Supporting Information

Synthesis of 2,4-bifunctionalised cyclopentenones from 2-furaldehyde

João P. M. Nunes,^a Carlos A. M. Afonso^b, and Stephen Caddick^a

^aDepartment of Chemistry, University College London, 20 Gordon Street, London, UK, WC1H 0AJ. ^bDepartamento de Química Farmacêutica e Terapêutica, Faculdade de Farmácia, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.

Email Address: j.p.nunes@ucl.ac.uk, carlosafonso@ff.ul.pt, s.caddick@ucl.ac.uk

Sections Included:

General method for diamine 1 synthesis from 2-furaldehyde studies by HPLC analysis	8
Table S1 – Results for Lewis acid screening for samples after 5 hours reaction time.	8
Table S2 – Results for Lewis acid screening for samples after 5 hours reaction time.	9
General method for synthesis of enone 2 studies by ^T H NMR analysis	9
Table S3 – Effect of NaOMe equivalents on the ration of products 2 and 4 by ¹ H NMR	. 10
General method for enone 5 synthesis from 2-furaldehyde studies by HPLC analysis	. 10
HPLC method for enone 5 synthesis from 2-furaldehyde studies	. 11
Deuteration studies of the synthesis of enone 5 from diamine 20 by ¹ H NMR	. 12
Figure S1 – Studies by ¹ H NMR at 400 MHz in MeOD-d4:	. 12
Reaction studies of 2-furaldehyde with thiophenol specie under different conditions	. 13
Table S4 – Results for experiments varying thiophenol, sodium thiophenolate and NaO ^t Bu	. 14
Deuteration studies of enone 23 with neutral or basic conditions by ¹ H NMR	. 15
Figure S2 – Deuteration studies by ¹ H NMR at 400 MHz in D ₂ O:MeOD-d4 2:1 ratio:	. 15
General method for 2-morpholino-4-thio cyclopentenone syntheses from 2-furaldehyde	. 15
General method for syntheses of 2-hydroxyl cyclopentenones	. 16
General method for 2-amino-4-thio cyclopentenones syntheses	. 16
General method for 2-amino-4-thio cyclopentenones syntheses	.17
<i>trans</i> -4 5-dimorpholinocyclopent-2-enone 1	17
4-methoxy-2-morpholinocyclopent-2-enone 2	18
4-ethoxy-2-morpholinocyclopent-2-enone 3	20
2 4-dimorpholinocyclopent-2-enone 4	21
4-(hexylthio)-2-morpholinocyclopent-2-enone 5	21
4-(ethylthio)-2-morpholinocyclopent-2-enone 6	22
4-(isopropylthio)-2-morpholinocyclopent-2-enone 7	23
4-(cvclohexvlthio)-2-morpholinocvclopent-2-enone 8	24
4-(<i>tert</i> -butylthio)-2-morpholinocyclopent-2-enone 9	25
2-morpholino-4-(phenylthio)-cyclopent-2-enone 10	26
4-(benzylthio)-2-morpholinocyclopent-2-enone 11	27
2-morpholino-4-(tritylthio)-cyclopent-2-enone 12	28
4-(3-methoxyphenylthio)-2-morpholinocyclopent-2-enone 13	29
Methyl 3-(3-morpholino-4-oxocyclopent-2-envlthio)-propanoate 14	30
3-(3-morpholino-4-oxocyclopent-2-envlthio)-propanoic acid 15	31
4-(2-hydroxyethylthio)-2-morpholinocyclopent-2-enone 16	32
4-(2-(diethylamino)ethylthio)-2-morpholinocyclopent 2 enone 17	33
4-(3-(trimethoxysilyl)-propylthio)-2-morpholinocyclopent-2-enone 18	34
2-morpholino-4-(propylamino)-cyclopent-2-enone 19	35
4-butyl-2-morpholinocyclopent-2-enone 20	37
<i>trans</i> -4-(hexylthio)-2 3-dimorpholinocyclopentanone 21	38
4-(hexylthio)-2-hydroxycyclopent-2-enone 22	40
4-(ethylthio)-2-hydroxycyclopent-2-enone 23	40
2-hydroxy-4-(isopropylthio)-cyclopent-2-enone 24	41
4-(cvclohexvlthio)-2-hvdroxvcvclopent-2-enone 25	42
4-(<i>tert</i> -butylthio)-2-hydroxycyclopent-2-enone 26	43
2-hydroxy-4-(nhenylthio)-cyclopent-2-enone 27	43
2-hydroxy-4-(tritylthio)-cyclopent-2-enone 28	44
4-(3-methoxyphenylthio)-2-hydroxycyclopent-2-enone 29	45
Methyl-3-(3-hydroxy-4-oxocyclopent-2-envlthio)-propanoate 30	46
4-(2-hydroxyethylthio)-2-hydroxycyclopent-2-enone 31	47
4-butyl-2-hydroxycyclopent-2-enone 32	48
4-(hexylthio)-2-(nronylamino)-cyclonent-2-enone 33	<u>4</u> 9
(nexytino) 2-(propytannio)-cyclopent-2-enone 55	· די

2-(cyclohexylamino)-4-(hexylthio)-cyclopent-2-enone 34	50
2-(tert-butylamino)-4-(hexylthio)-cyclopent-2-enone 35	51
2-(allylamino)-4-(hexylthio)-cyclopent-2-enone 36	52
4-(hexylthio)-2-(prop-2-ynylamino)-cyclopent-2-enone 37	53
2-(2-hydroxyethylamino)-4-(hexylthio)-cyclopent-2-enone 38	53
4-(hexylthio)-2-(phenylamino)-cyclopent-2-enone 39	54
(S)-ethyl 2-(3-(hexylthio)-5-oxocyclopent-1-envlamino)-3-phenylpropanoate 40	56
(furan-2-vl)-(phenvl)-methanol 41	57
<i>trans</i> -5-phenyl-4-(phenylamino)-cyclopent-2-enone 42	
4-(hexylthio)-2-phenylcyclopent-2-enone 43	59
4-(ethylthio)-2-phenylcyclopent-2-enone 44	61
4-(isopropylthio)-2-phenylcyclopent-2-enone 45	62
4-(<i>tert</i> -butylthio)-2-phenylcyclopent-2-enone 46	63
4-((2-hydroxyethyl)thio)-2-phenylcyclopent-2-enone 47	65
methyl 2-((4-0x0-3-phenylcyclopent-2-en-1-yl)thio)acetate 48	65
Figure $S_3 = {}^{1}H$ NMR spectra at 500 MHz in CDCl ₂ of isolated diamine 1	66
Figure S4 $-$ ¹³ C NMR spectra at 125 MHz in CDCl ₂ of isolated diamine 1	00
Figure S5 – FL mass spectra for exact mass measurement of isolated diamine 1	07 68
Figure S6 ¹ H NMR spectra at 500 MHz in CDCl. of isolated enone 2	60
Figure S7 13 C NMP spectra at 125 MHz in CDCl ₂ of isolated enone 2	09
Figure S7 – C INVIK Spectra at 125 INITZ III CDCI3 OF Isolated choice 2	70
Figure S0 – EI mass spectra for exact mass measurement of isolated enone 2.	/ I 72
Figure S9 – IT NMR spectra at 150 MHz in CDC13 of Isolated choice 5.	12
Figure S10 – C NWIK spectra at 150 MITZ III CDCI3 of Isolated enone 2.	/ 5
Figure S11 – EI mass spectra for exact mass measurement of isolated enone 5	/4
Figure S12 – H NMR spectra at 500 MHz in CDCl ₃ of isolated diamine 4	/5
Figure S13 – C NMR spectra at 125 MHz in CDCl ₃ of isolated diamine 4	/0
Figure S14 – EI mass spectra for exact mass measurement of isolated diamine 4	//
Figure S15 – H NMR spectra at 600 MHz in CDCl ₃ of isolated enone 5.	/8
Figure S16 – 10 C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 5	/9
Figure S17 – El mass spectra for exact mass measurement of isolated enone 5.	80
Figure S18 – H NMR spectra at 600 MHz in CDCl ₃ of isolated enone 6	81
Figure S19 – 10 C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 6	82
Figure S20 – El mass spectra for exact mass measurement of isolated enone 6.	83
Figure S21 – ¹ H NMR spectra at 600 MHz in CDCl ₃ of isolated enone 7	84
Figure S22 – ¹⁵ C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 7	85
Figure S23 – El mass spectra for exact mass measurement of isolated enone 7.	86
Figure S24 – ¹ ₁₂ NMR spectra at 600 MHz in CDCl ₃ of isolated enone 8	87
Figure S25 – ¹³ C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 8	88
Figure S26 – EI mass spectra for exact mass measurement of isolated enone 8.	89
Figure S27 – ¹ ₁₂ NMR spectra at 600 MHz in CDCl ₃ of isolated enone 9.	90
Figure S28 – ¹³ C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 9	91
Figure S29 – EI mass spectra for exact mass measurement of isolated enone 9.	92
Figure S30 – ¹ H NMR spectra at 600 MHz in CDCl ₃ of isolated enone 10	93
Figure S31 – ¹³ C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 10	94
Figure S32 – EI mass spectra for exact mass measurement of isolated enone 10	95
Figure S33 – ¹ H NMR spectra at 600 MHz in CDCl ₃ of isolated enone 11	96
Figure S34 – ¹³ C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 11	97
Figure S35 – EI mass spectra for exact mass measurement of isolated enone 11	98
Figure S36 – ¹ H NMR spectra at 600 MHz in CDCl ₃ of isolated enone 12	99
Figure S37 – ¹³ C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 12	. 100
Figure S38 – EI mass spectra for exact mass measurement of isolated enone 12	. 101

Figure S39 $-$ ¹ H NMR spectra at 600 MHz in CDCl ₃ of isolated enone 13	102
Figure S40 – ¹³ C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 13.	103
Figure S41 – EI mass spectra for exact mass measurement of isolated enone 13.	104
Figure S42 – ¹ H NMR spectra at 600 MHz in CDCl ₃ of isolated enone 14.	105
Figure S43 – ¹³ C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 14	106
Figure S44 – EI mass spectra for exact mass measurement of isolated enone 14.	107
Figure S45 – ¹ H NMR spectra at 600 MHz in CDCl ₃ of isolated enone 15.	108
Figure S46 – ¹³ C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 15.	109
Figure S47 – EI mass spectra for exact mass measurement of isolated enone 15.	110
Figure S48 $-$ ¹ H NMR spectra at 600 MHz in CDCl ₃ of isolated enone 16.	111
Figure S49 $-$ ¹³ C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 16.	112
Figure S50 – EI mass spectra for exact mass measurement of isolated enone 16.	113
Figure S51 $-$ ¹ H NMR spectra at 600 MHz in CDCl ₃ of isolated enone 17.	114
Figure $S52 - {}^{13}C$ NMR spectra at 150 MHz in CDCl ₃ of isolated enone 17	115
Figure S53 – El mass spectra for exact mass measurement of isolated enone 17	116
Figure S54 $-$ ¹ H NMR spectra at 600 MHz in CDCl ₂ of isolated enone 18	117
Figure S55 $-$ ¹³ C NMR spectra at 150 MHz in CDCl ₂ of isolated enone 18	118
Figure S56 – El mass spectra for exact mass measurement of isolated enone 18	119
Figure S57 $-$ ¹ H NMR spectra at 600 MHz in CDCl ₂ of isolated enone 19	120
Figure S58 $-$ ¹³ C NMR spectra at 150 MHz in CDCl ₂ of isolated enone 19	120
Figure S50 – El mass spectra for exact mass measurement of isolated enone 19	121
Figure S60 $-$ ¹ H NMR spectra at 500 MHz in CDCl ₂ of isolated compound 20	122
Figure S61 $-$ ¹³ C NMR spectra at 125 MHz in CDCl ₂ of isolated compound 20.	123
Figure S62 – El mass spectra for evact mass measurement of isolated compound 20	127
Figure S62 $^{-1}$ H NMR spectra at 600 MHz in CDCl ₂ of isolated compound 21	125
Figure S64 ¹³ C NMR spectra at 150 MHz in CDCl ₃ of isolated compound 21	120
Figure S65 EI mass spectra for exact mass measurement of isolated compound 21	127
Figure S66 ¹ H NMR spectra at 600 MHz in CDCl, of isolated enone 22	120
Figure S67 ¹³ C NMP spectra at 150 MHz in CDCl, of isolated enone 22	129
Figure S68 El mass spectra for evact mass measurement of isolated enone 22	121
Figure S60 - Et mass spectra at 600 MHz in CDCl, of isolated enone 23	131
Figure S09 – 11 NWR spectra at 000 MHz in CDCl ₃ of isolated enone 23.	122
Figure S70 – C NMR spectra at 150 MHZ III CDC1 ₃ of Isolated enone 23.	122
Figure $5/1 - E1$ mass spectra for exact mass measurement of isolated enone 25.	124
Figure $S/2 = H$ NWR spectra at 000 MHz in CDCl ₃ of isolated enone 24.	125
Figure S75 – C NMR spectra at 150 MHZ III CDC1 ₃ of isolated enone 24.	120
Figure $5/4 - EI$ mass spectra for exact mass measurement of isolated enone 24.	13/
Figure $5/5 - H$ NWR spectra at 000 MHz in CDCl ₃ of isolated enone 25.	138
Figure S76 – C NMR spectra at 150 MHZ in CDC13 of isolated enone 25.	139
Figure $S77 = E1$ mass spectra for exact mass measurement of isolated enone 25.	140
Figure $5/8 - H$ NMR spectra at 600 MHz in CDCl ₃ of isolated enone 26.	141
Figure $S/9 = C$ NMR spectra at 150 MHz in CDCl ₃ of isolated enone 26.	142
Figure $580 - EI$ mass spectra for exact mass measurement of isolated enone 26.	143
Figure S81 – H NMR spectra at 600 MHz in CDCl ₃ of isolated enone 27.	144
Figure $582 - C$ NMR spectra at 150 MHz in CDCl ₃ of isolated enone 27.	145
Figure 505 – EI mass spectra for exact mass measurement of isolated enone $2/$.	140
Figure $584 - H$ NMK spectra at 600 MHz in CDCl ₃ of isolated enone 28.	14/
Figure $585 - C$ NMK spectra at 150 MHZ in CDCl ₃ of isolated enone 28.	148
Figure $580 - EI$ mass spectra for exact mass measurement of isolated enone 28.	149
Figure $S8/ - H$ NMK spectra at 600 MHz in CDCl ₃ of isolated enone 29.	150
Figure $588 - C$ NMK spectra at 150 MHz in CDCl ₃ of isolated enone 29	151
\cdot	167

