Electronic Supplementary Information

Probing photonic effect on photocatalytic degradation of dyes based on 3D inverse opal ZnO photonic crystal

Sugang Meng, Danzhen Li*, Peng Wang, Xiuzhen Zheng, Jinxiu Wang, Jing Chen, Jialin Fang, and Xianzhi Fu Research Institute of Photocatalysis, State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou, 350002, P. R. China

Corresponding author Tel & Fax: (+86)591-83779256; E-mail: dzli@fzu.edu.cn

	Position of	Color	Molecular	Structural formula of the molecule		
	absorption		charge			
	peak /nm					
Methyl orange	464	orange	anionic			
(MO)				H ₃ C N SO ₃ Na ⁺		
Rhodamine B	554	pink	cationic			
(RhB)				Соон		
				H ₃ CH ₂ C		
				П СН ₂ СН ₃ СН ₂ СН ₃		
Methylene blue	664	blue	cationic			
(MB)				(H ₃ C) ₂ N		
				CI		
4-chlorophenol	224	colorless	anionic	ОН		
(4-CP)						
				 Cl		

Table S1 the properties of probe molecules.

Fig. S1 The spectral intensities emitted by a light source equipped with different filters.

Fig. S2 SEM image of the PS opal template under cross-sectional view.

Fig. S3 Probe molecules degradation over the as-prepared ZnO-PCs under UV light and visible (Vis) light irradiation.

Fig. S4 Time profiles of adsorption of probe molecules over ZnO-PCs in the dark.

		ZnO-510		ZnO-590		ZnO-700	
		k / min^{-1}	R^2	k / min ⁻¹	R^2	k / min ⁻¹	\mathbf{R}^2
МО	UV	0.009	1	0.01256	1	0.01319	1
	Vis	8E-5	0.9211	1E-4	0.9235	5E-4	0.9457
RhB	UV	0.01646	0.9815	0.01462	0.9979	0.01501	0.9961
	Vis	0.0019	0.9996	0.00223	0.9694	0.00179	0.9987
MB	UV	0.01762	0.9996	0.01508	0.9943	0.01744	0.9997
	Vis	0.01905	0.9687	0.02477	0.9990	0.02208	0.9945
4-CP	UV	0.0101	0.9974	0.00957	0.9990	0.01281	0.9579
	Vis	-		-		-	

Table S2 Kinetic constants (k) and regression coefficients (R^2) of pollutants degradation under UV and visible (Vis) light irradiation.

Fig. S5 ESR spectra of radical adducts trapped by DMPO in ZnO samples dispersions under UV light: (a) DMPO- \cdot O₂⁻ formed in methanol dispersion; (b) DMPO- \cdot OH formed in aqueous dispersions.

Fig. S6 ESR spectra of radical adducts trapped by DMPO in ZnO adsorbed dye dispersions under visible light irradiation: (a) DMPO- \cdot O₂⁻ formed in ZnO/RhB methanol dispersion; (b) DMPO- \cdot OH formed in ZnO/RhB aqueous dispersions with pH 4. (c) DMPO- \cdot O₂⁻ formed in ZnO/MB methanol dispersion; (d) DMPO- \cdot OH formed in ZnO/MB aqueous dispersions with pH 4. (e) DMPO- \cdot O₂⁻ formed in ZnO/MB aqueous dispersions with pH 4. (e) DMPO- \cdot O₂⁻ formed in ZnO/MB aqueous dispersion; (f) DMPO- \cdot OH formed in ZnO/MB aqueous dispersion; (f) DMPO- \cdot OH formed in ZnO/MB aqueous dispersion; (f) DMPO- \cdot OH formed in ZnO/MB aqueous dispersion; (f) DMPO- \cdot OH formed in ZnO/MB aqueous dispersion; (f) DMPO- \cdot OH formed in ZnO/MB aqueous dispersions with pH 4.

Fig. S7 Photocurrent responses of ZnO-PCs in (a) $0.1 \text{ M Na}_2\text{SO}_4$, (b) $0.1 \text{ M Na}_2\text{SO}_4$ contained 2.4 ppm RhB, and (c) $0.1 \text{ M Na}_2\text{SO}_4$ contained 2 ppm MB aqueous solutions under visible light irradiation, respectively.