMR (400MHz, CDCl₃): δ 2.71 (t, 2H, J = 6.9Hz), 2.51-2.58 (dt, 4H, J = 14.6Hz, 7.2Hz), 1.51 (m, 2H), 1.36 (m, 2H), 0.86 (t, 3H, J = 7.2Hz). ¹³C NMR (100MHz, CDCl₃): δ 117.38, 30.96, 30.49, 26.61, 20.86, 17.91, 12.60

1-Benzylguanidine hydrochloride (5a)

Mp 175-178 °C, Lit 16,18 , Mp 173-174 °C, 1 H NMR (400MHz, D₂O): δ 7.43 (m, 5H), 4.43 (s, 2H). ES ([M+H] $^{+}$) calculated: 150.24(100)

1-Benzylguanidine Half Sulfate(5b)

$$NH \\ NH_2 \cdot 1/2 \; H_2 SO_4$$

Mp 204-205 °C, Lit¹⁵, Mp 208-209 °C, ¹H NMR (400MHz, D_2O): δ 7.38 (m, 5H), 4.42 (s, 2H). ES ([M+H]⁺) calculated: 150.24(100)

1-Benzylguanidine Hydrobromate(5c)

Mp 110-113°C, 1 H NMR (400MHz, D₂O): δ 7.42 (m, 5H), 4.43 (s, 2H). ES ([M+H]⁺) calculated: 150.24(100)

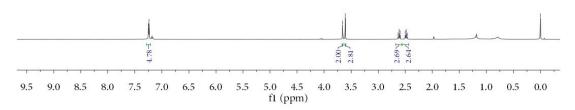
2-Guanidinoacetic Hydrobromate (5d)

Carbonized at 284 °C, Lit ¹⁸ Carbonized at 280-284 °C, ¹H NMR (400MHz, D_2O) : δ 3.69 (s, 2H). ES([M+H]⁺) calculated: 118.07(100)

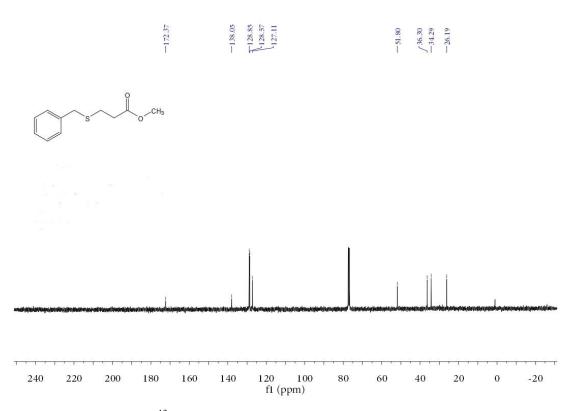
Ismelin Half Sulfate (5e)

Mp 270-271 °C, Lit¹⁷, Mp 276-281 °C. ¹H NMR (400MHz, D₂O) : δ 3.36 (t, 2H, J = 6.4Hz), 3.31 (m, 6H), 1.80 (s, 4H), 1.60 (s, 4H). ¹³C NMR (100MHz, D₂O): δ 156.98, 55.10, 54.66, 36.28, 25.91, 22.99. ES([M+H]⁺) calculated: 185.26 (100)


Ethyl 3-(4-tert-butoxycarbonylaminomethylphenyl) acrylate (10)

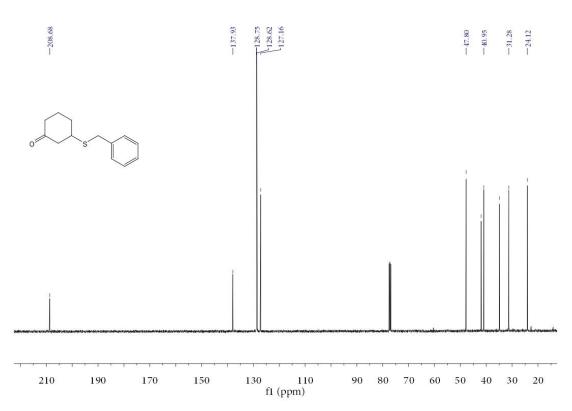

Isolated in 20.5% overall yield as a brown oil, Lit³¹, ¹H NMR (400MHz, CDCl₃) δ 7.59 (d, 1H, J = 16.0Hz), 7.40 (d, 2H, J = 8.2Hz), 7.22 (d, 2H, J = 8.2Hz), 6.34 (d, 2H, J = 16.0Hz), 4.71 (s, 2H), 4.19 (q, 2H, J = 7.1Hz), 1.38 (s, 9H), 1.26 (t, 3H, J = 7.1Hz). ¹³C NMR (100MHz, CDCl₃): δ 166.99, 151.49, 143.21, 139.91, 132.33, 127.07, 126.66, 117.01, 81.68, 59.43, 48.22, 26.99, 13.31