Figure S90 – ¹ H NMR spectra at 600 MHz in CDCl ₃ of isolated enone 30.	153
Figure S91 – ¹³ C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 30	154
Figure S92 – EI mass spectra for exact mass measurement of isolated enone 30	155
Figure S93 – ¹ H NMR spectra at 600 MHz in CDCl ₃ of isolated enone 31.	156
Figure S94 $-$ ¹³ C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 31.	157
Figure S95 – El mass spectra for exact mass measurement of isolated enone 31	158
Figure $S96 - {}^{1}H$ NMR spectra at 500 MHz in CDCl ₂ of isolated compound 32	159
Figure S97 $-$ ¹³ C NMR spectra at 125 MHz in CDCl ₂ of isolated compound 32	160
Figure S98 – FI mass spectra for exact mass measurement of isolated compound 32	161
Figure S90 $-$ ¹ H NMR spectra at 600 MHz in CDCl ₂ of isolated enone 33	162
Figure S100 $-$ ¹³ C NMR spectra at 150 MHz in CDCl ₂ of isolated enone 33	163
Figure \$101 FL mass spectra for exact mass measurement of isolated enone 33	164
Figure S102 - ¹ H NMR spectra at 600 MHz in CDCl. of isolated enone 34	165
Figure S102 – If NMR spectra at 000 MHz in CDCI of isolated enone 34 .	166
Figure S105 – C NWK specific at 150 WHZ III CDCI3 of Isolated choice 54	167
Figure $S104 - EI$ mass spectra for exact mass measurement of isolated enone 54	10/
Figure S105 – H NMR spectra at 600 MHz in CDCl ₃ of isolated enone 55	108
Figure S106 – $^{\circ}$ C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 35	169
Figure $S10/-EI$ mass spectra for exact mass measurement of isolated enone 35	170
Figure S108 – H NMR spectra at 600 MHz in CDCl ₃ of isolated enone 36	171
Figure S109 – ¹³ C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 36	172
Figure S110 – El mass spectra for exact mass measurement of isolated enone 36.	173
Figure S111 – ¹ H NMR spectra at 600 MHz in CDCl ₃ of isolated enone 37	174
Figure S112 – ¹³ C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 37	175
Figure S113 – EI mass spectra for exact mass measurement of isolated enone 37	176
Figure S114 – ¹ ₁₂ NMR spectra at 600 MHz in CDCl ₃ of isolated enone 38	. 177
Figure S115 – ¹³ C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 38	178
Figure S116 – EI mass spectra for exact mass measurement of isolated enone 38.	179
Figure S117 – ¹ H NMR spectra at 600 MHz in CDCl ₃ of isolated enone 39	180
Figure S118 – ¹³ C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 39	181
Figure S119 – EI mass spectra for exact mass measurement of isolated enone 39.	182
Figure S120 – ¹ H NMR spectra at 600 MHz in CDCl ₃ of isolated enone 40a.	183
Figure S121 – ¹³ C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 40a	184
Figure S122 – EI mass spectra for exact mass measurement of isolated enone 40a.	185
Figure S123 – ¹ H NMR spectra at 600 MHz in CDCl ₃ of isolated enone 40b.	186
Figure S124 – ¹³ C NMR spectra at 150 MHz in CDCl ₃ of isolated enone 40b	187
Figure S125 – EI mass spectra for exact mass measurement of isolated enone 40b.	188
Figure S126 – ¹ H NMR spectra at 600 MHz in CDCl ₃ of isolated compound 41	189
Figure S127 – ¹³ C NMR spectra at 150 MHz in CDCl ₃ of isolated compound 41	190
Figure S128 – EI mass spectra for exact mass measurement of isolated compound 41	191
Figure S129 – ¹ H NMR spectra at 600 MHz in CDCl ₃ of isolated compound 42	192
Figure S130 $-$ ¹³ C NMR spectra at 150 MHz in CDCl ₃ of isolated compound 42.	193
Figure S131 – EI mass spectra for exact mass measurement of isolated compound 42.	194
Figure S132 $-$ ¹ H NMR spectra at 600 MHz in CDCl ₂ of isolated compound 43	195
Figure S132 $-$ ¹³ C NMR spectra at 150 MHz in CDCl ₂ of isolated compound 43	196
Figure S134 – El mass spectra for exact mass measurement of isolated compound 43	197
Figure S135 $-$ ¹ H NMR spectra at 500 MHz in CDCl ₂ of isolated compound 44	198
Figure S136 $-$ ¹³ C NMR spectra at 125 MHz in CDCl ₂ of isolated compound 44	100
Figure S137 – FI mass spectra for exact mass measurement of isolated compound 44	200
Figure S137 $=$ L1 mass spectra for exact mass measurement of isolated compound 45.	200
Figure \$130 - 11 Wink spectra at 300 Winz in CDC13 of isolated compound 45.	201
Figure 5157 - C INVIK Spectra at 125 WITZ III CDC13 OF ISOlated compound 45	202
Figure 5140 – E1 mass spectra for exact mass measurement of isolated compound 45	203

Figure S141 – ¹ H NMR spectra at 500 MHz in CDCl ₃ of isolated compound 46	204
Figure S142 – ¹³ C NMR spectra at 125 MHz in CDCl ₃ of isolated compound 46	205
Figure S143 - EI mass spectra for exact mass measurement of isolated compound 46	206
Figure S144 – 1 H NMR spectra at 500 MHz in CDCl ₃ of isolated compound 47	207
Figure S145 – ¹³ C NMR spectra at 125 MHz in CDCl ₃ of isolated compound 47	208
Figure S146 - EI mass spectra for exact mass measurement of isolated compound 47	209
Figure S147 – ¹ H NMR spectra at 500 MHz in CDCl ₃ of isolated compound 48	210
Figure S148 – ¹³ C NMR spectra at 125 MHz in CDCl ₃ of isolated compound 48	211
Figure S149 - EI mass spectra for exact mass measurement of isolated compound 48	212
References	213

General Remarks

All reactions were carried out at atmospheric pressure with stirring at room temperature unless otherwise stated. Reagents and solvents were purchased from commercial sources and used as supplied or purified by conventional methods. Methanol and acetonitrile were dried with activated 4Å molecular sieves overnight, then decanted onto CaH₂, refluxed under argon for 3 h and distilled onto freshly activated 4Å molecular sieves. 2-furaldehyde was purified by distilling under vacuum. Reactions were monitored by TLC analysis carried out on silica gel SIL G/UV254 coated onto aluminium plates purchased from VWR. Visualization was carried out under a UV lamp operating at 254 nm wavelength and by staining with a solution of phosphomolybdic acid in ethanol (12 g/250 mL) followed by heating. Flash column chromatography was carried out with silica gel 60 (0.04-0.063 mm, 230-400 mesh) purchased from Merck. Nuclear magnetic resonance spectra were recorded in CDCl₃ (unless another solvent is stated) on Brucker NMR spectrometers operating at ambient room temperature probe. ¹H spectra were recorded at 400, 500 or 600 MHz and ¹³C spectra were recorded at 125 or 150 MHz, using residual solvents as internal reference. Were necessary, DEPT135, COSY, HMQC, HMBC and NOESY spectra have been used to ascertain structure. Infrared spectra were recorded on a Perkin Elmer Spectrum 100 FTIR spectrometer operating in ATR mode. Melting points were measured on a Gallenkamp apparatus and are uncorrected. Experimental procedures for all isolated compounds are presented. All yields quoted are isolated yields, unless otherwise stated, and when multiple products are obtained, data are presented in terms of order isolated. General methods for reactions followed by HPLC analysis are reported.

General method for diamine 1 synthesis from 2-furaldehyde studies by HPLC analysis

To a solution of 2-furaldehyde in dry MeCN (0.083 M) was added morpholine (2 eq.), 4Å molecular sieves (0.2 g/mmol of 2-furaldehyde) and the selected Lewis acid (0.4 eq.). The mixture was stirred for 5 hours at room temperature after which reaction samples of 0.100 mL were taken, diluted in H₂O (5 mL) and filtered through a syringe filter (13 mm with 0.2 μ m PTFE membrane). Samples were analysed with the method described below (page S11).

Entry	Lewis acid (0.4 equiv.)	Furaldehyde (%)	1 (%)
1	n.u.	84	2
2	Dy(OTf) ₃	26	67
3	TiCl ₄	37	52
4	AlCl ₃	22	68
5	BF ₃ •Et ₂ O	17	72
6	SnCl ₂	17	83
7	SnCl ₄	33	68
8	Sn(Bu) ₃ Cl	51	48
9	BCl ₃	35	64
10	Al(Me) ₂ Cl	15	82
11	BBr ₃	28	64
12	Al(Et) ₂ Cl	20	74
13	Al(O'Bu) ₃	91	0
14	NiCl ₂	34	66

Table S1 – Results for Lewis acid screening for samples after 5 hours reaction time.

Reaction conditions: 2-furaldehyde in MeCN (0.083 M), morpholine (2 eq.), 4Å molecular sieves, rt; yields determined by HPLC; n.u. – none utilised.

Entry	Lewis acid (0.4 equiv.)	Furaldehyde (%)	1 (%)
1	CoCl ₂	18	81
2	PdCl ₂	89	0
3	RuCl ₃	39	55

 Table S2 – Results for Lewis acid screening for samples after 5 hours reaction time.

Reaction conditions: 2-furaldehyde in MeCN (0.083 M), morpholine (2 eq.), 4Å molecular sieves, rt; yields determined by HPLC.

General method for synthesis of enone 2 studies by ¹H NMR analysis

To a solution of 2-furaldehyde in dry MeCN (0.125 M) was added morpholine (2 eq.), Dy(OTf)₃ (0.1 eq.) and 4Å molecular sieves (0.2 g/mmol of 2-furaldehyde). The mixture was stirred at room temperature for 5 hours. Then, NaOMe (0.5-8 eq.) was added and the mixture was stirred at room temperature for 30 minutes. Afterwards, the reaction mixture was quenched with water, filtered through a short plug of celite and the filter cake was washed twice with DCM. Added brine to the filtrate and separated layers. The aqueous layer was extracted one more time with DCM. The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was dissolved in deuterated chloroform being analysed by ¹H NMR.

_	Entry	Time (min)	NaOMe (equiv.)	2 : 4 ratio by ¹ H NMR
	1	30	0.5	No conversion from 1
	2	30	1.0	2 : 1 ratio of 40:60
	3	30	1.5	73:27
	4	30	2.0	74:26
	5	30	4.0	71:29
	6	30	6.0	70:30
	7	30	8.0	67:33

Table	S3 – Effe	ect of NaOMe	equivalents of	on the ration	of products	2 and 4 by	¹ H NMR.
-------	-----------	--------------	----------------	---------------	-------------	--------------------------	---------------------

Reaction conditions: 2-furaldehyde in MeOH (0.125 M), morpholine (2 eq.), Dy(OTf)₃ (0.1 eq.), 4Å molecular sieves, rt, 5h. Then, NaOMe was added, rt, 30 min.

General method for enone 5 synthesis from 2-furaldehyde studies by HPLC analysis

To a solution of 2-furaldehyde in dry MeCN (0.083 M) was added morpholine (2 eq.), 4Å molecular sieves (0.2 g/mmol of 2-furaldehyde) and the selected Lewis acid (0.4 eq.) The mixture was stirred for 5 hours at room temperature. Then, 1-hexanethiol (1 eq.) and the selected base (0.5 eq.) were added and the mixture was stirred for 30 minutes at room temperature at which time reaction samples of 0.100 mL were taken, diluted in 2:3 H₂O/MeCN (5 mL) and filtered through a syringe filter (13 mm with 0.2 μ m PTFE membrane). Samples were analysed with the method described below (page S11).

HPLC method for enone 5 synthesis from 2-furaldehyde studies

The resulting samples for 1 synthesis from 2-furaldehyde studies were analysed on a Varian Pro Star Model 500 HPLC system equipped with a Phenomenex Jupiter reverse phase 10µm C18 250×4 mm column. Samples were injected (10 µL) and eluted at a flow rate of 1.0 mL/min through a reverse phase column with the following solvent system program: 0-1 minutes 95:5 (H₂O/MeCN), 1-14 minutes 90:10 (H₂O/MeCN), 14-16 minutes 95:5 (H₂O/MeCN). Acquisition time was 16 minutes. 2-furaldehyde (retention time 8.00 min) absorbance was measured at 254 nm and diamine 1 (retention time 7.03 min) absorbance was measured at 214 nm. Samples for synthesis of enone 5 from 2-furaldehyde were diluted in 2:3 H₂O/MeCN (5 mL) and filtered through a syringe filter (13 mm with 0.2 µm PTFE membrane). Samples for quantification of 2-furaldehyde and diamine 1 were analysed according with method described for diamine 1 synthesis from 2-furaldehyde studies (above). Samples for quantification of enone 5 were injected (10 μ L) and eluted at a flow rate of 1.0 mL/min through a reverse phase column with the following solvent system program: 0-20 minutes 20:80 (H₂O/MeCN). Acquisition time was 16 minutes. Enone 5 (retention time 5.04 min) absorbance was measured at 214 nm. Chromatogram peak area (mAU/min) was converted into molar amounts using calibration plots of pure compound standard solutions of 2-furaldehyde, 1 and 5.

Deuteration studies of the synthesis of enone 5 from diamine 20 by ¹H NMR

A solution of diamine **20** (19 mg, 0.05 mmol) in MeOD-d4 (0.5 mL) was analysed by ¹H NMR. Then, a solution of KO^tBu (3 mg, 0.025 mmol) in MeOD-d4 (0.5 mL) was added. The mixture was analysed by ¹H NMR 20 minutes later. Another solution of diamine **20** (11 mg, 0.03 mmol) in MeOD-d4 (0.5 mL) was analysed by ¹H NMR. Then, 1-hexanethiol (0.0042 mL 0.03 mmol) was added. The mixture was analysed by ¹H NMR 20 minutes later.

Figure S1 – Studies by ¹H NMR at 400 MHz in MeOD-d4: diamine **20** (0.06-0.1 M). 1) Diamine **20** before adding reagents. 2) 20 minutes after adding 1-hexanethiol (1 eq.). 3) 20 minutes after adding KO^tBu (0.5 eq.). 4) Control sample of enone **5** with morpholine (1:1 ratio). Note: several protons for diamine **20** overlap with each other.

Reaction studies of 2-furaldehyde with thiophenol specie under different conditions

To a solution of 2-furaldehyde (0.041 mL, 0.5 mmol) in MeOH (2 mL) was added morpholine (0.086 mL, 1 mmol) and AlCl₃ (6.7 mg, 0.05 mmol). The mixture was stirred at room temperature for 5 hours. Then, thiophenol or sodium thiophenolate was added with or without base (NaO^tBu) and the mixture was stirred at room temperature. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM. The mixture was washed with AcOH/NaOAc buffer solution at pH 5 and brine. The aqueous layer was further extracted with DCM. The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with petroleum ether/DCM/EtOAc (10:10:1 v/v). A similar procedure in terms of concentrations, time events and work up was followed for control experiments with other starting materials.

Entry ^a	Starting Material	HSPh (eq.)	NaSPh (eq.)	NaO ^t Bu (eq.)	10 (%)	2 (%)	1 (%)	4 (%)
1	Furaldehyde	1	n.u.	n.u.	42	n.o.	19	n.o.
2	Furaldehyde	n.u.	1	n.u.	4	3	80	n.o.
3	Furaldehyde	1	n.u.	0.25	68	n.o.	29	n.o.
4	Furaldehyde	n.u.	1	0.25	n.o.	67	0.4	21
5	Furaldehyde	0.75	0.25	n.u.	42	n.o.	27	n.o.
6	Furaldehyde	1	n.u.	1	8	69	n.o.	13
7	Furaldehyde	1	n.u.	0.9	17	60	n.o.	18
8	Furaldehyde	1	n.u.	0.6	26	47	n.o.	10
9	Furaldehyde	n.u.	n.u.	0.25	n.o.	46	n.o.	26
10^{b}	1	1	n.u.	1	2	66	n.o.	7
11 ^c	10	n.u.	n.u.	0.25	81	6	n.o.	n.o.
12 ^d	10	n.u.	n.u.	0.25	93	6	n.o.	n.o.
13 ^c	10	n.u.	n.u.	1	9	29	n.o.	n.o.

Table S4 – Re	sults for ex	periments vary	ying thio	phenol, sodium	thiophenolate and NaO ^t Bu.	
---------------	--------------	----------------	-----------	----------------	--	--

^a – Conditions: 2-furaldehyde in MeOH (0.25 M), morpholine (2 eq.), AlCl₃ (10 mol%), 4Å MS (0.1 g/mmol of 2-furaldehyde), rt, 5 h. Afterwards added thiophenol or sodium thiolate and base if indicated, rt, 1 h. ^b – Conditions: **1** in MeOH (0.25 M) with thiophenol and base, rt, 1 h. ^c – Conditions: **10** in MeOH (0.25 M) with base, rt, 7 h. ^d – Conditions: **10** in MeOH (0.25 M) with AlCl₃ (10 mol%), morpholine (1 eq.), 4Å MS and base, rt, 7 h. Yields for isolated products by flash chromatography on silica gel. n.u. – none utilised; n.o. – none observed.

Deuteration studies of enone 23 with neutral or basic conditions by ¹H NMR

A solution of enone **23** (16 mg, 0.1 mmol) in D₂O (0.4 mL) and MeOD-d4 (0.2 mL) was analysed by ¹H NMR 1 day, 2 days and 9 days later. Another solution of enone **23** (16 mg, 0.1 mmol) in D₂O (0.4 mL) and MeOD-d4 (0.2 mL) was analysed by ¹H NMR 20 minutes later. Then, K_2CO_3 (4 mg, 0.03 mmol) was added. The mixture was analysed by ¹H NMR 4 hours later.

