A tetrameric hetero-octanuclear cyclic helicate formed from a bridging ligand with two inequivalent binding sites Alexander J. Metherell and Michael D. Ward Supporting Information – details of ligand synthesis and ${}^{1}H$ NMR spectrum of $H_{2}L$ 3-(2-pyridyl)pyrazole prepared as published earlier.^{S1} #### Synthesis of 1 A mixture of 3-(hydroxymethyl)aniline (7.50 g, 60.90 mmol) and di-*tert*-butyl dicarbonate (13.50 g, 61.86 mmol) was stirred in THF (150 cm³) at 25°C for 48 h. The resultant brown solution was reduced to dryness before purification of the crude brown oil by silica column. Elution with ethyl acetate/ 40:60 petroleum ether (1:2) followed by sonication for 10 minutes in hexane yielded **1** as a white solid (Yield: 13.01 g, 58.27 mmol, 96 %). 1 H-NMR (400 MHz, CDCl₃): δ 7.48 (1H, s; ArH), 7.32 – 7.23 (2H, m; ArH), 7.08 – 7.06 (1H, m; ArH), 6.52 (1H, bs; NH), 4.69 (2H, d; CH₂), 1.75 (1H, t; OH), 1.54 (9H, s; t Bu). ESMS: m/z 262 [M + K]+, 246 [M + Na]+, 150 [M – O t Bu]+; Found: C, 64.60; H, 7.67; N, 6.17 %. Required for C_{12} H₁₇NO₃: C, 64.55; H, 7.67; N, 6.27 %. Data is in accordance with the literature. S2 ## Synthesis of 2 A solution of **1** (3.22 g, 14.42 mmol) in CH_2Cl_2 (70 cm³) was maintained at 0°C with stirring. To this was added PPh₃ (6.10 g, 23.26 mmol) and CBr_4 (7.94 g, 23.94 mmol) sequentially, and the resultant yellow solution was stirred at 0°C for 1.5 h. The reaction mixture was then diluted with EtOAc and stirred for a further 0.5 h, before washing with brine. The organic layer was extracted with EtOAc, dried over MgSO₄ and concentrated before purification by silica column. Elution with ethyl acetate/ 40:60 petroleum ether (1:12) yielded **2** as a white solid (Yield: 2.95 g, 10.31 mmol, 67 %). 1 H-NMR (400 MHz, CDCl₃): δ 7.54 (1H, s; ArH), 7.31 – 7.21 (2H, m; ArH), 7.10 – 7.07 (1H, m; ArH), 6.52 (1H, bs; NH), 4.48 (2H, s; CH₂), 1.75 (1H, t; OH), 1.55 (9H, s; t Bu). ESMS m/z 286 [M + H]+, 288 [M + H]+. Found: C, 50.53; H, 5.42; N, 4.77 %. Required for $C_{12}H_{16}BrNO_2$, 50.37; H, 5.64; N, 4.89 %. Data is in accordance with the literature. # Synthesis of 3 A mixture of **2** (2.95 g, 10.29 mmol), 3-(2- pyridyl)pyrazole (1.50 g, 10.33 mmol), THF (120 cm³) and aqueous NaOH (13 M, 7.5 cm³) was stirred at 75°C for 24 h. The organic layer was separated, dried over MgSO₄ and concentrated before purification by silica column. Elution with EtOAc/ DCM (4:1) yielded **3** as a white solid (Yield: 2.55 g, 71 %). 1 H-NMR (400 MHz, CDCl₃): δ 8.65 (1H, ddd; pyridyl H⁶), 7.97 (1H, dt; pyridyl H³), 7.73 (1H, td; pyridyl H⁴), 7.43 (1H, d; pyrazolyl H⁵), 7.34 – 7.25 (3H, m; ArH), 7.21 (1H, ddd; pyridyl H⁵), 6.94 – 6.92 (2H, m; Ar-H and pyrazolyl H⁴), 6.55 (1H, bs; NH), 5.38 (2H, s; CH₂), 1.52 (9H, s; t Bu). ESMS: m/z 373 [M + Na]+, 351 [M + H]+. Found: C, 68.46; H, 6.35; N, 15.78 %. Required for C₂₀H₂₂N₄O₂: C, 68.55; H, 6.33; N, 15.99 %. ## Synthesis of 4 To a solution of **3** (1.51 g, 4.31 mmol) in CH_2Cl_2 (20 cm³) was added 1,1,1-trifluoroacetic acid (20 cm³) and the resultant yellow mixture was stirred at 25°C for 14 h. The solvent was removed *in vacuo* and the clear brown oil was repeatedly washed with $CH_2Cl_2/MeOH$ (1:1) and evaporated to dryness in order to remove all traces of TFA. The cream-coloured solid was washed with aqueous K_2CO_3 and the organic layer extracted with DCM, dried over MgSO₄ and evaporated to dryness, yielding **4** as a white solid (Yield: 0.81 g, 75 %). 