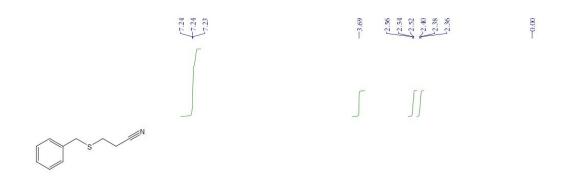
Ethyl 3-benzylthio-3-(4-guanidinomethylphenyl) propanoate Hydrochloride (12)

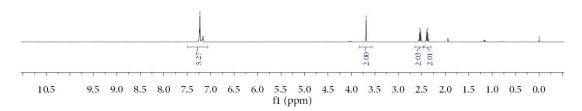

Isolated by column chromatography (Ethyl Acetate/MeOH = 5:1) in 42.1% yield. Yellow solid, Mp 176.1-179.6°C, 1 H NMR (400MHz, CD₃OD) δ 7.34 (m, 9H), 4.33 (s, 1H), 4.16 (q, 2H, J = 7.1Hz), 3.91 (m, 2H), 2.74 (m, 2H), 1.22 (t, 3H, J = 7.1Hz). 13 C NMR (100MHz, DMSO- d_6): δ 170.43, 163.47, 137.78, 129.84, 129.55, 129.26, 128.87, 128.23, 127.77, 127.41, 60.54, 44.64, 42.25, 42.07, 35.31, 14.67, HR ESI MS m/z calcd for $C_{20}H_{25}N_3O_2S$, ([M+H] $^+$) 372.17451.