Figure S2 – Deuteration studies by ¹H NMR at 400 MHz in D₂O:MeOD-d4 2:1 ratio: enone **23** (0.25 M). 1) Enone **23** in neutral pH at the start of experiment. 2) Enone **23** in neutral pH after 9 days. 3) Enone **23** 1 hour after adding K_2CO_3 (0.3 eq.).

General method for 2-morpholino-4-thio cyclopentenone syntheses from 2-furaldehyde

To a solution of 2-furaldehyde in dry MeOH (0.25 M) was added morpholine (2 eq.), 4Å molecular sieves (0.2 g/mmol of 2-furaldehyde) and AlCl₃ (0.1 eq.). The mixture was stirred at room temperature for 6 hours. Then, thiol (1 eq.) was added, followed by addition of KO^tBu (0.25 eq.) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM. To the filtrate was added AcOH/NaOAc buffer solution at pH 5 (0.68 M in total acetates) and brine. The organic layer was separated and the aqueous layer was further extracted with DCM (twice). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica.

General method for syntheses of 2-hydroxyl cyclopentenones

To a solution of the selected 2-morpholino-4-thio cyclopentenone (0.2 M) in a mixture of MeOH/water (4:1 v/v) was added HCl 37% (1.1 eq.). The mixture was stirred at 60 °C for 2 hours. Afterwards, water and DCM were added and layers were separated. Aqueous layer was further extracted with DCM. Combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield a yellow low melting point solid or an orange oil which was purified by flash chromatography on silica.

General method for 2-amino-4-thio cyclopentenones syntheses

To a solution of diketone **22** in dry MeCN (0.25 M) was added the selected amine (1 eq.) and 4Å molecular sieves (0.2 g/mmol of diketone **22**). The mixture was stirred at room temperature for 20 hours. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM. The filtrate was concentrated under reduced pressure to yield a dark brown oil which was purified by flash chromatography on silica.

General method for 2-amino-4-thio cyclopentenones syntheses

To a solution of compound **41** in MeCN (0.25 M) was added aniline (0.96 eq.) and BF₃•OEt₂ (5 mol%). The mixture was stirred at 80 °C for 2 hours. Then, thiol (1 eq.) was added, followed by addition of KO^tBu (0.25 eq.) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was quenched with brine, extracted with EtOAc, dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica.

trans-4,5-dimorpholinocyclopent-2-enone 1

To a solution of 2-furaldehyde (0.41 mL, 5 mmol) in dry MeOH (20 mL) was added morpholine (0.86 mL, 10 mmol), AlCl₃ (67 mg, 0.5 mmol) and 4Å molecular sieves (1 g). The mixture was stirred at room temperature for 6 hours. Afterwards, the reaction was quenched with AcOH/NaOAc buffer solution at pH 5 (20 mL, 0.68 M in total acetates) and filtered through a short plug of celite. To the mixture was added DCM (60 mL) and layers were separated. The aqueous layer was further extracted with DCM (2×20 mL). Combined organic layers were washed with water (10 mL), then dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with DCM/ethanol (20:1 v/v) to afford 1 as a yellow oil that crystallizes upon standing (0.94 g, 3.7mmol, 74%). Data for 1 in accordance with reference:¹ ¹H NMR (500 MHz, CDCl₃) 2.53-2.62 (m, 6H, morpholine), 2.78 (overlapped t, J = 5.0 Hz, 2H, morpholine), 3.24 (d, J = 3.0 Hz, 1H, COCH), 3.67 (t, J = 5.0 Hz, 4H, morpholine), 3.68 (t, J = 5.0 Hz, 4H, morpholine), 3.75 (q, J =2.5 Hz, 1H, COCH=CHCHN), 6.19 (dd, J = 6.5, 2.5 Hz, 1H, COCH=CH), 7.56 (dd, J = 6.5, 2.5 Hz, 1H, COCH=CH); ¹³C NMR (125 MHz, CDCl₃) 49.9 (morpholine), 50.2 (morpholine), 66.6 (COCH), 67.2 (morpholine), 67.3 (morpholine), 68.2 (COCH=CHCHN), 135.5 (COCH=CH), 160.7 (COCH=CH), 206.2 (C=O).

4-methoxy-2-morpholinocyclopent-2-enone 2

To a solution of 2-furaldehyde (0.041 mL, 0.5 mmol) in dry MeOH (4 mL) was added morpholine (0.086 mL, 1 mmol), $Dy(OTf)_3$ (30 mg, 0.05 mmol) and 4Å molecular sieves (0.1 g). The mixture was stirred at room temperature for 5 hours. Then, sodium methoxide (81 mg, 1.5 mmol) was added and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction was quenched with water (6 mL), filtered through a short plug of celite and the filter cake was washed with DCM (2×6 mL). Filtrate layers were separated and the aqueous layer was extracted one more time with DCM (6 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with DCM/ethanol (20:1 v/v) to afford 2 as a low melting point yellow solid (68 mg, 0.34 mmol, 67%) and 4 as a yellow oil (22 mg, 0.04 mmol, 18%). Note: compound 2 is not stable as an isolated solid and will progressively turn into a dark oil over time. Data for 2: IR (film) v_{max} 2960, 2857, 1703, 1607, 1262, 1113, 890, 725. ¹H NMR (500 MHz, CDCl₃) 2.34-2.30 (dd, J = 18.4, 1.8 Hz, 1H, COCH₂), 2.71-2.66 (dd, J = 18.4, 5.9 Hz, 1H, COCH₂), 3.18-3.10 (overlapped t, J = 4.8 Hz, 4H, morpholine), 3.35 (s, 3H, OCH₃), 3.72 (t, overlapped peaks, J = 4.8 Hz, 4H, morpholine), 4.39 (m, J = 3.1, 1.85 Hz, 1H, CHOMe), 6.17 (d, J = 3.0 Hz, 1H, COC=CH); ¹³C NMR (125 MHz, CDCl₃) 42.5 (COCH₂), 47.8 (morpholine), 56.5 (OCH₃), 66.5 (morpholine), 74.4 (CHOMe), 128.0 (COC=CH), 151.4 (COC=CH), 201.2 (C=O). HRMS (EI) $[M]^+$ found 197.10483, $C_{10}H_{15}O_3N$ requires 197.10464. Data for **4**: IR (film) v_{max} 2959, 2855, 1702, 1610, 1451, 1260, 1112, 1008, 889, 726. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$ 2.43-2.39 (dd, overlapped peaks, J = 18.5, 2.6 Hz, 1H, COCH₂), 2.49-2.46 (dd, overlapped peaks, J = 18.5, 6.0 Hz, 1H, COCH₂), 2.54-2.49 (m, overlapped peaks, 4H, morpholine), 3.16-3.09 (m, 4H, morpholine), 3.69-3.68 (m, overlapped peaks, 1H, COCH₂CHN), 3.72-3.70 (t, overlapped peaks, J = 4.6 Hz, 4H, morpholine), 3.75 (t, J = 4.6 Hz, 4H,

morpholine), 6.22 (d, J = 2.9 Hz, 1H, COC=CH); ¹³C NMR (125 MHz, CDCl₃) 38.0 (COCH₂), 48.0 (morpholine), 49.9 (morpholine), 60.2 (COCH₂CHN), 66.5 (morpholine), 67.0 (morpholine), 129.5 (COC=CH), 151.6 (COC=CH), 201.9 (C=O). HRMS (EI) [M]⁺ found 252.14731, C₁₃H₂₀O₃N₂ requires 252.14684.

4-ethoxy-2-morpholinocyclopent-2-enone 3

To a solution of 2-furaldehyde (0.41 mL, 5 mmol) in dry ethanol (20 mL) was added morpholine (0.86 mL, 10 mmol), AlCl₃ (67 mg, 0.5 mmol) and 4Å molecular sieves (1 g). The mixture was stirred at room temperature for 6 hours. Then, sodium ethoxide (0.68 g, 10 mmol) was added and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (60 mL). To the filtrate was added AcOH/NaOAc buffer solution at pH 5 (20 mL, 0.68 M in total acetates) and brine (10 mL). The organic layer was separated and the aqueous layer was further extracted with DCM (2×20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with DCM/ethanol (20:1 v/v) to afford 3 as a low melting point yellow solid (0.38 g, 1.8 mmol, 36%) and **4** as a yellow oil (0.66 g, 2.6 mmol, 52%). Note: compound **3** is not stable as an isolated solid and will progressively turn into a dark oil over time. Data for 3: IR (film) v_{max} 2970, 2855, 1706, 1607, 1262, 1115, 1018, 888. ¹H NMR (600 MHz, CDCl₃) 1.15 (t, *J* = 7.0 Hz, 3H, CH₃), 2.28 (dd, J = 18.4, 1.7 Hz, 1H, COCH₂), 2.66 (dd, J = 18.4, 5.8 Hz, 1H, COCH₂), 3.15-3.04 (t, overlapped peaks, J = 4.8 Hz, 4H, morpholine), 3.48 (t, J = 7.0 Hz, 2H, OCH₂CH₃), 3.67 (t, overlapped peaks, J = 4.2 Hz, 4H, morpholine), 4.43 (m, J = 3.0 Hz, 1H, CHOEt), 6.14 (d, J = 2.9 Hz, 1H COC=CH); ¹³C NMR (150 MHz, CDCl₃) 15.6 (CH₃), 43.1 (COCH₂), 47.8

(morpholine), 64.6 (OCH₂CH₃), 66.5 (morpholine), 72.9 (CHOEt), 128.7 (COC=*C*H), 151.3 (COC=CH), 201.4 (*C*=O). HRMS (EI) [M]+ found 211.12065, C11H17NO3 requires 211.12029. Data for **4**: ¹H NMR (600 MHz, CDCl₃) 2.41-2.38 (dd, J = 18.6, 2.5 Hz, 1H, COC*H*₂), 2.48-2.44 (dd, overlapped peaks, J = 18.6, 5.9 Hz, 1H, COC*H*₂), 2.53-2.48 (m, overlapped peaks, 4H, morpholine), 3.09 (m, 4H, morpholine), 3.70-3.68 (m, overlapped peaks, 5H, morpholine and COH₂C*H*N), 3.71 (t, overlapped peaks, J = 4.9 Hz, 4H, morpholine), 6.19 (d, J = 2.9 Hz, 1H, COC=*CH*); ¹³C NMR (150 MHz, CDCl₃) 37.8 (COCH₂), 48.0 (morpholine), 49.7 (morpholine), 60.2 (COCH₂CHN), 66.5 (morpholine), 66.8 (morpholine), 129.2 (COC=*C*H), 151.7 (COC=CH), 201.9 (*C*=O).

2,4-dimorpholinocyclopent-2-enone 4

See experimental method for 4-methoxy-2-morpholinocyclopent-2-enone **2** (pages S19-S20). Data for **4**: IR (film) v_{max} 2959, 2855, 1702, 1610, 1451, 1260, 1112, 1008, 889, 726. ¹H NMR (500 MHz, CDCl₃) 2.43-2.39 (dd, overlapped peaks, J = 18.5, 2.6 Hz, 1H, COCH₂), 2.49-2.46 (dd, overlapped peaks, J = 18.5, 6.0 Hz, 1H, COCH₂), 2.54-2.49 (m, overlapped peaks, 4H, morpholine), 3.16-3.09 (m, 4H, morpholine), 3.69-3.68 (m, overlapped peaks, 1H, COCH₂CHN), 3.72-3.70 (t, overlapped peaks, J = 4.6 Hz, 4H, morpholine), 3.75 (t, J = 4.6 Hz, 4H, morpholine), 6.22 (d, J = 2.9 Hz, 1H, COC=CH); ¹³C NMR (125 MHz, CDCl₃) 38.0 (COCH₂), 48.0 (morpholine), 49.9 (morpholine), 60.2 (COCH₂CHN), 66.5 (morpholine), 67.0 (morpholine), 129.5 (COC=CH), 151.6 (COC=CH), 201.9 (C=O). HRMS (EI) [M]⁺ found 252.14731, C₁₃H₂₀O₃N₂ requires 252.14684.

4-(hexylthio)-2-morpholinocyclopent-2-enone 5

To a solution of 2-furaldehyde (0.41 mL, 5 mmol) in dry MeOH (20 mL) was added morpholine (0.86 mL, 10 mmol), 4Å molecular sieves (1 g) and AlCl₃ (67 mg, 0.5 mmol). The mixture was stirred at room temperature for 6 hours. Then, 1-hexanethiol (0.7 mL, 5 mmol) was added, followed by addition of KO^tBu (140 mg, 1.25 mmol) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (60 mL). To the filtrate was added AcOH/NaOAc buffer solution at pH 5 (20 mL, 0.68 M in total acetates) and brine (10 mL). The organic layer was separated and the aqueous layer was further extracted with DCM (2×20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with petroleum ether/DCM/EtOAc (10:10:1 v/v) to afford 5 as an orange oil (1.112 g, 3.9 mmol, 79%). Data for 5: IR (film) v_{max} 2924, 2854, 1703, 1601, 1260, 1118, 1026, 889. ¹H NMR (600 MHz, $CDCl_3$) 0.87 (t, J = 6.9 Hz, 3H, $S(CH_2)_5CH_3$), 1.31-1.24 (m, overlapped peaks, 4H, $S(CH_2)_3CH_2CH_2CH_3$, 1.38 (quintet, J = 7.3 Hz, 2H, $S(CH_2)_2CH_2(CH_2)_2CH_3$), 1.58 (quintet, J = 7.5, 2H, SCH₂CH₂(CH₂)₃CH₃), 2.46-2.43 (dd, J = 19.1, 1.7 Hz, 1H, COCH₂), 2.52 (t, J = 7.4 Hz, 2H, SCH₂CH₂(CH₂)₃CH₃), 2.92-2.88 (dd, J = 19.1, 6.3 Hz, 1H, COCH₂), 3.17-3.09 (t, overlapped peaks, J = 4.8 Hz, 4H, morpholine), 3.76 (t, J = 4.8, 4H, morpholine), 3.90 (m, J = 3.0, 1.8 Hz, 1H, COCH₂CHS), 6.19 (d, J = 3.0 Hz, 1H, COC=CH); ¹³C NMR (150 MHz, CDCl₃) 14.2 (S(CH₂)₅CH₃), 22.6 S(CH₂)₄CH₂CH₃), 28.8 (S(CH₂)₃CH₂CH₂CH₃), 29.9 (S(CH₂)₂CH₂(CH₂)₂CH₃), 30.8 (SCH₂CH₂(CH₂)₃CH₃), 31.5 (SCH₂CH₂(CH₂)₃CH₃), 39.5 (COCH₂CH), 44.5 (COCH₂), 48.1 (morpholine), 66.6 (morpholine), 132.0 (COC=CH), 150.6 (COC=CH), 202.7 (C=O). HRMS (EI) [M]⁺ found 283.16062, C₁₅H₂₅NO₂S requires 283.16005.

4-(ethylthio)-2-morpholinocyclopent-2-enone 6

To a solution of 2-furaldehyde (0.41 mL, 5 mmol) in dry MeOH (20 mL) was added morpholine (0.86 mL, 10 mmol), 4Å molecular sieves (1 g) and AlCl₃ (67 mg, 0.5 mmol). The mixture was stirred at room temperature for 6 hours. Then, ethanethiol (0.37 mL, 5 mmol) was added, followed by addition of KO^tBu (140 mg, 1.25 mmol) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (60 mL). To the filtrate was added AcOH/NaOAc buffer solution at pH 5 (20 mL, 0.68 M in total acetates) and brine (10 mL). The organic layer was separated and the aqueous layer was further extracted with DCM (2×20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with petroleum ether/DCM/EtOAc (10:10:1 v/v) to afford 6 as an orange oil (0.829 g, 3.6 mmol, 73%). Data for **6**: IR (film) v_{max} 2962, 2854, 1700, 1600, 1260, 1114, 1025, 889. ¹H NMR (600 MHz, CDCl₃) 1.27 (t, J = 7.4, 3H, CH_3), 2.46 (dd, J = 19.1, 1.7 Hz, 1H, $COCH_2$), 2.56 (q, J = 7.4 Hz, 2H, SCH_2CH_3), 2.90 (dd, J = 19.1, 6.3 Hz, 1H, COCH₂), 3.17-3.08 (t, overlapped peaks, J = 4.7 Hz, 4H, morpholine), 3.76 (t, J = 4.8, 4H, morpholine), 3.92 (m, J = 3.1, 1.2 Hz, 1H, COCH₂CHSEt), 6.19 (d, J = 3.1 Hz, 1H, COC=CH); ¹³C NMR (150 MHz, CDCl₃) 15.1 (CH₃), 24.8 (SCH₂CH₃), 39.3 (CHSEt), 44.5 (COCH₂), 48.1 (morpholine), 66.6 (morpholine), 131.9 (COC=CH), 150.6 (COC=CH), 202.6 (C=O). HRMS (EI) [M]⁺ found 227.09694, C₁₁H₁₇NO₂S requires 227.09745.

