## Thin film morphology and efficiency of organic solar cells based on a diketopyrrolopyrrole polymer

## **Supplementary Information**

Evan Laurence Williams<sup>\*a</sup>, Sergey Gorelik<sup>\*a</sup>, InYee Phang<sup>a</sup>, Michel Bosman<sup>a</sup>, Chellappan Vijila<sup>a</sup>, Gomathy Sandhya Subramanian<sup>a</sup>, Prashan Sonar<sup>a</sup>, Jonathan Hobley<sup>a</sup>, Samarendra Pratap Singh<sup>b</sup>, Hiroyuki Matsuzaki<sup>c</sup>, Akihiro Furube<sup>c</sup>, and Ryuzi Katoh<sup>a</sup>

<sup>a</sup>Institute of Materials Research and Engineering, A\*STAR, 3, Research Link, 117602, Singapore <sup>b</sup>Shiv Nadar University, Village Chithera, Tehsil Dadri District, Gautam Budh Nagar, 203207,Uttar Pradesh, India. <sup>c</sup>National Institute of Advanced Industrial Science and Technology (AIST),Tsukuba, Japan. <sup>d</sup>Nihon University, Fukushima, Japan.

Corresponding authors email: <u>williamse@imre.a-star.edu.sg</u>; <u>goreliks@imre.a-star.edu.sg</u>;

Fax: +6567741042;Tel:+6568747992;



**Figure S1.** pDPP-TNT is insoluble in most common solvents. Chloroform is a rare solvent in which pDPP-TNT is soluble in. pDPP-TNT in toluene, chlorobenzene, dichlorobenzene, and chloroform (left to right) (0.25 mg/mL) after 68 hours at room temperature (pDPP-TNT was fully dissolved in chloroform in less than 1 hour).



**Figure S2**. Actual PL spectra of films scaled to the corresponding film absorptance at the excitation wavelength (660nm).

(A) and (C): films of different thicknesses spin-coated from chloroform;

(B) and (D): films of different thicknesses spin-coated from mixed solvent.

(A) and (B): films rinsed in hexane to selectively remove [70]PCBM.

PL spectrum of a neat pDPP-TNT film scaled to its absorptance at 660nm is shown in all graphs.

|                                       | 1:1        | 1:1        | 1:1        | 1:1      | 1:1      | 1:1      |
|---------------------------------------|------------|------------|------------|----------|----------|----------|
|                                       | chloroform | chloroform | chloroform | mixed    | mixed    | mixed    |
|                                       |            |            |            | solvents | solvents | solvents |
|                                       | 9 mg/mL    | 12 mg/mL   | 15 mg/mL   | 9 mg/mL  | 12 mg/mL | 15 mg/mL |
| J <sub>sc</sub> [mA/cm <sup>2</sup> ] | 2.4        | 2.1        | 1.7        | 5.3      | 7.9      | 8.2      |
| V <sub>oc</sub> [V]                   | 0.78       | 0.79       | 0.77       | 0.74     | 0.69     | 0.7      |
| FF                                    | 46         | 47         | 47         | 50       | 43       | 40       |
| PCE [%]                               | 0.87       | 0.79       | 0.63       | 1.9      | 2.4      | 2.3      |

|                                       | 1:3        | 1:3        | 1:3        | 1:3      | 1:3      | 1:3      |
|---------------------------------------|------------|------------|------------|----------|----------|----------|
|                                       | chloroform | chloroform | chloroform | mixed    | mixed    | mixed    |
|                                       |            |            |            | solvents | solvents | solvents |
|                                       | 9 mg/mL    | 12 mg/mL   | 15 mg/mL   | 9 mg/mL  | 12 mg/mL | 15 mg/mL |
| J <sub>sc</sub> [mA/cm <sup>2</sup> ] | 3.1        | 3.3        | 3          | 4.4      | 7.4      | 9        |
| V <sub>oc</sub> [V]                   | 0.75       | 0.76       | 0.79       | 0.57     | 0.58     | 0.62     |
| FF                                    | 54         | 54         | 54         | 49       | 46       | 45       |
| PCE [%]                               | 1.3        | 1.4        | 1.3        | 1.2      | 2        | 2.5      |

**Table S1**. OPV performance of devices utilizing blend ratios 1:1 and 1:3 pDPP-TNT: [70]PCBM with the active layer spin-coated from either chloroform or a mixed solvent system of chloroform :DCB (4:1).



**Figure S3**. IPCE spectra for devices fabricated from the mixed solvent system with various ratios of chloroform and DCB. Very similar current generation is shown for a range of solvent ratios. Investigated ratios of DCB in the solution were 5 %, 10 %, 20 %, 30 %, and 50 %. The reduction in IPCE for devices utilizing higher concentrations of DCB can be attributed to a reduced film thickness.



**Figure S4**. AFM phase images of neat pDPP-TNT films spin coated from chloroform (left) and chloroform:DCB (4:1) mixed solvent system (right).



**Figure S5**. EELS (electron energy loss spectroscopy) spectra of p-DPP-TNT (left) and [70]PCBM (right). Black line – raw data, blue line – after background subtraction. Sulfur signal is observed at ~180-200 eV (position of peak maximum).







**Figure S7.** Typical UV-vis spectra of the pDPP-TNT: [70]PCBM blend films rinsed in hexane to selectively remove [70]PCBM. Spectra of the same films before rinsing are shown as well as the spectrum of neat pDPP-TNT film rescaled to match corresponding rinsed film absorbance maxima.



**Figure S8.** UV-vis spectra of hexane rinses of all the films. For comparison, neat [70]PCBM solution spectrum is shown as well (rescaled in both graphs to match approximately the rinse of 15mg/mL film).





**Figure S9.** TEM images for mixed solvent films of different thicknesses. Corresponding initial solution concentrations were 4.5mg/mL (left) and 9mg/mL (right).



**Figure S10.** Normalized UV-vis spectra of 1:2 PMMA:[70]PCBM films of different thicknesses (spin-coated from chloroform using different initial solution concentrations) and neat [70]PCBM film. It is clearly seen that the long wavelength tail absorption increases significantly with film thickness.