2. Spectra of compounds

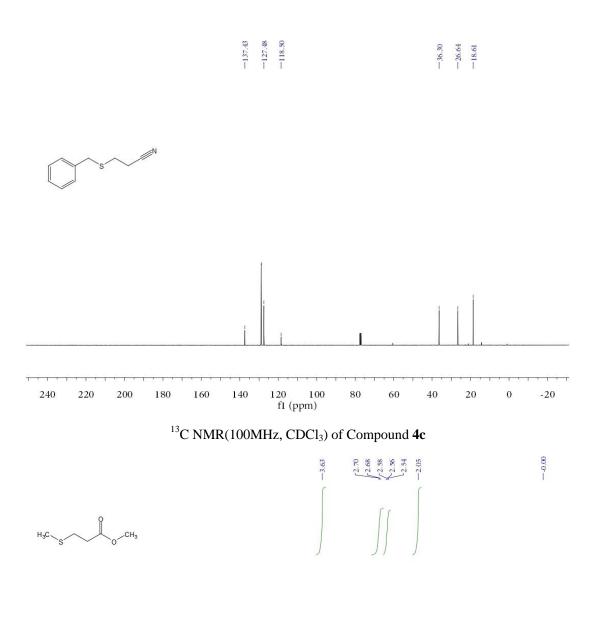


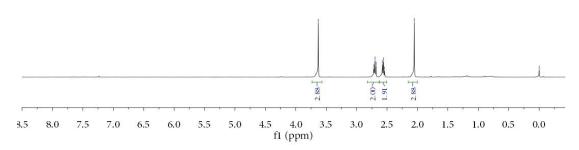

¹H NMR(400MHz, CDCl₃) of Compound **4a**

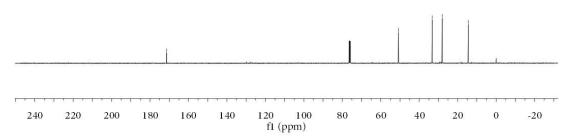

 13 C NMR(100MHz, CDCl₃) of Compound **4a**

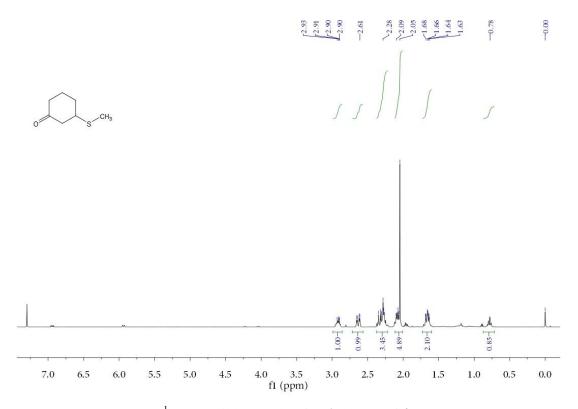


¹H NMR(400MHz, CDCl₃) of Compound **4b**

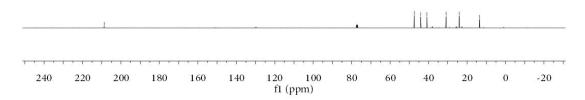



 $^{13}\text{C NMR}(100\text{MHz},\text{CDCl}_3)$ of Compound 4b

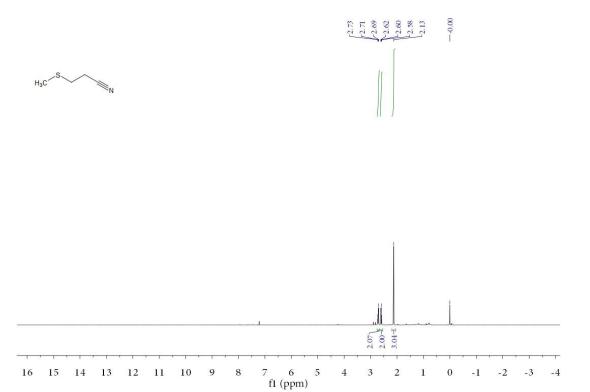

¹H NMR(400MHz, CDCl₃) of Compound **4c**



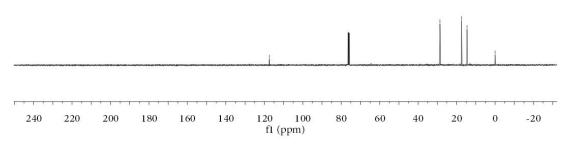
¹H NMR(400MHz, CDCl₃) of Compound **4d**



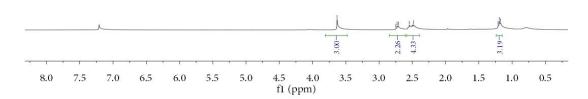
 $^{13}\text{C NMR}(100\text{MHz},\text{CDCl}_3)$ of Compound $\boldsymbol{4d}$

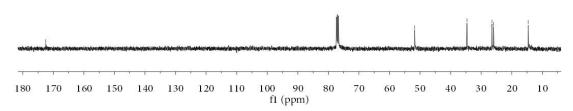


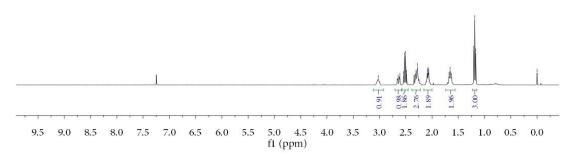
¹H NMR(400MHz, CDCl₃) of Compound **4e**