4-(isopropylthio)-2-morpholinocyclopent-2-enone 7

To a solution of 2-furaldehyde (0.41 mL, 5 mmol) in dry MeOH (20 mL) was added morpholine (0.86 mL, 10 mmol), 4Å molecular sieves (1 g) and AlCl₃ (67 mg, 0.5 mmol). The mixture was stirred at room temperature for 6 hours. Then, 2-propanethiol (0.464 mL, 5 mmol) was added, followed by addition of KO^tBu (140 mg, 1.25 mmol) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (60 mL). To the filtrate was added AcOH/NaOAc buffer solution at pH 5 (20 mL, 0.68 M in total acetates) and brine (10 mL). The organic layer was separated and the aqueous layer was further extracted with DCM (2×20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with petroleum ether/DCM/EtOAc (10:10:1 v/v) to afford 7 as an orange oil (0.924 g, 3.8 mmol, 77%). Data for 7: IR (film) v_{max} 2958, 2857, 1702, 1601, 1381, 1261, 1114, 1025, 889. ¹H NMR (600 MHz, CDCl₃) 1.29 (d, *J* = 6.7 Hz, 6H, CH(CH₃)₂), 2.47 (dd, *J* = 19.1, 1.7 Hz, 1H, COCH₂), 2.92 (dd, J = 19.1, 6.2 Hz, 1H, COCH₂), 3.02 (septet, J = 6.7 Hz, 1H, CH(CH₃)₂), 3.15-3.09 (t, overlapped peaks, J = 4.2 Hz, 4H, morpholine), 3.76 (t, J = 4.8, 4H, morpholine), 3.94 (m, J = 3.1, 1.3 Hz, 1H, COCH₂CHS), 6.19 (d, J = 3.2 Hz, 1H, COC=CH); ¹³C NMR (150 MHz, CDCl₃) 24.0 (CH(CH₃)₂), 24.2 (CH(CH₃)₂), 35.6 (CH(CH₃)₂), 38.6 (COCH₂CH), 45.3 (COCH₂), 48.0 (morpholine), 66.6 (morpholine), 132.0 (COC=CH), 150.4 (COC=CH), 202.7 (C=O). HRMS (EI) $[M]^+$ found 241.11286, C₁₂H₁₉NO₂S requires 241.11310.

4-(cyclohexylthio)-2-morpholinocyclopent-2-enone 8

To a solution of 2-furaldehyde (0.41 mL, 5 mmol) in dry MeOH (20 mL) was added morpholine (0.86 mL, 10 mmol), 4Å molecular sieves (1 g) and AlCl₃ (67 mg, 0.5 mmol). The mixture was stirred at room temperature for 6 hours. Then, cyclohexanethiol (0.625 mL, 5 mmol) was added, followed by addition of KO^tBu (140 mg, 1.25 mmol) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (60 mL). To the filtrate was added AcOH/NaOAc buffer solution at pH 5 (20 mL, 0.68 M in total acetates) and brine (10 mL). The organic layer was separated and the aqueous layer was further extracted with DCM (2×20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with petroleum ether/DCM/EtOAc (10:10:1 v/v) to afford 8 as an orange oil (1.005 g, 3.6 mmol, 72%). Data for **8**: IR (film) v_{max} 2922, 2852, 1700, 1602, 1448, 1261, 1112, 1027, 889, 733. ¹H NMR (600 MHz, $CDCl_3$) 1.39-1.22 (m, overlapped peaks, 5H, cyclohexane), 1.60 (m, J = 12.4, 4.1 Hz, 1H, cyclohexane), 1.75 (m, J = 12.5, 3.7 Hz, 2H, cyclohexane), 1.95 (m, J = 3.6 Hz, 2H, cyclohexane), 2.46 (dd, J = 19.1, 1.7 Hz, 1H, COCH₂), 2.75-2.71 (m, J = 10.4, 3.6 Hz, 1H, cyclohexane), 2.91 (dd, J = 19.1, 6.2 Hz, 1H, COCH₂), 3.12 (t, J = 4.8 Hz, 4H, morpholine), 3.75 (t, J = 4.8, 4H, morpholine), 3.96 (m, J = 3.1, 1.1 Hz, 1H, COCH₂CHS), 6.18 (d, J = 3.1 Hz, 1H, COC=CH; ¹³C NMR (150 MHz, CDCl₃) 25.8 (cyclohexane), 26.1 (cyclohexane), 26.2 (cyclohexane), 34.2 (cyclohexane), 34.4 (cyclohexane), 38.3 (COCH₂CH), 44.0 (cyclohexane), 45.4 (COCH₂), 48.1 (morpholine), 66.6 (morpholine), 132.3 (COC=CH), 150.4 (COC=CH), 202.7 (C=O). HRMS (EI) $[M]^+$ found 281.14355, C₁₅H₂₃NO₂S requires 281.14440.

4-(tert-butylthio)-2-morpholinocyclopent-2-enone 9

To a solution of 2-furaldehyde (0.41 mL, 5 mmol) in dry MeOH (20 mL) was added morpholine (0.86 mL, 10 mmol), 4Å molecular sieves (1 g) and AlCl₃ (67 mg, 0.5 mmol). The mixture was stirred at room temperature for 6 hours. Then, 2-methyl-2-propanethiol (0.56 mL, 5 mmol) was added, followed by addition of KO^tBu (140 mg, 1.25 mmol) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (60 mL). To the filtrate was added AcOH/NaOAc buffer solution at pH 5 (20 mL, 0.68 M in total acetates) and brine (10 mL). The organic layer was separated and the aqueous layer was further extracted with DCM (2×20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with petroleum ether/DCM/EtOAc (10:10:1 v/v) to afford 9 as a yellow-white solid (0.975 g, 3.8 mmol, 76%). Data for 9: mp 67-69 °C. IR (pellet) v_{max} 3071, 2955, 2860, 1701, 1602, 1454, 1268, 1113, 1025, 887, 741. ¹H NMR (600 MHz, CDCl₃) 1.37 (s, 9H, CCH₃), 2.54 (dd, *J* = 19.2, 1.7 Hz, 1H, COCH₂), 2.98 (dd, J = 19.1, 6.2 Hz, 1H, COCH₂), 3.15-3.09 (overlapped t, J = 4.9 Hz, 4H, morpholine), 3.76 (t, J = 4.9 Hz, 4H, morpholine), 3.93 (m, J = 3.2 Hz, 1H, COCH₂CHS), 6.15 (d, J = 3.2 Hz, 1H, COC=CH); ¹³C NMR (150 MHz, CDCl₃) 31.6 (CCH₃), 37.3 (COCH₂CHS), 44.2 (CCH₃), 47.1 (COCH₂), 48.1 (morpholine), 66.6 (morpholine), 132.7 (COC=CH), 150.2 (COC=CH), 203.0 (C=O). HRMS (EI) [M]⁺ found 255.12922, C₁₃H₂₁NO₂S requires 255.12875.

2-morpholino-4-(phenylthio)-cyclopent-2-enone 10

To a solution of 2-furaldehyde (0.41 mL, 5 mmol) in dry MeOH (20 mL) was added morpholine (0.86 mL, 10 mmol), 4Å molecular sieves (1 g) and AlCl₃ (67 mg, 0.5 mmol). The mixture was stirred at room temperature for 6 hours. Then, thiophenol (0.513 mL, 5 mmol) was added, followed by addition of KO^tBu (140 mg, 1.25 mmol) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (60 mL). To the filtrate was added AcOH/NaOAc buffer solution at pH 5 (20 mL, 0.68 M in total acetates) and brine (10 mL). The organic layer was separated and the aqueous layer was further extracted with DCM (2×20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with petroleum ether/DCM/EtOAc (10:10:1 v/v) to afford 10 as a white-yellow low melting point solid (0.973 g, 3.5 mmol, 71%). Data for 10: mp 80-82 °C. IR (film) v_{max} 3058, 2978, 2842, 1696, 1609, 1479, 1375, 1257, 1110, 1029, 889, 724, 685. ¹H NMR (600 MHz, CDCl₃) 2.50 (dd, *J* = 19.2, 1.7 Hz, 1H, COCH₂), 2.90 (dd, J = 19.2, 6.2 Hz, 1H, COCH₂), 3.13-3.08 (overlapped t, J = 4.4 Hz, 4H, morpholine), 3.75 (t, J = 4.8, 4H, morpholine), 4.30 (m, J = 3.1, 1.3 Hz, 1H, COCH₂CHS), 6.19 (d, J = 3.2 Hz, 1H, COC=CH), 7.33-7.29 (m, 3H, Ph), 7.41-7.39 (m, 2H, Ph); ¹³C NMR (150 MHz, CDCl₃) 42.8 (COCH₂CHS), 43.7 (COCH₂), 47.9 (morpholine), 66.5 (morpholine), 127.9 (Ph), 129.2 (overlapped, Ph), 130.7 (Ph), 132.8 (overlapped, COC=CH and Ph), 133.6 (Ph), 150.8 (COC=CH), 202.1 (C=O). HRMS (EI) [M]⁺ found 275.09643, C₁₅H₁₇NO₂S requires 275.09745.

4-(benzylthio)-2-morpholinocyclopent-2-enone 11

To a solution of 2-furaldehyde (0.41 mL, 5 mmol) in dry MeOH (20 mL) was added morpholine (0.86 mL, 10 mmol), 4Å molecular sieves (1 g) and AlCl₃ (67 mg, 0.5 mmol). The mixture was stirred at room temperature for 6 hours. Then, α -toluenethiol (0.587 mL, 5 mmol) was added, followed by addition of KO^tBu (140 mg, 1.25 mmol) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (60 mL). To the filtrate was added AcOH/NaOAc buffer solution at pH 5 (20 mL, 0.68 M in total acetates) and brine (10 mL). The organic layer was separated and the aqueous layer was further extracted with DCM (2×20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with petroleum ether/DCM/EtOAc (10:10:1 v/v) to afford 11 as a white-yellow low melting point solid (1.154 g, 4.0 mmol, 80%). Data for 11: mp 64-66 °C. IR (film) v_{max} 2961, 2850, 1701, 1591, 1384, 1254, 1116, 1026, 888, 831, 712. ¹H NMR (600 MHz, CDCl₃) 2.33 (dd, J = 19.2, 1.8 Hz, 1H, COCH₂), 2.72 (dd, J = 19.2, 6.3 Hz, 1H, COCH₂), 2.98-2.93 (overlapped t, J = 4.8 Hz, 2H, morpholine), 3.07-3.03 (overlapped t, J = 4.8 Hz, 2H, morpholine), 3.66 (t, J = 4.8, 4H, morpholine), 3.70(s, 2H, CH₂Ph), 3.74 (m, J = 3.1, 1.2 Hz, 1H, COCH₂CHS), 5.99 (d, J = 3.2 Hz, 1H, COC=CH), 7.18 (m, J = 4.2 Hz, 1H, Ph), 7.25 (d, J = 4.4 Hz, 4H, Ph); ¹³C NMR (150 MHz, CDCl₃) 35.6 (CH₂Ph), 39.3 (COCH₂CHS), 44.1 (COCH₂), 47.9 (morpholine), 66.4 (morpholine), 127.2 (Ph), 128.7 (Ph), 128.9 (overlapped, Ph), 131.3 (overlapped, COC=CH and Ph), 138.4 (Ph), 150.4 (COC=CH), 202.2 (C=O). HRMS (EI) [M]⁺ found 289.11351, C₁₆H₁₉NO₂S requires 289.11310.

2-morpholino-4-(tritylthio)-cyclopent-2-enone 12

To a solution of 2-furaldehyde (0.41 mL, 5 mmol) in dry MeOH (20 mL) was added morpholine (0.86 mL, 10 mmol), 4Å molecular sieves (1 g) and AlCl₃ (67 mg, 0.5 mmol). The mixture was stirred at room temperature for 6 hours. Then, trityl thiol (1.38 g, 5 mmol) was added, followed by addition of KO^tBu (140 mg, 1.25 mmol) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (60 mL). To the filtrate was added AcOH/NaOAc buffer solution at pH 5 (20 mL, 0.68 M in total acetates) and brine (10 mL). The organic layer was separated and the aqueous layer was further extracted with DCM (2×20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with petroleum ether/DCM/EtOAc (10:10:1 v/v) to afford 12 as a yellow-white solid (1.40 g, 3.2 mmol, 63%). Data for **12**: mp 160-162 °C. IR (pellet) v_{max} 2954, 2828, 1706, 1550, 1262, 1116, 1026, 889, 746, 697. ¹H NMR (600 MHz, CDCl₃) 2.07 (dd, J = 19.5, 1.7 Hz, 1H, COCH₂), 2.19 (dd, J = 19.5, 6.2 Hz, 1H, COCH₂), 3.06 (t, J = 4.7 Hz, 4H, morpholine), 3.55 (m, J = 3.1 Hz, 1H, COCH₂CHS), 3.73 (t, J = 4.7 Hz, 4H, morpholine), 5.89 (d, J = 3.1 Hz, 1H, COC=CH), 7.24 (overlapped t, J = 7.3 Hz, 3H, Ph), 7.31 (overlapped t, J = 7.4 Hz, 6H, Ph), 7.49 (overlapped d, J = 7.6 Hz, 6H, Ph); ¹³C NMR (150 MHz, CDCl₃) 40.8 (COCH₂CHS), 44.4 (COCH₂), 48.0 (morpholine), 66.6 (morpholine), 67.9 (CPh₃), 127.1 (Ph), 128.3 (Ph, overlapped), 129.7 (Ph, overlapped), 131.8 (COC=CH), 144.6 (Ph), 150.0 (COC=CH), 202.7 (C=O). HRMS (EI) $[M+H]^+$ found 442.1847, C₂₈H₂₈NO₂S requires 442.1841.

4-(3-methoxyphenylthio)-2-morpholinocyclopent-2-enone 13

To a solution of 2-furaldehyde (0.41 mL, 5 mmol) in dry MeOH (20 mL) was added morpholine (0.86 mL, 10 mmol), 4Å molecular sieves (1 g) and AlCl₃ (67 mg, 0.5 mmol). The mixture was stirred at room temperature for 6 hours. Then, 3-methoxybenzylmercaptan (0.62 mL, 5 mmol) was added, followed by addition of KO^tBu (140 mg, 1.25 mmol) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (60 mL). To the filtrate was added AcOH/NaOAc buffer solution at pH 5 (20 mL, 0.68 M in total acetates) and brine (10 mL). The organic layer was separated and the aqueous layer was further extracted with DCM (2×20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with DCM/EtOAc (10:1 v/v) to afford 13 as an orange solid (1.07 g, 3.5 mmol, 70%). Data for 13: mp 58-61 °C. IR (film) v_{max} 2966, 2865, 1693, 1577, 1476, 1245, 1116, 1024, 886, 775. ¹H NMR (500 MHz, CDCl₃) 2.52-2.49 (dd, J = 19.2, 1.7 Hz, 1H, COCH₂), 2.93-2.88 (dd, J = 19.2, 6.2 Hz, 1H, COCH₂), 3.15 (overlapped t, J = 4.8 Hz, 4H, morpholine), 3.74 (t, J = 4.8 Hz, 4H, morpholine), 3.79 (s, 3H, OCH₃), 4.32 (m, J = 3.0 Hz, 1H, COCH₂CHS), 6.18 (d, J = 3.1 Hz, 1H, COC=CH), 6.81 (dd, J = 8.3, 0.7 Hz, 1H, Ph), 6.92 (q, J = 2.4 Hz, 1H, Ph), 6.97 (dq, J = 7.6, 0.8 Hz, 1H, Ph), 7.22 (t, J = 7.9 Hz, 1H, Ph); ¹³C NMR (125 MHz, CDCl₃) 42.6 (COCH₂CHS), 43.7 (COCH₂), 47.9 (morpholine), 55.4 (OCH₃), 66.5 (morpholine), 113.3 (Ph), 117.6 (Ph), 124.3 (Ph), 130.0 (Ph), 130.4 (COC=CH), 135.1 (Ph), 150.8 (COC=CH), 159.9 (Ph), 201.9 (C=O). HRMS (EI) $[M+H]^+$ found 306.1158, $C_{16}H_{20}NO_3S$ requires 306.1164.