1H -NMR (400 MHz, CDCl₃): δ 8.65 (1H, ddd; pyridyl H⁶), 7.97 (1H, dt; pyridyl H³), 7.72 (1H, td; pyridyl H⁴), 7.42 (1H, d; pyrazolyl H⁵), 7.20 (1H, ddd; pyridyl H⁵), 7.14 (1H, t; Ar-H), 6.92 (1H, d; pyrazolyl H⁴), 6.68 – 6.61 (2H, m; Ar-H), 6.53 (1H, t; Ar-H), 5.31 (2H, s; CH₂), 3.56 (2H, bs; NH₂). ESMS: m/z 251 [M + H]+. Found: C, 70.70; H, 5.46; N, 21.64 %. Required for $C_{15}H_{14}N_4$: C, 71.98; H, 5.64; N, 22.38 %. #### Synthesis of 5 2,3-dimethoxybenzoic acid (4.70 g, 25.8 mmol), $SOCl_2$ (7 cm³, 96.5 mmol) and a drop of DMF were heated to reflux with stirring for 6 h. The condenser was fitted with a $CaCl_2$ drying tube to absorb liberated SO_2 and HCl. The resultant clear yellow solution was diluted with $CHCl_3$ and reduced to dryness three times. Drying under high vacuum yielded **5** as an off white solid, which was used without any further purification, assuming quantitative yield (Yield: 5.10 g, 99 %). 1H -NMR (250 MHz, CDCl₃): δ 7.55 (1H, dd; Ar-H), 7.20-7.15 (2H, m; Ar-H), 3.94 (3H, s; OMe), 3.92 (3H, s; OMe). EIMS m/z 224 [M + Na]+, 165 [M - Cl-]+. Data is in accordance with the literature.^{S3} # Synthesis of 6 A mixture of **4** (0.51 g, 2.0 mmol) and **5** (0.44 g, 2.2 mmol) were stirred in dry CH_2Cl_2 (25 cm³) under nitrogen flow. To the cloudy solution was added Et_3N (0.55 cm³, 4.0 mmol), and the resultant clear solution was stirred at room temperature for 1 h. The mixture was then sequentially washed with 1M HCl (50 cm³) and 1M NaOH (50 cm³). The organic layer was extracted with DCM, dried over $MgSO_4$ and concentrated before purification by silica column. Elution with $EtOAc/CH_2Cl_2$ (1:1) yielded **6** as a clear yellow oil (Yield: 0.80 g, 97%). 1H -NMR (400 MHz, $CDCl_3$): δ 10.05 (1H, s; NH), 8.62 (1H, ddd; pyridyl 4), 7.95 (1H, dt; pyridyl 3), 7.75 (1H, dd; 2), 7.72 – 7.66 (2H, m; 2) Ph-H and pyridyl 4), 7.58 (1H, dd; cat-H), 7.46 (1H, d; pyrazolyl 4), 7.33 (1H, t; cat-H), 7.22 – 7.13 (2H, m; 2) Ph-H and pyridyl 3), 7.07 (1H, dd; 3), 7.00 (1H, dd; cat-H), 6.92 (1H, d; 3), 3) (2H, s; 3), 3.89 (3H, s; OMe). ESMS: 3) 3 0 (1H, the semicondition of the mixture of 3). Required for 3 0 CM: 3 0 CM: 3 0 CM: 3 0 CM: 3 1 2 CM: 3 3 CM: 3 3 CM: 3 3 CM: 3 4 $^$ #### Synthesis of H₂L BBr₃ (1M solution in CH₂Cl₂, 17 cm³, 17 mmol) was added dropwise to a solution of **6** (0.80 g, 1.9 mmol) in dry DCM (50 cm³) maintained at -78° C and then stirred at room temperature overnight. The reaction mixture was quenched with MeOH and the volatiles were removed under reduced pressure. The resultant black residue was suspended in H₂O at 100°C for 2 h and the brown solution was cooled and filtered. The pink precipitate was washed with water and DCM, and the resultant white solid was recrystallized from MeOH, yielding a white solid (Yield: 0.61 g, 83%). ¹H-NMR (400 MHz, (CD₃)₂SO): δ 11.51 (1H, bs; Ar-OH), 10.39 (1H, s; NH), 8.69 (1H, ddd; pyridyl H⁶), 8.41 – 8.25 (2H, m; Ar-H and pyridyl H³), 8.16 (1H, d; pyrazolyl H⁵), 7.78 – 7.68 (2H, m; Ar-H), 7.61 (1H, dd; Ar-H), 7.44 – 7.33 (2H, m; Ar-H and pyridyl H⁵), 7.20 (1H, d; pyrazolyl H⁴), 7.09 (1H, dt; Ar-H), 6.98 (1H, dd; Ar-H), 6.76 (1H, t; Ar-H), 5.53 (2H, s; CH₂). ESMS: m/z 387 [M + H]⁺. Found: C, 56.50 ; H, 4.04; N, 11.81 %. Required for C₂₂H₁₈N₄O₃.HBr: C, 56.54; H, 4.10; N, 11.99 %. - S1. A. J. Amoroso, A. M. C. Thompson, J. C. Jeffery, P. L. Jones, J. A. McCleverty and M. D. Ward, *J. Chem. Soc., Chem. Comm.*, 1994, 2751. - S2. F. J. Brown, P. R. Bernstein, L. A. Cronk, D. L. Dosset, K. C. Hebbel, T. P. Maduskuie, H. S. Shapiro, E. P. Vacek, Y. K. Yee, A. K. Willard, R. D. Krell and D. W. Snyder, J. Med. Chem., 1989, 32, 807. - S3. M. Meyer, B. Kersting, R. E. Powers and K. N. Raymond, *Inorg. Chem.*, 1997, **36**, 5179. Fig. S1. Part of the 1 H NMR spectrum of $H_{2}L$ in d^{6} -DMSO (py = pyridyl; pz = pyrazolyl). Not shown are the NH and OH protons at > 10 ppm and the methylene protons at 5.53 ppm.