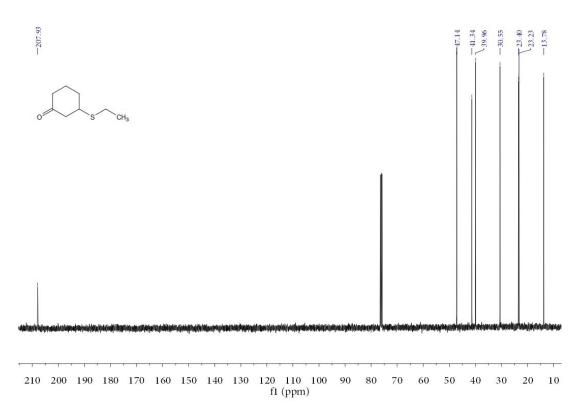


 ^{13}C NMR(100MHz, CDCl₃) of Compound $\boldsymbol{4e}$

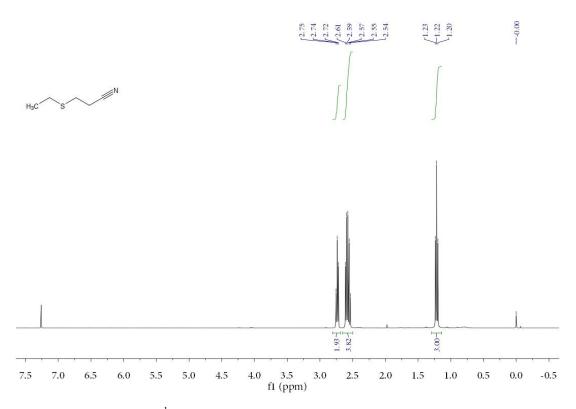

¹H NMR(400MHz, CDCl₃) of Compound **4f**

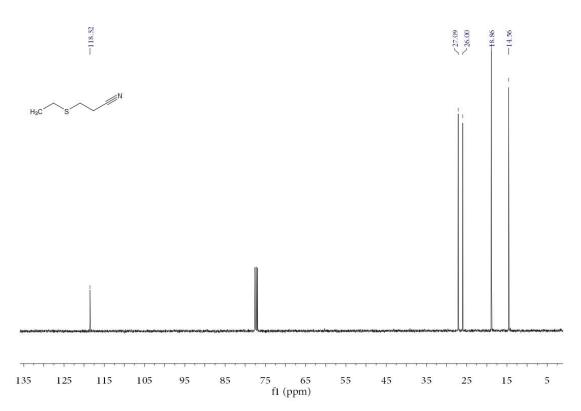

 $^{13}\text{C NMR}(100\text{MHz},\text{CDCl}_3)$ of Compound $\boldsymbol{4f}$

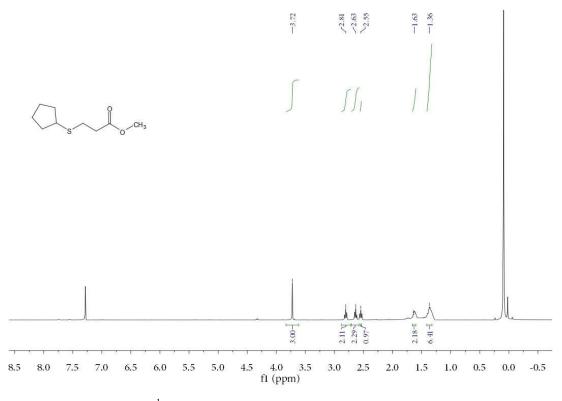

¹H NMR(400MHz, CDCl₃) of Compound **4g**



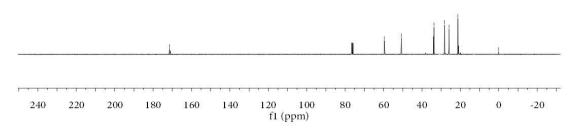
 ^{13}C NMR(100MHz, CDCl $_3)$ of Compound $\boldsymbol{4g}$



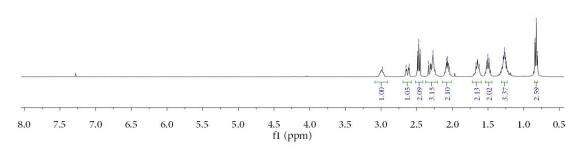

¹H NMR(400MHz, CDCl₃) of Compound **4h**

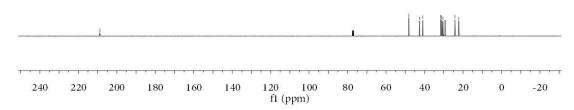

 $^{13}\text{C NMR}(100\text{MHz},\text{CDCl}_3)$ of Compound $\boldsymbol{4h}$

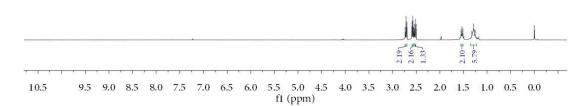
¹H NMR(400MHz, CDCl₃) of Compound **4i**