Methyl 3-(3-morpholino-4-oxocyclopent-2-enylthio)-propanoate 14

To a solution of 2-furaldehyde (0.41 mL, 5 mmol) in dry MeOH (20 mL) was added morpholine (0.86 mL, 10 mmol), 4Å molecular sieves (1 g) and AlCl₃ (67 mg, 0.5 mmol). The mixture was stirred at room temperature for 6 hours. Then, methyl-3-mercaptopropionate (0.542 mL, 5 mmol) was added, followed by addition of KO^tBu (140 mg, 1.25 mmol) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (60 mL). To the filtrate was added AcOH/NaOAc buffer solution at pH 5 (20 mL, 0.68 M in total acetates) and brine (10 mL). The organic layer was separated and the aqueous layer was further extracted with DCM (2×20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with DCM/EtOAc (10:1 v/v) to afford 14 as an orange oil (0.973 g, 3.5 mmol, 71%). Data for 14: IR (film) v_{max} 2954, 2867, 1706, 1600, 1357, 1254, 1196, 1115, 1024, 889, 735. ¹H NMR (600 MHz, CDCl₃) 2.45 (d, J = 19.2 Hz, 1H, COCH₂), 2.62 (t, J = 7.2 Hz, 2H, CH_2CH_2COOMe), 2.81 (t, J = 7.2 Hz, 2H, CH_2CH_2COOMe), 2.91 (dd, J = 19.2, 6.3 Hz, 1H, $COCH_2$), 3.18-3.09 (overlapped t, J = 4.9 Hz, 4H, morpholine), 3.70 (s, 3H, $COOCH_3$), 3.76 (t, J = 4.8, 4H, morpholine), 3.94 (m, J = 3.1 Hz, 1H, COCH₂CHS), 6.17 (d, J = 2.8 Hz, 1H, COC=CH); ¹³C NMR (150 MHz, CDCl₃) 25.7 (CH₂CH₂COOMe), 34.8 (CH₂CH₂COOMe), 39.8 (COCH₂CHS), 44.4 (COCH₂), 48.0 (morpholine), 52.1 (COOCH₃), 66.6 (morpholine), 131.1 (COC=CH), 150.1 (COC=CH), 172.2 (COOMe), 202.3 (C=O). HRMS (EI) [M]⁺ found 285.10215, C₁₃H₁₉NO₄S requires 285.10293.

3-(3-morpholino-4-oxocyclopent-2-enylthio)-propanoic acid 15

To a solution of 2-furaldehyde (0.41 mL, 5 mmol) in dry MeOH (10 mL) was added morpholine (0.86 mL, 10 mmol), 4Å molecular sieves (1 g) and AlCl₃ (67 mg, 0.5 mmol). The mixture was stirred at room temperature for 6 hours. Then, a solution of 3-mercaptopropionic acid (0.436 mL, 5 mmol) with KO^tBu (0.56 g, 5 mmol) in dry MeOH (10 mL) was added, followed by further addition of KO^tBu (140 mg, 1.25 mmol) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was quenched with HCl 2M (5 mL), followed by addition of AcOH/NaOAc buffer solution at pH 5 (20 mL, 0.68 M in total acetates) and brine (5 mL). The mixture was filtered through a short plug of celite and the filter cake was washed with DCM (60 mL). The organic layer was separated and the aqueous layer was further extracted with DCM (2×20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with DCM/ethanol (20:1 v/v) to afford 15 as an orange oil that crystallizes into an orange-brown solid upon standing (0.743 g, 2.7 mmol, 55%). Data for 15: mp 109-112 °C. IR (film) v_{max} 2987, 2872, 2651, 2575, 1707, 1601, 1247, 1174, 1104, 1023, 885, 836, 731. ¹H NMR (600 MHz, CDCl₃) 2.47 (dd, *J* = 19.2, 1.7 Hz, 1H, COCH₂), 2.66 (t, *J* = 7.1 Hz, 2H, CH₂CH₂COOH), 2.81 (t, J = 7.2 Hz, 2H, CH₂CH₂COOH), 2.93 (dd, J = 19.2, 6.3 Hz, 1H, COCH₂), 3.19-3.10 (overlapped t, J = 4.8 Hz, 4H, morpholine), 3.77 (t, J = 4.8, 4H, morpholine), 3.96 (m, J = 3.1 Hz, 1H, COCH₂CHS), 6.18 (d, J = 3.1 Hz, 1H, COC=CH); ¹³C NMR (150 MHz, CDCl₃) 25.3 (CH₂CH₂COOH), 34.8 (CH₂CH₂COOH), 39.9 (COCH₂CHS), 44.3 (COCH₂), 48.0 (morpholine), 66.5 (morpholine), 131.1 (COC=CH), 150.8 (COC=CH), 177.1 (COOH), 202.4 (C=O). HRMS (EI) [M-H]⁺ found 270.0810, C₁₂H₁₆NO₄S requires 270.0800.

4-(2-hydroxyethylthio)-2-morpholinocyclopent-2-enone 16

To a solution of 2-furaldehyde (0.41 mL, 5 mmol) in dry MeOH (20 mL) was added morpholine (0.86 mL, 10 mmol), 4Å molecular sieves (1 g) and AlCl₃ (67 mg, 0.5 mmol). The mixture was stirred at room temperature for 6 hours. Then, 2-mercaptoethanol (0.35 mL, 5 mmol) was added, followed by addition of KO^tBu (140 mg, 1.25 mmol) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (60 mL). To the filtrate was added AcOH/NaOAc buffer solution at pH 5 (20 mL, 0.68 M in total acetates) and brine (10 mL). The organic layer was separated and the aqueous layer was further extracted with DCM (2×20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with DCM/ethanol (20:1 v/v) to afford 16 as an orange oil (0.940 g, 3.9 mmol, 77%). Data for 16: IR (film) v_{max} 3402, 2956, 2856, 1698, 1599, 1380, 1260, 1112, 1024, 888. ¹H NMR (600 MHz, CDCl₃) 2.45 (dd, J = 19.2, 1.7 Hz, 1H, COCH₂), 2.74 (dt, J = 6.2, 2.4 Hz, 2H, CH₂CH₂OH), 2.92 (dd, J = 19.2, 6.4 Hz, 1H, $COCH_2$), 3.11-3.08 (overlapped t, J = 4.8 Hz, 2H, CH_2CH_2OH), 3.18-3.15 (overlapped t, J = 4.8 Hz, 2H, morpholine), 3.76-3.74 (overlapped peaks, t, J = 4.9 Hz, 6H, morpholine), 3.97 (m, J = 3.1 Hz, 1H, COCH₂CHS), 6.17 (d, J = 3.1 Hz, 1H, COC=CH); ¹³C NMR (150 MHz, CDCl₃) 33.8 (CH₂CH₂OH), 39.5 (COCH₂CHS), 44.5 (COCH₂), 48.0 (morpholine), 61.3 (CH₂CH₂OH), 66.5 (morpholine), 131.2 (COC=CH), 150.8 (COC=CH), 202.4 (C=O). HRMS (EI) $[M]^+$ found 243.09161, C₁₁H₁₇NO₃S requires 243.09236.

4-(2-(diethylamino)ethylthio)-2-morpholinocyclopent-2-enone 17

To a solution of 2-furaldehyde (0.41 mL, 5 mmol) in dry MeOH (20 mL) was added morpholine (0.86 mL, 10 mmol), 4Å molecular sieves (1 g) and AlCl₃ (67 mg, 0.5 mmol). The mixture was stirred at room temperature for 6 hours. Then, 2-(diethylamino)-ethanethiol (0.75 mL, 5 mmol) was added, followed by addition of KO^tBu (140 mg, 1.25 mmol) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (60 mL). To the filtrate was added AcOH/NaOAc buffer solution at pH 5 (20 mL, 0.68 M in total acetates) and brine (10 mL). The organic layer was separated and the aqueous layer was further extracted with DCM (2×20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with DCM/MeOH (20:1 v/v) to afford **17** as an orange oil (1.127 g, 3.8 mmol, 76%). Data for **17**: IR (film) v_{max} 2965, 2821, 1702, 1600, 1381, 1261, 1116, 1026, 889. ¹H NMR (600 MHz, CDCl₃) 1.00 (t, *J* = 7.1 Hz, 6H, NCH₂CH₃), 2.45 (dd, *J* = 19.2, 1.7 Hz, 1H, COCH₂), 2.54-2.50 $(q, J = 7.1 \text{ Hz}, 4\text{H}, \text{NCH}_2\text{CH}_3), 2.65-2.58 \text{ (m, overlapped peaks, 4H, CH}_2\text{CH}_2\text{NEt}_2), 2.92 \text{ (dd, })$ J = 19.2, 6.4 Hz, 1H, COCH₂), 3.16-3.09 (overlapped t, J = 4.8 Hz, 4H, morpholine), 3.76-3.74 (overlapped peaks, t, J = 4.9 Hz, 4H, morpholine), 3.97 (m, J = 3.1 Hz, 1H, COCH₂CHS), 6.17 (d, J = 3.1 Hz, 1H, COC=CH); ¹³C NMR (150 MHz, CDCl₃) 11.9 (NCH₂CH₃), 28.4 (SCH₂CH₂N), 39.6 (COCH₂CHS), 44.6 (COCH₂), 47.1 (NCH₂CH₃), 48.0 (morpholine), 53.2 (SCH₂CH₂N), 66.6 (morpholine), 131.7 (COC=CH), 150.7 (COC=CH), 202.5 (C=O). HRMS (EI) $[M]^+$ found 298.17123, C₁₅H₂₆N₂O₂S requires 298.17094.

4-(3-(trimethoxysilyl)-propylthio)-2-morpholinocyclopent-2-enone 18

To a solution of 2-furaldehyde (0.41 mL, 5 mmol) in dry MeOH (20 mL) was added morpholine (0.86 mL, 10 mmol), 4Å molecular sieves (1 g) and AlCl₃ (67 mg, 0.5 mmol). The mixture was stirred at room temperature for 6 hours. Then, (3-mercaptopropyl)-trimethoxysilane (0.93 mL, 5 mmol) was added, followed by addition of KO^tBu (140 mg, 1.25 mmol) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (60 mL). DCM (140 mL) was added to the filtrate mixture, which was concentrated under reduced pressure to a volume of 20 mL. More DCM (100 mL) was added and the mixture was again concentrated under reduced pressure to 20 mL. The mixture was filtered off and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with DCM/ethanol (20.1 v/v) to afford **18** as an orange oil (0.94 g, 2.6 mmol, 52%). Data for **18**: IR (film) v_{max}.2942, 2839, 1703, 1601, 1450, 1262, 1069, 889, 810. ¹H NMR (600 MHz, CDCl₃) 0.76-73 (overlapped t, J = 6.1 Hz, 2H, (OMe)₃SiCH₂CH₂CH₂), 1.73-1.69 (m, 2H, (OMe)₃SiCH₂CH₂CH₂), 2.46-2.43 (dd, J = 19.1, 1.6 Hz, 1H, COCH₂), 2.57-2.54 (overlapped t, J = 7.4 Hz, 2H, $(OMe)_3SiCH_2CH_2CH_2)$, 2.92-2.88 (dd, J = 19.2, 6.3 Hz, 1H, COCH₂), 3.17-3.09 (overlapped t, J = 4.8 Hz, 4H, morpholine), 3.55 (s, 7H, Si(OCH₃)₃), 3.76 (t, J = 4.8 Hz, 4H, morpholine), 3.90 (m, J = 3.0 Hz, 1H, COCH₂CHS), 6.19 (d, J = 3.1 Hz, 1H, COC=CH); ¹³C NMR (150 MHz, 8.8 CDCl₃) $((OMe)_3SiCH_2CH_2CH_2),$ 23.5 $((OMe)_3SiCH_2CH_2CH_2),$ 33.7 ((OMe)₃SiCH₂CH₂CH₂), 39.4 (COCH₂CHS), 44.5 (COCH₂), 48.1 (morpholine), 50.7 (Si(OCH₃)₃), 66.6 (morpholine), 132.0 (COC=CH), 150.6 (COC=CH), 202.6 (C=O). HRMS (EI) $[M+H]^+$ found 362.14552, $C_{15}H_{28}NO_5SSi$ requires 362.14575.

2-morpholino-4-(propylamino)-cyclopent-2-enone 19

To a solution of 2-furaldehyde (0.041 mL, 0.5 mmol) in dry MeOH (2 mL) was added morpholine (0.086 mL, 1 mmol), AlCl₃ (6.7 mg, 0.05 mmol) and 4Å molecular sieves (0.1 g). The mixture was stirred at room temperature for 6 hours. Then, *n*-propylamine (0.041 mL, 0.5 mmol) was added, followed by addition of KO^tBu (14 mg, 0.125 mmol) and the mixture was stirred at room temperature for 2 days. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (20 mL). To the filtrate was added AcOH/NaOAc buffer solution at pH 5 (6 mL, 0.68 M in total acetates). The organic layer was separated and the aqueous layer was further extracted with DCM (10 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield a dark oil which was purified by flash chromatography on silica with DCM/ethanol (20:1 v/v) to afford **3** as an orange oil (21 mg, 0.11 mmol, 21%), compound **19** as an orange oil (33 mg, 0.14 mmol, 29%), and compound 2 as a yellow oil (26 mg, 0.1 mmol, 20%). Data for 3: (600 MHz, CDCl₃) 2.37-2.33 (dd, *J* = 18.4, 1.8 Hz, 1H, COCH₂), 2.74-2.70 (dd, *J* = 18.4, 5.8 Hz, 1H, COCH₂), 3.21-3.12 (overlapped t, J = 4.8 Hz, 4H, morpholine), 3.38 (s, 3H, OCH₃), 3.76 (t, overlapped peaks, J = 4.8 Hz, 4H, morpholine), 4.42 (m, J = 3.0, 1.8 Hz, 1H, CHOMe), 6.21 (d, J = 3.0 Hz, 1H, COC=CH); ¹³C NMR (150 MHz, CDCl₃) 42.5 (COCH₂), 47.8 (morpholine), 56.5 (OCH₃), 66.5 (morpholine), 74.4 (CHOMe), 128.0 (COC=CH), 151.4 (COC=CH), 201.2 (C=O). Data for **19**: IR (film) v_{max} 3368, 2959, 2856, 1702, 1634, 1452, 1276, 1113, 1006, 853, 730. ¹H NMR (600 MHz, CDCl₃) 0.94 (t, J = 7.4 Hz, 3H, NCH₂CH₂CH₃), 1.57 (sextet, J = 7.1Hz, 2H, NCH₂CH₂CH₃), 2.40-2.36 (dd, J = 18.9, 2.0 Hz, 1H, COCH₂), 2.50-2.46 (dd, J = 18.9, 5.8 Hz, 1H, COCH₂), 2.53 (t, overlapped peaks, J = 4.4 Hz, 4H, morpholine), 2.95 (quartet, J =6.0 Hz, 2H, NCH₂CH₂CH₃), 3.73 (t, overlapped peaks, J = 4.6 Hz, 4H, morpholine), 3.78 (m, *J* = 2.9 Hz, 1H, COCH₂C*H*N), 3.98 (t, *J* = 5.0 Hz, 1H, N*H*), 5.79 (d, *J* = 3.0 Hz, 1H, COC=C*H*);
¹³C NMR (150 MHz, CDCl₃) 11.7 (NCH₂CH₂CH₃), 22.2 (NCH₂CH₂CH₃), 36.3 (NCH₂CH₂CH₃), 46.1 (COCH₂), 49.9 (morpholine), 61.4 (COCH₂CHN), 67.1 (morpholine), 117.2 (COC=CH), 147.4 (COC=CH), 201.9 (*C*=O). HRMS (EI) [M+H]⁺ found 225.16030, C₁₂H₂₁N₂O₂ requires 225.15999. Data for **2**: ¹H NMR (600 MHz, CDCl₃) 2.43-2.39 (dd, overlapped peaks, *J* = 18.5, 2.3 Hz, 1H, COCH₂), 2.50-2.47 (dd, overlapped peaks, *J* = 18.5, 6.0 Hz, 1H, COCH₂), 2.53-2.49 (m, overlapped peaks, 4H, morpholine), 3.13 (m, *J* = 5.0 Hz, 4H, morpholine), 3.70-3.67 (m, overlapped peaks, 1H, COH₂CHN), 3.71 (t, overlapped peaks, *J* = 4.6 Hz, 4H, morpholine), 3.75 (t, *J* = 4.6 Hz, 4H, morpholine), 6.22 (d, *J* = 2.9 Hz, 1H, COC=CH); ¹³C NMR (150 MHz, CDCl₃) 38.0 (COCH₂), 48.0 (morpholine), 50.0 (morpholine), 60.2 (COCH₂CHN), 66.6 (morpholine), 67.0 (morpholine), 129.6 (COC=CH), 151.7 (COC=CH), 202.0 (*C*=O).

