SUPPORTING INFORMATION

Boradipyrromethenecyanines on the base of BODIPY nucleus annelated with pyridone ring: a new approach to long-wavelength dual fluorescent probe design

Yuriy V. Zatsikha, ^a Viktor P. Yakubovskyi, ^a Mykola P. Shandura ^a and Yuriy P. Kovtun*^a

^a Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., 02660 Kyiv, Ukraine

E-mail: <u>kovtun@ioch.kiev.ua</u>

Figure 1. ¹H NMR spectrum of compound **2** in DMSO-d₆.

Figure 2. ¹H NMR spectrum of compound **3** in CDCl₃.

Figure 3. ¹H NMR spectrum of compound 4 in CDCl₃.

Figure 4. ¹H NMR spectrum of compound **5** in CDCl₃.

Figure 5. ¹H NMR spectrum of compound **5** in DMSO-d₆.

Figure 6. ¹H NMR spectrum of compound 6 in CDCl₃.

Figure 7. ¹H NMR spectrum of compound 7 in DMSO-d₆.

Figure 8. ¹H NMR spectrum of compound 8 in DMSO-d₆.

Figure 9. ¹H NMR spectrum of compound **9** in DMSO-d₆.

Figure 10. ¹H NMR spectrum of compound **10a** in DMSO-d₆.

Figure 11. ¹H NMR spectrum of compound **11a** in DMSO-d₆.

Figure 12. ¹H NMR spectrum of compound **12a** in DMSO-d₆.

Figure 13. ¹H NMR spectrum of compound **10b** in DMSO-d₆.

Figure 14. ¹H NMR spectrum of compound **11b** in DMSO-d₆.

Figure 15. ¹H NMR spectrum of compound **12b** in DMSO-d₆.

Figure 16. ¹H NMR spectrum of compound **13** in CDCl₃.

Figure 17. ¹H NMR spectrum of compound **13** in DMSO-d₆.

Figure 18. ¹H NMR spectrum of compound **14** in DMSO-d₆.

Figure 19. ¹H NMR spectrum of compound **15** in DMSO-d₆.

Figure 20. ¹³C NMR spectrum of compound **2** in DMSO.

Figure 21. ¹³C NMR spectrum of compound **3** in DMSO.

Figure 22. ¹³C NMR spectrum of compound 4 in DMSO.

Figure 23. ¹³C NMR spectrum of compound **5** in DMSO.

Figure 24. ¹³C NMR spectrum of compound **6** in DMSO.

Figure 25. ¹³C NMR spectrum of compound **7** in DMSO.

Figure 26. ¹³C NMR spectrum of compound **10a** in DMSO.

Figure 27. ¹³C NMR spectrum of compound **11a** in DMSO.

Figure 28. ¹³C NMR spectrum of compound **12a** in DMSO.

Figure 29. ¹³C NMR spectrum of compound **10b** in DMSO.

Figure 30. ¹³C NMR spectrum of compound **13** in DMSO.

Figure 31. ¹³C NMR spectrum of compound **14** in DMSO.

Figure 32. ¹³C NMR spectrum of compound **15** in DMSO.

Absorption spectra

Figure 33. Absorption spectra of compounds **1,2** and **7-9** in DMF ($C_M = 1 \cdot 10^{-5}$)

Figure 34. Absorption spectra of compounds **10a-12a** in DMF ($C_M = 1 \cdot 10^{-5}$)

Figure 35. Absorption spectra of compounds **10b-12b** in DMF ($C_M = 1 \cdot 10^{-5}$)

Fluorescence spectra

Figure.36. Fluorescence spectra of compound **14** in MeCN in different concentrations at 25 °C. Initial concentration of the dye is 1.0×10^{-4} M, final -2.5×10^{-4} M. Excitation wavelength is 590 nm.

Figure.37. Fluorescence spectra of compound **14** in MeCN in different concentrations at 25 °C. Initial concentration of the dye is 1.0×10^{-5} M, final – 4.0×10^{-5} M. Excitation wavelength is 600 nm.

Figure.38. Fluorescence spectra of compound **14** in MeOH in different concentrations at 25 °C. Initial concentration of the dye is 1.00×10^{-4} M, final -1.07×10^{-4} M. Excitation wavelength is 590 nm.

Figure.39. Fluorescence spectra of compound **14** in MeOH in different concentrations at 25 °C. Initial concentration of the dye is 1.0×10^{-5} M, final – 4.0×10^{-5} M. Excitation wavelength is 580 nm.

Figure.40. Fluorescence spectra of compound **14** in 50% DMSO aqueous solution in different concentrations at 25 °C. Initial concentration of the dye is 1.0×10^{-5} M, final – 4.0×10^{-5} M. Excitation wavelength is 590 nm.

Figure.41. Fluorescence spectra of compound **15** in MeOH in different concentrations at 25 °C. Initial concentration of the dye is 1.00×10^{-4} M, final $- 1.13 \times 10^{-4}$ M. Excitation wavelength is 570 nm.

Figure.42. Fluorescence spectra of compound **15** in MeOH in different concentrations at 25 °C. Initial concentration of the dye is 1.0×10^{-5} M, final – 4.0×10^{-5} M. Excitation wavelength is 590 nm.

Figure.43. Fluorescence spectra of compound **15** in 50% DMSO aqueous solution in different concentrations at 25 °C. Initial concentration of the dye is 1.0×10^{-5} M, final – 4.0×10^{-5} M. Excitation wavelength is 590 nm.