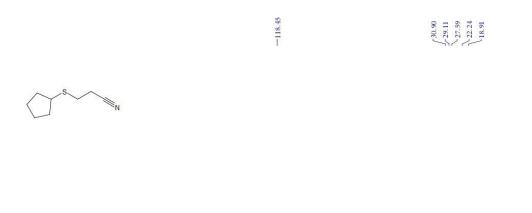


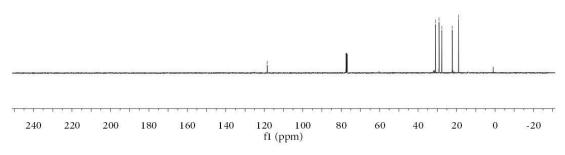
 $^{13}\text{C NMR}(100\text{MHz}, \text{CDCl}_3)$ of Compound 4i

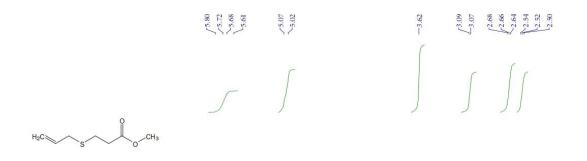

¹H NMR(400MHz, CDCl₃) of Compound **4j**

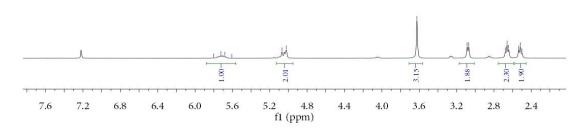

 $^{13}\text{C NMR}(100\text{MHz}, \text{CDCl}_3)$ of Compound $\boldsymbol{4j}$


¹H NMR(400MHz, CDCl₃) of Compound **4k**

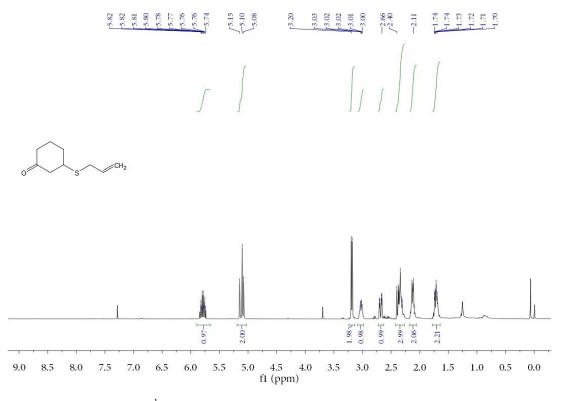



 $^{13}\text{C NMR}(100\text{MHz},\text{CDCl}_3)$ of Compound 4k

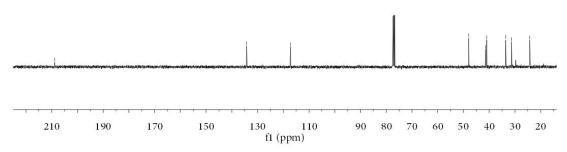



¹H NMR(400MHz, CDCl₃) of Compound **41**

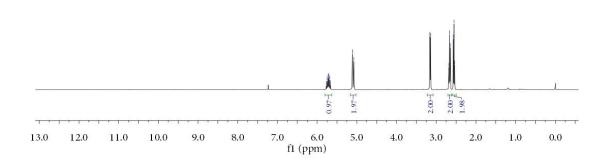
 $^{13}\text{C NMR}(100\text{MHz}, \text{CDCl}_3)$ of Compound 4l

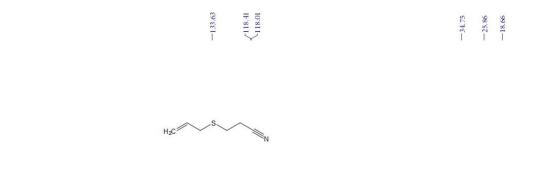


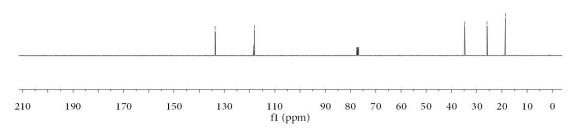
¹H NMR(400MHz, CDCl₃) of Compound **4m**