4-butyl-2-morpholinocyclopent-2-enone 20

CuI (0.925 g, 5 mmol) was suspended in dry Et₂O (20 mL) under argon. The mixture was cooled down to 0 °C. Next, a 2.5 M solution of *n*-butyllithium in hexanes (4 mL, 10 mmol) was added dropwise over 15 minutes. Then, the mixture was cooled down to -78 °C and added dropwise a solution of **1** (1.26 g, 5 mmol) in 1:1 Et₂O:THF (20 mL) over 30 minutes. The mixture was stirred at -78 °C for 10 minutes and then was allowed to rise to room temperature and stir for an additional 60 minutes. Then, the reaction was quenched with ice (20 g). The mixture was extracted with Et₂O (2×40 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with petroleum ether/EtOAc (4:1 v/v) to afford **20** as a yellow oil (0.882 g, 3.9 mmol, 79%). Data for **20**: IR (film) v_{max} 2956, 2920, 2854, 1699, 1606, 1451, 1380, 1261, 1117, 1024, 891. ¹H NMR (500 MHz, CDCl₃) 0.90 (t, *J* = 7.0 Hz, 3H, CH₂CH₂CH₂CH₃), 1.38-1.31 (m, overlapped peaks, 5H, CH₂CH₂CH₂CH₃CH₃), 1.50-1.46 (m, overlapped peaks, 1H,

CH₂CH₂CH₂CH₃), 2.05-2.01 (dd, J = 19.0, 2.0 Hz, 1H, COCH₂), 2.61-2.56 (dd, J = 19.0, 6.5 Hz, 1H, COCH₂), 2.70 (m, 1H, COCH₂CH), 3.07 (overlapped t, J = 4.5 Hz, 4H, morpholine), 3.78 (overlapped t, J = 4.5 Hz, 4H, morpholine), 6.31 (d, J = 3.0 Hz, 1H, COC=CH); ¹³C NMR (125 MHz, CDCl₃) 14.1 (CH₂CH₂CH₂CH₃), 22.8 (CH₂CH₂CH₂CH₃), 29.8 (CH₂CH₂CH₂CH₂CH₃), 35.7 (CH₂CH₂CH₂CH₃), 36.0 (COCH₂CH), 42.4 (COCH₂), 48.5 (morpholine), 66.7 (morpholine), 138.0 (COC=CH), 150.1 (COC=CH), 204.8 (C=O). HRMS (EI) [M]⁺ found 223.15701, C₁₃H₂₁NO₂ requires 223.15663.

trans-4-(hexylthio)-2,3-dimorpholinocyclopentanone 21

To a solution of 2-furaldehyde (82 μ L, 1 mmol) in dry MeOH (4 mL) was added morpholine (172 μ L, 2 mmol), AlCl₃ (13.4 mg, 0.1 mmol) and 4Å molecular sieves (0.1 g). The mixture was stirred at room temperature for 5 hours. Then, 1-hexanethiol (140 μ L, 1 mmol), was added and the mixture was stirred for 24 hours. Afterwards, the reaction was filtered through a short plug of celite and the filter cake was washed with DCM (30 mL). To the filtrate was added water (10 mL). The organic layer was separated and the aqueous layer was further extracted with DCM (10 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with DCM/EtOAc/ethanol (30:1:1 v/v) to afford **5** as a yellow oil (76 mg, 0.27 mmol, 27%), compound **21** as a yellow oil that crystallizes into a yellow solid upon standing (87 mg, 0.23 mmol, 23%), and compound **1** as a yellow oil (19.5 mg, 0.077 mmol, 8%). Data for **5**: ¹H NMR (600 MHz, CDCl₃) 0.85 (t, *J* = 7.0 Hz, 3H, S(CH₂)₅CH₃), 1.29-1.22 (m, overlapped peaks, 4H, S(CH₂)₃CH₂CH₂CH₃), 1.35 (quintet, *J* = 7.3 Hz, 2H, S(CH₂)₂CH₂(CH₂)₂CH₃), 1.56 (quintet, *J* = 7.4, 2H, SCH₂CH₂(CH₂)₃CH₃), 2.44-2.40 (dd, *J* = 19.1, 1.8 Hz, 1H, COCH₂), 2.50 S38

 $(t, J = 7.4 \text{ Hz}, 2H, \text{ SCH}_2(\text{CH}_2)_3(\text{CH}_3), 2.90-2.86 \text{ (dd}, J = 19.1, 6.2 \text{ Hz}, 1H, \text{ COCH}_2), 3.15-$ 3.07 (t, overlapped peaks, J = 4.8 Hz, 4H, morpholine), 3.74 (t, J = 4.8, 4H, morpholine), 3.88 $(m, J = 3.0, 1.8 \text{ Hz}, 1\text{H}, \text{COCH}_2\text{CHS}), 6.18 (d, J = 3.0 \text{ Hz}, 1\text{H}, \text{COC}=CH);$ ¹³C NMR (150 MHz, CDCl₃) 14.1 (S(CH₂)₅CH₃), 22.6 (S(CH₂)₄CH₂CH₃), 28.7 (S(CH₂)₃CH₂CH₂CH₃), 29.9 $(S(CH_2)_2CH_2(CH_2)_2CH_3), 30.7 (SCH_2CH_2(CH_2)_3CH_3), 31.5 (SCH_2CH_2(CH_2)_3CH_3), 39.5$ (COCH₂CH), 44.5 (COCH₂), 48.0 (morpholine), 66.6 (morpholine), 132.0 (COC=CH), 150.6 (COC=CH), 202.6 (C=O). Data for 21: mp 87-92 °C. IR (film) v_{max} 2954, 2848, 1739, 1455, 1252, 1112, 1007, 865, 730. ¹H NMR (500 MHz, CDCl₃) 0.86 (t, J = 6.0 Hz, 3H, S(CH₂)₅CH₃), 1.30-1.23 (m, overlapped peaks, 4H, $S(CH_2)_3CH_2CH_2CH_3$), 1.37-1.31 (m, overlapped peaks, 2H, S(CH₂)₂CH₂(CH₂)₂CH₃), 1.55-1.47 (m, overlapped peaks, 2H, SCH₂CH₂(CH₂)₃CH₃), 2.40-2.32 (m, overlapped peaks, 2H, SCH₂CH₂(CH₂)₃CH₃), 2.57-2.53 (q, overlapped peaks, J = 8.0, 4.0 Hz, 2H, COCH₂CHS), 2.61-2.57 (dd, overlapped peaks, J = 15.0, 1.3 Hz, 1H, COCH₂CHS), 2.91 (dd, J = 8.0, 4.5 Hz, 1H, COCHNCHN), 2.71 (m, 4H, morpholine), 3.13 (m, 4H, morpholine), 3.00 (m, overlapped peaks, 2H,), 3.26 (d, J = 8.0 Hz, 1H, COCHN), 3.61-3.59 (t, overlapped peaks, J = 3.0 Hz, 4H, morpholine), 3.74 (t, J = 4.0 Hz, 4H, morpholine); ¹³C NMR (125 MHz, CDCl₃) 14.1 (S(CH₂)₅CH₃), 22.6 S(CH₂)₄CH₂CH₃), 28.8 (S(CH₂)₃CH₂CH₂CH₃), 29.2 (S(CH₂)₂CH₂(CH₂)₂CH₃), 30.3 (SCH₂CH₂(CH₂)₃CH₃), 31.5 (SCH₂CH₂(CH₂)₃CH₃), 40.8 (COCH₂CHS), 44.8 (morpholine), 52.5 (COCH₂), 65.3 (COCHNCHN), 67.0 (morpholine, overlapped), 67.5 (morpholine), 72.1 (COCHN), 214.5 (C=O). HRMS (EI) $[M]^+$ found 370.22742, C₁₉H₃₄N₂O₃S requires 370.2284. Data for 1: ¹H NMR (600 MHz, CDCl₃) 2.67-2.57 (m, 6H, morpholine), 2.80 (overlapped t, J = 4.5 Hz, 2H, morpholine), 3.29 (d, J = 3.0 Hz, 1H COCH), 3.68 (t, J = 4.6 Hz, 4H, morpholine), 3.73 (t, J = 4.6 Hz, 4H, morpholine), 3.80 (q, J =2.1 Hz, 1H, COCH=CHCHN), 6.21 (dd, J = 6.5, 1.9 Hz, 1H, COCH=CH), 7.59 (dd, J = 6.5, 2.2 Hz, 1H, COCH=CH); ¹³C NMR (150 MHz, CDCl₃) 50.0 (morpholine), 50.2 (morpholine), 66.7 (COCH), 67.2 (morpholine), 67.4 (morpholine), 68.2 (COCH=CHCHN), 135.6 (COCH=CH), 160.8 (COCH=CH), 206.2 (C=O).

4-(hexylthio)-2-hydroxycyclopent-2-enone 22

To a solution of enone 5 (0.142 g, 0.5 mmol) in MeOH (2 mL) and water (0.5 mL) was added HCl 37% (0.047 mL, 0.55 mmol). The mixture was stirred at 60 °C for 2 hours. Afterwards, water (2 mL) and DCM (6 ml) were added and layers were separated. Aqueous layer was further extracted with DCM (6 mL). Combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield a yellow low melting point solid which was purified by flash chromatography on silica with DCM/MeOH (20:1 v/v) to afford 22 as a pale vellow low melting point solid (89 mg, 0.4 mmol, 83%). Data for 22: mp 64-66 °C. IR (film) v_{max} 3269, 2923, 2856, 1698, 1648, 1383, 1183, 1105, 926, 871. ¹H NMR (600 MHz, CDCl₃) 0.86 $(t, J = 7.0 \text{ Hz}, 3H, S(CH_2)_5CH_3), 1.30-1.23 \text{ (m, overlapped peaks, 4H, } S(CH_2)_3CH_2CH_2CH_3),$ 1.35 (quintet, J = 7.7 Hz, 2H, S(CH₂)₂CH₂(CH₂)₂CH₃), 1.56 (quintet, J = 7.4, 2H, $SCH_2CH_2(CH_2)_3CH_3$, 2.46-2.43 (dd, J = 19.6, 1.4 Hz, 1H, $COCH_2$), 2.51 (dt, J = 7.7, 2.6 Hz, 2H, $SCH_2CH_2(CH_2)_3CH_3$, 2.95-2.90 (dd, J = 19.6, 5.9 Hz, 1H, $COCH_2$), 3.92 (m, J = 3.1, 1.4 Hz, 1H, COCH₂CHS), 6.50 (d, J = 3.1 Hz, 1H, COC=CH), 6.57 (br, 1H, OH); ¹³C NMR (150 MHz, CDCl₃) 14.1 (S(CH₂)₅CH₃), 22.6 S(CH₂)₄CH₂CH₃), 28.7 (S(CH₂)₃CH₂CH₂CH₃), 29.8 (S(CH₂)₂CH₂(CH₂)₂CH₃), 30.6 (SCH₂CH₂(CH₂)₃CH₃), 31.5 (SCH₂CH₂(CH₂)₃CH₃), 38.5 (COCH₂CH), 41.7 (COCH₂), 130.7 (COC=CH), 153.4 (COC=CH), 202.3 (C=O). HRMS (EI) $[M+H]^+$ found 215.11002, $C_{11}H_{19}O_2S$ requires 215.11058.

4-(ethylthio)-2-hydroxycyclopent-2-enone 23

To a solution of enone **6** (0.227 g, 1 mmol) in MeOH (4 mL) and water (1 mL) was added HCl 37% (0.094 mL, 1.1 mmol). The mixture was stirred at 60 °C for 2 hours. Afterwards, water (4 mL) and DCM (12 ml) were added and layers were separated. Aqueous layer was further extracted with DCM (12 mL). Combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield a yellow low melting point solid which was purified by flash chromatography on silica with DCM/MeOH (20:1 v/v) to afford **23** as a pale yellow low melting point solid (0.125 g, 0.79 mmol, 79%). Data for **23**: mp 46-48 °C. IR (film) v_{max} 3257, 2971, 2927, 2866, 1698, 1647, 1386, 1183, 1102, 925, 869. ¹H NMR (600 MHz, CDCl₃) 1.24 (t, *J* = 7.4 Hz, 3H, CH₃), 2.46-2.42 (dd, *J* = 19.6, 1.4 Hz, 1H, COCH₂), 2.56-2.52 (dq, *J* = 7.4, 2.9 Hz, 2H, SCH₂CH₃), 2.94-2.90 (dd, *J* = 19.6, 5.9 Hz, 1H, COCH₂), 3.92 (m, *J* = 3.1, 1.4 Hz, 1H, COCH₂CHSEt), 6.49 (d, *J* = 3.1 Hz, 1H, COC=CH), 6.76 (br, 1H, OH); ¹³C NMR (150 MHz, CDCl₃) 15.0 (CH₃), 24.6 (SCH₂CH₃), 38.3 (CHSEt), 41.8 (COCH₂), 130.9 (COC=CH), 153.5 (COC=CH), 202.4 (*C*=O). HRMS (EI) [M]⁺ found 158.03950, C₇H₁₀O₂S requires 158.03960.

2-hydroxy-4-(isopropylthio)-cyclopent-2-enone 24

To a solution of enone **7** (0.241 g, 1 mmol) in MeOH (4 mL) and water (1 mL) was added HCl 37% (0.094 mL, 1.1 mmol). The mixture was stirred at 60 °C for 2 hours. Afterwards, water (4 mL) and DCM (12 ml) were added and layers were separated. Aqueous layer was further extracted with DCM (12 mL). Combined organic layers were dried (MgSO₄), filtered and

concentrated under reduced pressure to yield a yellow low melting point solid which was purified by flash chromatography on silica with DCM/MeOH (20:1 v/v) to afford **24** as a pale yellow low melting point solid (0.141 g, 0.82 mmol, 82%). Data for **24**: mp 60-62 °C. IR (film) v_{max} 3144, 2958, 2928, 2865, 1682, 1612, 1396, 1258, 1091, 926, 858. ¹H NMR (600 MHz, CDCl₃) 1.27-1.25 (overlapped d, *J* = 6.7 Hz, 6H, CH(CH₃)₂), 2.45-2.42 (dd, *J* = 19.5, 1.3 Hz, 1H, COCH₂), 2.94-2.90 (dd, *J* = 19.5, 5.9 Hz, 1H, COCH₂), 3.00 (septet, *J* = 6.7 Hz, 1H, CH(CH₃)₂), 3.95 (m, *J* = 3.1, 1.4 Hz, 1H, COCH₂CHS), 6.49 (d, *J* = 3.1 Hz, 1H COC=CH), 6.84 (br, 1H, OH); ¹³C NMR (150 MHz, CDCl₃) 23.9 (CH(CH₃)₂), 24.1 (CH(CH₃)₂), 35.6 (CH(CH₃)₂), 37.5 (COCH₂CH), 42.6 (COCH₂), 131.0 (COC=CH), 153.3 (COC=CH), 202.5 (*C*=O). HRMS (EI) [M]⁺ found 172.05541, C₈H₁₂O₂S requires 172.05525.