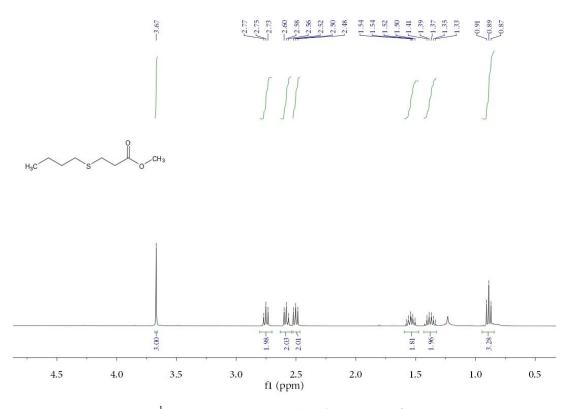


 13 C NMR(100MHz, CDCl₃) of Compound **4m**

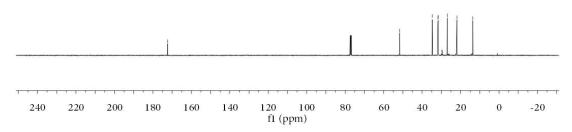

¹H NMR(400MHz, CDCl₃) of Compound **4n**



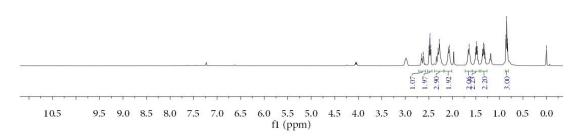

 $^{13}\text{C NMR}(100\text{MHz}, \text{CDCl}_3)$ of Compound $\boldsymbol{4n}$

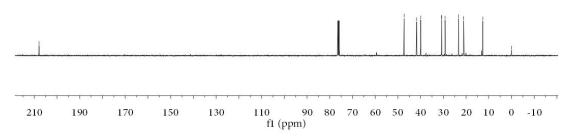


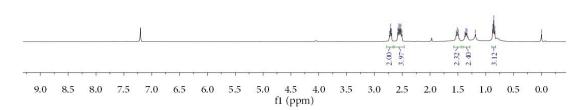
¹H NMR(400MHz, CDCl₃) of Compound **40**

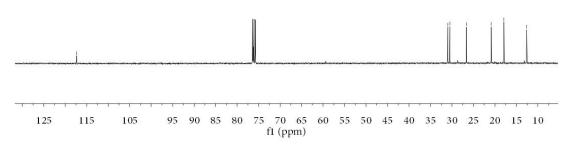


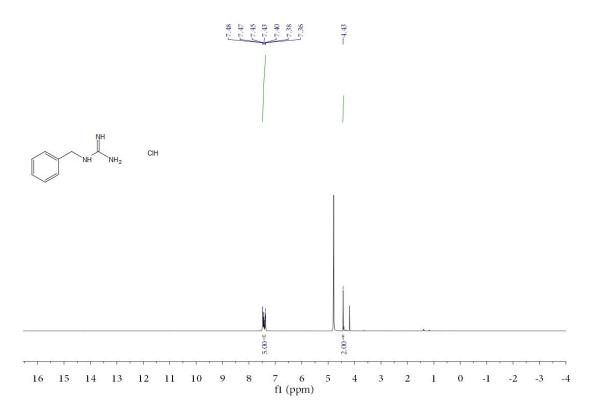
¹³C NMR(100MHz, CDCl₃) of Compound **40**