4-(cyclohexylthio)-2-hydroxycyclopent-2-enone 25

To a solution of enone **8** (0.281 g, 1 mmol) in MeOH (4 mL) and water (1 mL) was added HCl 37% (0.094 mL, 1.1 mmol). The mixture was stirred at 60 °C for 2 hours. Afterwards, water (4 mL) and DCM (12 ml) were added and layers were separated. Aqueous layer was further extracted with DCM (12 mL). Combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield a yellow low melting point solid which was purified by flash chromatography on silica with DCM/MeOH (20:1 v/v) to afford **25** as a pale yellow low melting point solid (0.195 g, 0.92 mmol, 92%). Data for **25**: mp 80-83 °C (decomposes). IR (film) v_{max} 3124, 2923, 2848, 1682, 1610, 1397, 1270, 1096, 999, 928, 853. ¹H NMR (600 MHz, CDCl₃) 1.37-1.17 (m, overlapped peaks, 5H, cyclohexane), 1.58-1.56 (dt, J = 12.5, 4.0 Hz, 1H, cyclohexane), 1.73-1.71 (dt, J = 12.5, 3.8 Hz, 2H, cyclohexane), 1.91 (d, J = 12.7 Hz, 2H, cyclohexane), 2.45-2.41 (dd, J = 19.6, 1.3 Hz, 1H, COCH₂), 2.73-2.69 (tt,

J = 10.4, 3.7 Hz, 1H, cyclohexane), 2.94-2.90 (dd, J = 19.6, 5.9 Hz, 1H, COCH₂), 3.97 (m, J = 3.0, 1.2 Hz, 1H, COCH₂CHS), 6.48 (d, J = 3.0 Hz, 1H, COC=CH), 6.77 (br, 1H, OH); ¹³C NMR (150 MHz, CDCl₃) 25.7, 26.1 (two overlapped peaks), 34.1 (cyclohexane), 34.4 (cyclohexane), 37.3 (COCH₂CH), 42.7 (COCH₂), 43.9 (cyclohexane), 131.1 (COC=CH), 153.3 (COC=CH), 202.5 (C=O). HRMS (EI) [M]⁺ found 212.08682, C₁₁H₁₆O₂S requires 212.08655.

4-(tert-butylthio)-2-hydroxycyclopent-2-enone 26

To a solution of enone **9** (0.255 g, 1 mmol) in MeOH (4 mL) and water (1 mL) was added HCl 37% (0.094 mL, 1.1 mmol). The mixture was stirred at 60 °C for 2 hours. Afterwards, water (4 mL) and DCM (12 ml) were added and layers were separated. Aqueous layer was further extracted with DCM (12 mL). Combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield a yellow low melting point solid which was purified by flash chromatography on silica with DCM/MeOH (20:1 v/v) to afford **26** as a pale yellow low melting point solid (0.176 g, 0.94 mmol, 94%). Data for **26**: mp 112-115 °C (decomposes). IR (film) v_{max} 3327, 2963, 2864, 1689, 1646, 1387, 1160, 1109, 928, 868. ¹H NMR (600 MHz, CDCl₃) 1.36 (s, 9H, CCH₃), 2.53-2.50 (dd, *J* = 19.5, 1.3 Hz, 1H, COCH₂), 3.00-2.97 (dd, *J* = 19.5, 5.8 Hz, 1H, COCH₂), 3.95 (m, *J* = 3.1, 1.2 Hz, 1H, COCH₂CHS), 6.45 (d, *J* = 3.1 Hz, 1H, COC=CH), 6.55 (br, 1H, OH); ¹³C NMR (150 MHz, CDCl₃) 31.5 (CCH₃), 36.2 (COCH₂CHS), 44.2 (CCH₃), 44.3 (COCH₂), 131.3 (COC=CH), 152.9 (COC=CH), 202.6 (*C*=O). HRMS (EI) [M]⁺ found 186.07011, C₉H₁₄O₂S requires 186.07090.

2-hydroxy-4-(phenylthio)-cyclopent-2-enone 27

To a solution of enone **10** (0.138 g, 0.5 mmol) in a mixture of EtOAc (4mL), MeOH (1 mL) and water (0.5 mL) was added HCl 37% (0.047 mL, 0.55 mmol). The mixture was stirred at 60 °C for 2 hours. Afterwards, water (2 mL) and EtOAc (6 ml) were added and layers were separated. Aqueous layer was further extracted with EtOAc (6 mL). Combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield a yellow low melting point solid which was purified by flash chromatography on silica with DCM/MeOH (20:1 v/v) to afford **27** as a pale yellow low melting point solid (0.067 g, 0.24 mmol, 49%). Data for **27**: mp 95-98 °C. IR (film) v_{max} 3242, 3058, 1715, 1688, 1647, 1377, 1186, 1105, 930, 869. ¹H NMR (600 MHz, CDCl₃) 2.50-2.47 (dd, *J* = 19.6, 1.4 Hz, 1H, COCH₂), 2.93-2.89 (dd, *J* = 19.6, 5.9 Hz, 1H, COCH₂), 4.30 (m, *J* = 3.1, 1.4 Hz, 1H, COCH₂CHS), 6.25 (br, 1H, OH), 6.52 (d, *J* = 3.0 Hz, 1H, COC=*CH*), 7.34-7.30 (m, overlapped peaks, 3H, Ph), 7.43-7.41 (m, overlapped peaks, 2H, Ph); ¹³C NMR (150 MHz, CDCl₃) 40.8 (COCH₂), 41.8 (COCH₂CHS), 128.2 (Ph), 129.3 (overlapped, Ph), 129.6 (Ph), 132.8 (overlapped, COC=*C*H and Ph), 133.2 (Ph), 153.6 (COC=CH), 201.6 (*C*=O). HRMS (EI) [M+H]⁺ found 207.04813, C₁₁H₁₁O₂S requires 207.04798.

To a solution of enone **12** (0.442 g, 1 mmol) in a mixture of EtOAc (4mL), MeOH (1 mL) and water (0.5 mL) was added HCl 37% (0.094 mL, 1.1 mmol). The mixture was stirred at 60 °C for 2 hours. Afterwards, water (2 mL) and EtOAc (12 ml) were added and layers were separated. Aqueous layer was further extracted with EtOAc (12 mL). Combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield a yellow low melting point solid which was purified by flash chromatography on silica with DCM/MeOH (20:1 v/v) to afford **28** as a pale yellow low melting point solid (0.304 g, 0.82 mmol, 82%). Data for **28**: mp 88-92 °C. IR (film) ν_{max} 3312, 3032, 1698, 1652, 1388, 1192, 1107, 906, 854. ¹H NMR (600 MHz, CDCl₃) 2.09-2.06 (dd, *J* = 19.9, 1.3 Hz, 1H, COCH₂), 2.22-2.18 (dd, *J* = 19.9, 5.9 Hz, 1H, COCH₂), 3.58 (m, *J* = 3.0, 1.4 Hz, 1H, COCH₂CHS), 6.25 (d, *J* = 3.0 Hz, 1H, COC=CH), 6.45 (br, 1H, OH), 7.26 (t, overlapped peaks, *J* = 7.3 Hz, 3H, Ph), 7.33 (t, overlapped peaks, *J* = 7.5 Hz, 6H, Ph), 7.33 (d, overlapped peaks, *J* = 8.6 Hz, 6H, Ph); ¹³C NMR (150 MHz, CDCl₃) 39.8 (COCH₂CHS), 41.8 (COCH₂), 68.1 (CPh₃), 127.2 (Ph), 128.4 (Ph, overlapped), 129.7 (Ph, overlapped), 130.3 (COC=CH), 144.5 (Ph), 152.8 (COC=CH), 202.4 (C=O). HRMS (EI, CI, FAB) could only see peak for (CPh₃) which masks everything.

4-(3-methoxyphenylthio)-2-hydroxycyclopent-2-enone 29

To a solution of enone **13** (0.305 g, 1 mmol) in a mixture of EtOAc (4mL), MeOH (1 mL) and water (0.5 mL) was added HCl 37% (0.094 mL, 1.1 mmol). The mixture was stirred at 60 °C for 2 hours. Afterwards, water (4 mL) and EtOAc (12 ml) were added and layers were separated. Aqueous layer was further extracted with EtOAc (12 mL). Combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield a yellow low melting point solid which was purified by flash chromatography on silica with DCM/MeOH (20:1 v/v) to afford **29** as a pale yellow low melting point solid (0.164 g, 0.69 mmol, 69%). Data for **29**: mp 81-84 °C. IR (film) v_{max} 3251, 3014, 1709, 1689, 1646, 1575, 1375, 1244, 1186, 1030, 840. ¹H NMR (600 MHz, CDCl₃) 2.50-2.47 (dd, *J* = 19.6, 1.4 Hz, 1H, COCH₂), 2.94-2.89 (dd, *J* = 19.6, 5.9 Hz, 1H, COCH₂), 3.79 (s, 3H, OCH₃), 4.32. (m, *J* = 3.0, 1.4 Hz, 1H, COCH₂CHS), 6.52 (d, *J* = 3.0 Hz, 1H, COC=*CH*), 6.60 (br, 1H, OH), 6.83-6.81 (ddd, *J* = 8.3, 2.6, 0.8 Hz, 1H, Ph), 6.94 (t, *J* = 2.1 Hz, 1H, Ph), 6.99-6.97 (dq, *J* = 7.6, 0.8 Hz, 1H, Ph), 7.22 (t, *J* = 8.0 Hz, 1H, Ph); ¹³C NMR (150 MHz, CDCl₃) 40.9 (COCH₂), 41.7 (COCH₂CHS), 5.5.5 (OCH₃), 113.8 (Ph), 117.9 (Ph), 124.8 (Ph), 129.8 (Ph), 130.1 (COC=*C*H), 134.4 (Ph), 153.8 (CO*C*=CH), 159.9 (Ph), 201.8 (C=O). HRMS (EI) [M]⁺ found 236.05024, C₁₂H₁₂O₃S requires 236.05017.

Methyl-3-(3-hydroxy-4-oxocyclopent-2-enylthio)-propanoate 30

To a solution of enone **14** (0.285 g, 1 mmol) in a mixture of MeOH (4 mL) and water (1 mL) was added HCl 37% (0.094 mL, 1.1 mmol). The mixture was stirred at 60 °C for 2 hours. Afterwards, water (4 mL) and DCM (12 ml) were added and layers were separated. Aqueous layer was further extracted with DCM (12 mL). Combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with DCM/MeOH (20:1 v/v) to afford **30** as an orange oil (0.170 g, 0.78 mmol, 78%). Data for **30**: IR (film) v_{max} 3336, 2954, 2930, 2850, 1700, 1652, 1387, 1193, 1100, 910, 727. ¹H NMR (600 MHz, CDCl₃) 2.41-2.38 (dd, *J* = 19.6, 1.1 Hz, 1H, COCH₂), 2.58 (t, *J* = 7.2 Hz, 2H, CH₂CH₂COOMe), 2.76 (t, *J* = 7.0 Hz, 2H, CH₂CH₂COOMe), 2.91-2.87 (dd, *J* = 19.6, 5.9 Hz, 1H, COCH₂), 3.64 (s, 3H, COOCH₃), 3.93 (m, *J* = 3.1, 1.6 Hz, 1H, COCH₂CH₃), 5.4 (CH₂CH₂COOMe), 34.7 (CH₂CH₂COOMe), 38.7 (COCH₂CHS), 41.7 (COCH₂), 52.1 (COOCH₃), 130.3 (COC=CH), 153.9 (COC=CH), 172.5 (COOMe), 202.0 (*C*=O). HRMS (EI) [M]⁺ found 216.04489 C₉H₁₂O₄S requires 216.04508.

4-(2-hydroxyethylthio)-2-hydroxycyclopent-2-enone 31

To a solution of enone **16** (0.060 g, 0.25 mmol) in a mixture of EtOAc (1mL), MeOH (0.25 mL) and water (0.125 mL) was added HCl 37% (0.024 mL, 0.28 mmol). The mixture was stirred at 60 °C for 2 hours. Afterwards, added EtOAc (100 ml) and concentrated under reduced pressure to a volume of 10 mL. Then, more EtOAc was added (100 mL) and the mixture was

concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with DCM/MeOH (20:1 v/v) to afford **31** as an orange oil (0.035 g, 0.20 mmol, 80%). Data for **31**: IR (film) v_{max} 3376, 2954, 2885, 2512, 2242, 1695, 1634, 1365, 1107, 1032, 871. ¹H NMR (600 MHz, MeOD-d4) 2.35-2.31 (dd, J = 19.4, 1.4 Hz, 1H, COCH₂), 2.68 (t, J = 6.7 Hz, 2H, CH₂CH₂OH), 2.92-2.88 (dd, J = 19.4, 6.0 Hz, 1H, COCH₂), 3.70-3.65 (t, overlapped peaks, J = 6.6 Hz, 2H, CH₂CH₂OH), 4.01 (m, J = 3.1, 1.4 Hz, 1H, COCH₂CHS), 6.39 (d, J = 3.1 Hz, 1H, COC=CH); ¹³C NMR (150 MHz, CDCl₃) 36.5 (CH₂CH₂OH), 42.3 (COCH₂CHS), 46.1 (COCH₂), 65.4 (CH₂CH₂OH), 134.1 (COC=CH), 158.6 (COC=CH), 206.4 (C=O). HRMS (EI) [M]⁺ found 174.03542, C₇H₁₀O₃S requires 174.03506.

4-butyl-2-hydroxycyclopent-2-enone 32

To a solution of compound **21** (0.224 g, 1 mmol) in THF (4 mL) and water (1 mL) was added HCl 37% (0.170 mL, 2 mmol). The mixture was stirred at 60 °C for 2 hours. Afterwards, water (10 mL) was added and the mixture was extracted with EtOAc (2×20 mL). Combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield a yellow low melting point solid which was purified by flash chromatography on silica with toluene/EtOH (10:1 v/v) to afford **32** as a pale yellow low melting point solid (0.125 g, 0.81 mmol, 81%). Data for **32**: IR (film) v_{max} 3343, 2956, 2924, 2857, 1691, 1392, 1193, 1102, 847, 785, 690. mp: 101-102 °C. ¹H NMR (500 MHz, CDCl₃) 0.88 (t, *J* = 7.0 Hz, 3H, CH₂CH₂CH₂CH₃), 1.39-1.31 (m, overlapped peaks, 5H, CH₂CH₂CH₂CH₃), 1.50-1.46 (m, overlapped peaks, 1H, CH₂CH₂CH₂CH₃), 2.05-2.01 (dd, *J* = 19.0, 2.0 Hz, 1H, COCH₂), 2.61-2.57 (dd, *J* = 19.0, 6.5 Hz, 1H, COCH₂), 2.72 (m, 1H, COCH₂CH), 6.4 (br, 1H, OH), 6.52 (d, *J* = 3.0 Hz, 1H, COC=CH); ¹³C NMR (125 MHz, CDCl₃) 14.0 (CH₂CH₂CH₂CH₃), 22.7 (CH₂CH₂CH₂CH₃), 29.7 (CH₂CH₂CH₃), 34.6 (COCH₂CH), 35.5 (CH₂CH₂CH₂CH₃), 39.5 (COCH₂), 134.7

(COC=*C*H), 152.6 (CO*C*=CH), 204.2 (*C*=O). HRMS (EI) $[M]^+$ found 154.09864, C₉H₁₄O₂ requires 154.09883.