¹H NMR(400MHz, CDCl₃) of Compound **4p**

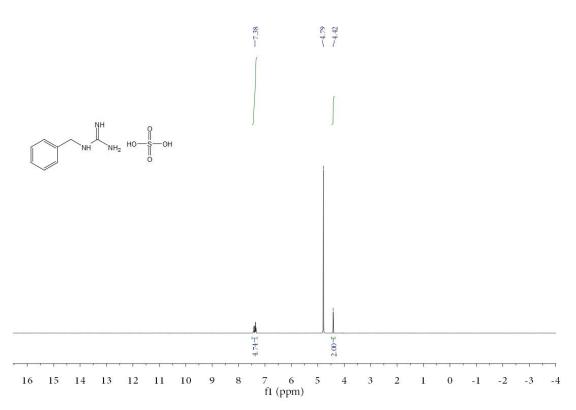

 $^{13}\text{C NMR}(100\text{MHz}, \text{CDCl}_3)$ of Compound $\boldsymbol{4p}$

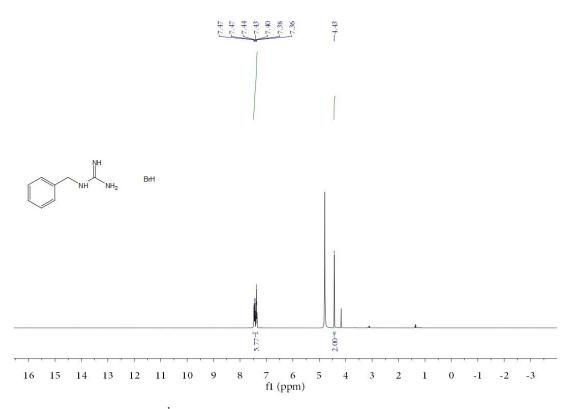

¹H NMR(400MHz, CDCl₃) of Compound **4q**

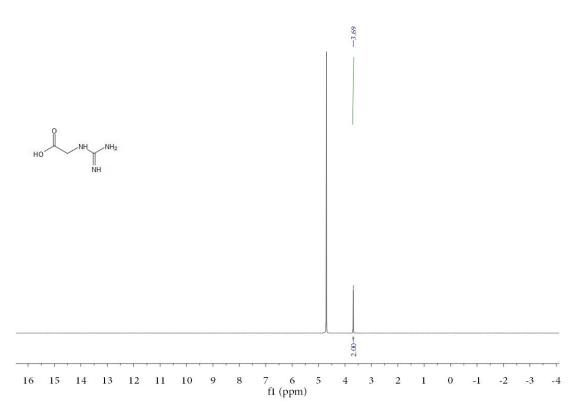

 $^{13}\text{C NMR}(100\text{MHz},\text{CDCl}_3)$ of Compound $\boldsymbol{4q}$

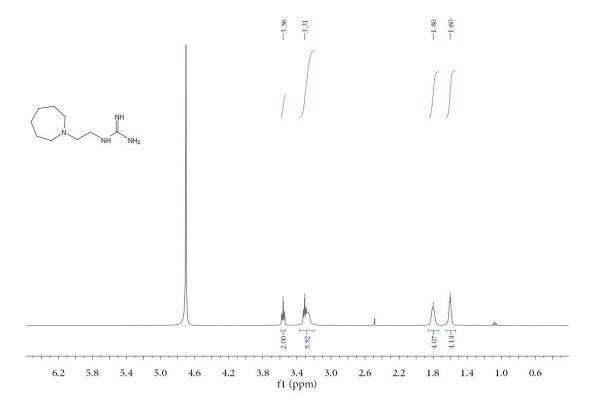


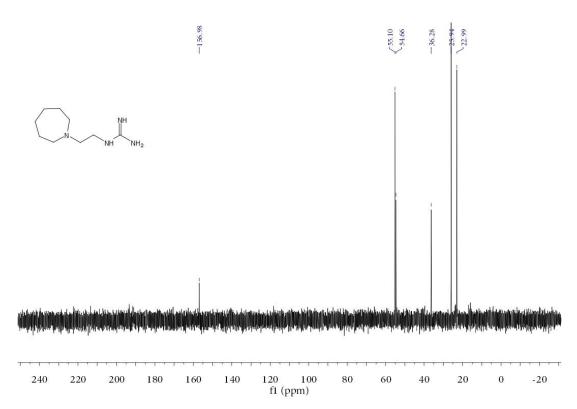
¹H NMR(400MHz, CDCl₃) of Compound **4r**

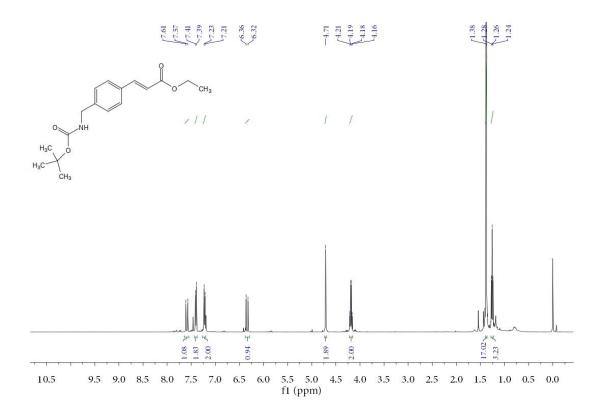


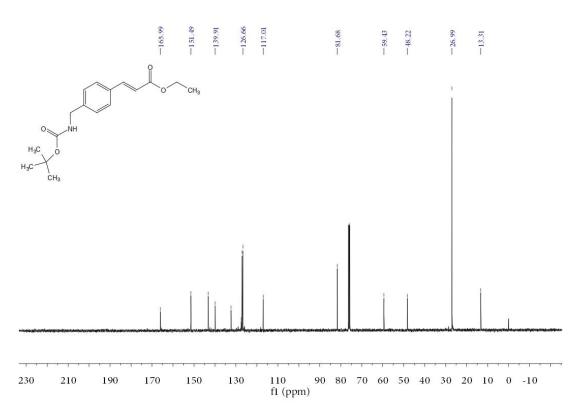

 ^{13}C NMR(100MHz, CDCl₃) of Compound $\boldsymbol{4r}$

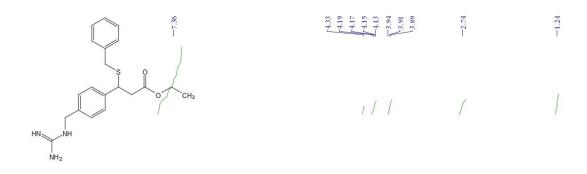

¹H NMR(400MHz, D₂O) of Compound **5a**

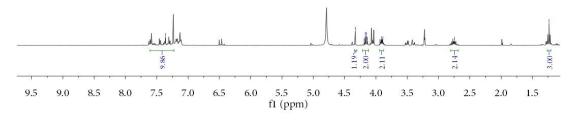

 1 H NMR(400MHz, D_{2} O) of Compound **5b**


¹H NMR(400MHz, D₂O) of Compound **5c**

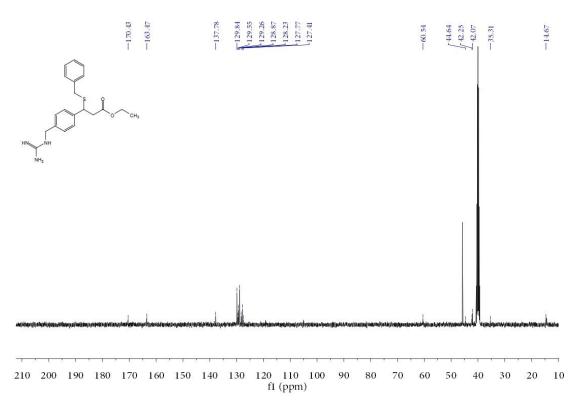

 $^1\mbox{H NMR}(400\mbox{MHz},\,D_2\mbox{O})$ of Compound Glucocyamine


 1 H NMR(400MHz, D_{2} O) of Compound **Ismelin**

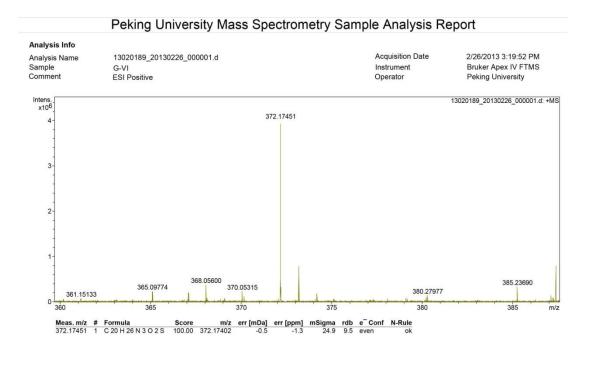

 $^{13}\mbox{C}$ NMR(100MHz, $D_2\mbox{O})$ of Compound Ismelin.



¹H NMR(400MHz, CDCl₃) of Compound **10**



 13 C NMR(100MHz, CDCl₃) of Compound ${f 10}$



¹H NMR(400MHz,CD₃OD) of Compound **12**

 13 C NMR(100MHz, DMSO- d_6) of Compound 12

Bruker Compass DataAnalysis 4.0 printed: 2/26/2013 3:21:38 PM Page 1 of 1

ESI of compound 12