4-(hexylthio)-2-(propylamino)-cyclopent-2-enone 33

To a solution of enone 22 (0.054 g, 0.25 mmol) in dry MeCN (2 mL) was added *n*-propylamine (0.021 mL, 0.25 mmol) and 4Å molecular sieves (0.05 g). The mixture was stirred at room temperature for 20 hours. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with EtOAc (6 mL). To the filtrate was added AcOH/NaOAc buffer solution at pH 5 (2 mL, 0.68 M in total acetates). The organic layer was separated and the aqueous layer was further extracted with EtOAc (6 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield a dark brown oil which was purified by flash chromatography on silica with petroleum ether/DCM/EtOAc (10:10:1 v/v) to afford 33 as a clear oil with a slight brown hue (0.033 g, 0.13 mmol, 51%) that gets progressively darker over time. Data for 33: IR (film) v_{max} 3375, 2957, 2926, 2856, 1703, 1633, 1497, 1158, 928, 807, 732. ¹H NMR (600 MHz, CDCl₃) 0.87 (t, J = 6.9 Hz, 3H, S(CH₂)₅CH₃), 0.93 (t, J = 7.4 Hz, 3H, NCH₂CH₂CH₃), 1.29-1.23 (m, overlapped peaks, 4H, $S(CH_2)_3CH_2CH_2CH_3$, 1.36 (quintet, J = 7.3 Hz, 2H, $S(CH_2)_2CH_2(CH_2)_2CH_3$), 1.60-1.53 (m, overlapped peaks, 4H, SCH₂(CH₂)₃CH₃ and NCH₂CH₂CH₃), 2.45-2.41 (dd, J = 19.4, 1.6 Hz, 1H, COCH₂), 2.51 (t, J = 7.4 Hz, 2H, SCH₂CH₂(CH₂)₃CH₃), 2.91-2.87 (dd, J = 19.4, 6.1 Hz, 1H, COCH₂), 2.95-2.93 (q, J = 5.5 Hz, 2H, NCH₂CH₂CH₃), 3.98-3.91 (br, overlapped peaks, 1H, NH), 3.96 (m, J = 3.1, 1.5 Hz, 1H, COCH₂CHS), 5.75 (d, J = 3.1 Hz, 1H, COC=CH); ¹³C NMR (150 MHz, CDCl₃) 11.6 (NCH₂CH₂CH₃), 14.2 (S(CH₂)₅CH₃), 22.3 $(NCH_2CH_2CH_3),$ 22.6 $S(CH_2)_4CH_2CH_3),$ 28.8 $(S(CH_2)_3CH_2CH_2CH_3),$ 30.0

 $(S(CH_2)_2CH_2(CH_2)_2CH_3)$, 30.7 $(SCH_2CH_2(CH_2)_3CH_3)$, 31.5 $(SCH_2CH_2(CH_2)_3CH_3)$, 40.8 $(COCH_2CH)$, 43.3 $(COCH_2)$, 46.1 $(NCH_2CH_2CH_3)$, 119.6 (COC=CH), 146.6 (COC=CH), 202.4 (C=O). HRMS (EI) $[M+H]^+$ found 256.17327, $C_{14}H_{26}NOS$ requires 256.17354.

2-(cyclohexylamino)-4-(hexylthio)-cyclopent-2-enone 34

To a solution of enone 22 (0.108 g, 0.5 mmol) in dry MeCN (2 mL) was added cyclohexylamine (0.057 mL, 0.5 mmol) and 4Å molecular sieves (0.1 g). The mixture was stirred at room temperature for 20 hours. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (15 mL). The filtrate was concentrated under reduced pressure to yield a dark brown oil which was purified by flash chromatography on silica with petroleum ether/EtOAc (20:1 v/v) to afford 34 as a clear oil with a slight brown hue (0.094 g, 0.32 mmol, 64%) that gets progressively darker over time. Data for 34: IR (film) v_{max} 3363, 2926, 2853, 1704, 1629, 1493, 1450, 1153, 1137, 929, 806, 732. ¹H NMR (600 MHz. $CDCl_3$ 0.84 (t, J = 7.1 Hz, 3H, $S(CH_2)_5CH_3$), 1.11 (m, J = 7.3 Hz, 2H, cyclohexane), 1.31-1.16 (m, overlapped peaks, 7H, S(CH₂)₃CH₂CH₂CH₃ and cyclohexane), 1.35 (quintet, J = 7.3 Hz, 2H, overlapped $S(CH_2)_2CH_2(CH_2)_2CH_3),$ 1.60-1.53 (quintet, peaks, J = 7.2 Hz,3H, $SCH_2CH_2(CH_2)_3CH_3$ and cyclohexane), 1.71-1.68 (m, overlapped peaks, 2H, cyclohexane), 1.92 (dq, J = 12.4, 2.7 Hz, 2H, cyclohexane), 2.42-2.38 (dd, J = 19.4, 1.5 Hz, 1H, COCH₂), 2.42 (t, J) $= 7.4 \text{ Hz}, 2H, SCH_2CH_2(CH_2)_3CH_3), 2.88-2.84 \text{ (dd}, J = 19.4, 6.1 \text{ Hz}, 1H, COCH_2), 2.99-2.94 \text{ (m},$ 1H, cyclohexane), 3.89 (d, J = 7.3 Hz, 1H, NH), 3.95 (m, J = 3.1, 1.5 Hz, 1H, COCH₂CHS), 5.72 (d, J = 3.1 Hz, 1H, COC=CH); ¹³C NMR (150 MHz, CDCl₃) 14.2 (S(CH₂)₅CH₃), 22.6 S(CH₂)₄CH₂CH₃), 24.8 (cyclohexane), 25.9 (cyclohexane), 28.8 (S(CH₂)₃CH₂CH₂CH₃), 30.0 (S(CH₂)₂CH₂(CH₂)₂CH₃), 30.6 (SCH₂CH₂(CH₂)₃CH₃), 31.5 (SCH₂CH₂(CH₂)₃CH₃), 32.6

(cyclohexane), 40.9 (COCH₂CH), 43.1 (COCH₂), 52.5 (cyclohexane), 119.2 (COC=CH), 145.1 (COC=CH), 202.8 (C=O). HRMS (EI) [M-H]⁺ found 294.18930, C₁₇H₂₈NOS requires 294.18916.

2-(tert-butylamino)-4-(hexylthio)-cyclopent-2-enone 35

To a solution of enone 22 (0.108 g, 0.5 mmol) in dry MeCN (2 mL) was added tert-butylamine (0.053 mL, 0.5 mmol) and 4Å molecular sieves (0.1 g). The mixture was stirred at room temperature for 20 hours. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (15 mL). The filtrate was concentrated under reduced pressure to yield a dark brown oil which was purified by flash chromatography on silica with petroleum ether/EtOAc (20:1 v/v) to afford 35 as a clear oil with a slight brown hue (0.032 g, 0.12 mmol, 24%) that gets progressively darker over time. Data for 35: IR (film) v_{max} 3386, 2958, 2926, 2856, 1707, 1628, 1502, 1458, 1365, 1232, 1120, 930, 809. ¹H NMR $(600 \text{ MHz}, \text{CDCl}_3) 0.88 \text{ (t, } J = 6.9 \text{ Hz}, 3\text{H}, S(\text{CH}_2)_5\text{CH}_3), 1.31-1.25 \text{ (m and s, overlapped peaks, }$ 13H, $S(CH_2)_3CH_2CH_2CH_3$ and CCH_3 , 1.37 (quintet, J = 7.4 Hz, 2H, $S(CH_2)_2CH_2(CH_2)_2CH_3$), 1.58 (quintet, J = 7.6 Hz, 2H, SCH₂CH₂(CH₂)₃CH₃), 2.42-2.38 (dd, J = 19.5, 1.6 Hz, 1H, $COCH_2$, 2.50 (t, J = 7.4 Hz, 2H, $SCH_2(CH_2)_3(CH_3)$, 2.87-2.83 (dd, J = 19.5, 6.1 Hz, 1H, $COCH_2$), 3.99 (m, J = 3.1, 1.6 Hz, 1H, $COCH_2CHS$), 4.06 (br, 1H, NH), 5.87 (d, J = 3.1 Hz, 1H, COC=CH); ${}^{13}C$ NMR (150 MHz, CDCl₃) 14.2 (S(CH₂)₅CH₃), 22.7 S(CH₂)₄CH₂CH₃), 28.5 $(CCH_3),$ 28.8 $(S(CH_2)_3CH_2CH_2CH_3),$ 30.1 $(S(CH_2)_2CH_2(CH_2)_2CH_3),$ 30.4 (SCH₂CH₂(CH₂)₃CH₃), 31.5 (SCH₂CH₂(CH₂)₃CH₃), 41.2 (COCH₂CH), 42.2 (COCH₂), 50.3 (CCH₃), 120.0 (COC=CH), 142.9 (COC=CH), 203.9 (C=O). HRMS (EI) [M+H]⁺ found 270.18899, C₁₅H₂₈NOS requires 270.18916.

2-(allylamino)-4-(hexylthio)-cyclopent-2-enone 36

To a solution of enone 22 (0.108 g, 0.5 mmol) in dry MeCN (2 mL) was added allylamine (0.038 mL, 0.5 mmol) and 4Å molecular sieves (0.1 g). The mixture was stirred at room temperature for 20 hours. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (8 mL). The filtrate was concentrated under reduced pressure to yield a dark brown oil which was purified by flash chromatography on silica with DCM to afford **36** as a clear oil with a slight brown hue (0.084 g, 0.33 mmol, 66%) that gets progressively darker over time. Data for **36**: IR (film) v_{max} 3375, 2954, 2924, 2855, 1703, 1632, 1494, 1147, 924, 812. ¹H NMR (600 MHz, CDCl₃) 0.86 (t, *J* = 6.9 Hz, 3H, S(CH₂)₅CH₃), 1.30-1.23 (m, overlapped peaks, 4H, $S(CH_2)_3CH_2CH_2CH_3$), 1.35 (quintet, J = 7.3 Hz, 2H, $S(CH_2)_2CH_2(CH_2)_2CH_3$, 1.56 (quintet, J = 7.6 Hz, 2H, $SCH_2CH_2(CH_2)_3CH_3$), 2.44-2.41 (dd, J = 19.4, 1.5 Hz, 1H, COCH₂), 2.50 (t, J = 7.4 Hz, 2H, SCH₂CH₂(CH₂)₃CH₃), 2.91-2.87 (dd, J = 19.4, 6.0 Hz, 1H, COCH₂), 3.63 (br, 2H, NCH₂), 3.96 (m, J = 3.1, 1.4 Hz, 1H, COCH₂CHS), 4.12 (br, 1H, NH), 5.15-5.13 (dd, J = 10.3, 1.4 Hz, 1H, NCH₂CH=CH₂), 5.21-5.18 (dd, J = 17.2, 1.5 Hz, 1H NCH₂CH=CH₂), 5.79 (d, overlapped peaks, J = 3.1 Hz, 1H, COC=CH), 5.84-5.77 (m overlapped peaks, 1H, NCH₂CH=CH₂); ¹³C NMR (150 MHz, CDCl₃) 14.2 (S(CH₂)₅CH₃), 22.6 $S(CH_2)_4CH_2CH_3),$ 28.8 $(S(CH_2)_3CH_2CH_2CH_3),$ 30.0 $(S(CH_2)_2CH_2(CH_2)_2CH_3)$, 30.6 (SCH₂CH₂(CH₂)₃CH₃), 31.5 (SCH₂CH₂(CH₂)₃CH₃), 40.7 (COCH₂CH), 43.1 (COCH₂), 46.7 (NCH₂CH=CH₂), 116.6 (NCH₂CH=CH₂), 120.8 (NCH₂CH=CH₂), 134.0 (COC=CH), 146.2 (COC=CH), 202.3 (C=O). HRMS (EI) [M+H]⁺ found 254.15732, C₁₄H₂₄NOS requires 254.15786.

4-(hexylthio)-2-(prop-2-ynylamino)-cyclopent-2-enone 37

To a solution of enone 22 (0.108 g, 0.5 mmol) in dry MeCN (2 mL) was added propargylamine (0.034 mL, 0.5 mmol) and 4Å molecular sieves (0.1 g). The mixture was stirred at room temperature for 20 hours. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (8 mL). The filtrate was concentrated under reduced pressure to yield a dark brown oil which was purified by flash chromatography on silica with DCM to afford **37** as a brown oil (0.038 g, 0.15 mmol, 31%) that gets progressively darker over time. Data for 37: IR (film) v_{max} 3369, 3292, 2954, 2924, 2855, 1702, 1634, 1490, 1143, 928, 821. ¹H NMR (600 MHz, CDCl₃) 0.87 (t, J = 6.8 Hz, 3H, S(CH₂)₅CH₃), 1.30-1.23 (m, overlapped peaks, 4H, $S(CH_2)_3CH_2CH_2CH_3),$ 1.37 (quintet, J = 7.3 Hz, 2H, $S(CH_2)_2CH_2(CH_2)_2CH_3$, 1.58 (quintet, J = 7.6 Hz, 2H, $SCH_2CH_2(CH_2)_3CH_3$), 2.22 (t, J = 2.5 Hz, 1H, NCH₂CCH), 2.46-2.43 (dd, J = 19.4, 1.5 Hz, 1H, COCH₂), 2.50 (dt, J = 7.6, 2.8 Hz, 2H, SCH₂CH₂(CH₂)₃CH₃), 2.93-2.89 (dd, *J* = 19.4, 6.1 Hz, 1H, COCH₂), 3.82 (d, *J* = 2.3 Hz, 2H, NCH₂CCH), 4.00 (m, J = 3.0, 1.5 Hz, 1H, COCH₂CHS), 4.20 (br, 1H, NH), 5.98 (d, J = 3.1 Hz, 1H, COC=CH); ¹³C NMR (150 MHz, CDCl₃) 14.2 (S(CH₂)₅CH₃), 22.7 $S(CH_2)_4CH_2CH_3)$ 28.8 $(S(CH_2)_3CH_2CH_2CH_3),$ 29.9 $(S(CH_2)_2CH_2(CH_2)_2CH_3),$ 30.6 (SCH₂CH₂(CH₂)₃CH₃), 31.5 (SCH₂CH₂(CH₂)₃CH₃), 33.7 (NCH₂CCH), 40.6 (COCH₂CH), 43.1 (COCH₂), 72.0 (NCH₂CCH), 79.4 (NCH₂CCH), 122.7 (COC=CH), 145.4 (COC=CH), 201.9 (C=O). HRMS (EI) $[M]^+$ found 251.13462, C₁₄H₂₁NOS requires 251.13438.

2-(2-hydroxyethylamino)-4-(hexylthio)-cyclopent-2-enone 38

To a solution of enone 22 (0.108 g, 0.5 mmol) in dry MeCN (2 mL) was added ethanolamine (0.030 mL, 0.5 mmol) and 4Å molecular sieves (0.1 g). The mixture was stirred at room temperature for 20 hours. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (8 mL). The filtrate was concentrated under reduced pressure to yield a dark brown oil which was purified by flash chromatography on silica with DCM/ethanol (20:1 v/v) to afford **38** as a brown oil (0.066 g, 0.25 mmol, 51%) that gets progressively darker over time. Data for 38: IR (film) v_{max} 3379, 2954, 2925, 2856, 1698, 1631, 1498, 1458, 1152, 1061, 908, 728. ¹H NMR (600 MHz, CDCl₃) 0.85 (t, J = 6.9 Hz, 3H, $S(CH_2)_5CH_3$, 1.29-1.23 (m, overlapped peaks, 4H, $S(CH_2)_3CH_2CH_2CH_3$), 1.35 (quintet, J = 7.3 Hz, 2H, S(CH₂)₂CH₂(CH₂)₂CH₃), 1.56 (quintet, J = 7.6 Hz, 2H, SCH₂CH₂(CH₂)₃CH₃), 2.44-2.40 (dd, J = 19.5, 1.4 Hz, 1H, COCH₂), 2.51 (t, J = 7.4 Hz, 2H, SCH₂CH₂(CH₂)₃CH₃), 2.91-2.86 (dd, J = 19.5, 6.0 Hz, 1H, COCH₂), 3.14 (m, J = 5.2, 2.5 Hz, 2H, NHCH₂CH₂OH), 3.73 (t, J = 5.2 Hz, 2H, NHCH₂CH₂OH), 3.95 (m, J = 3.3, 1.6 Hz, 1H, COCH₂CHS), 4.38 (t, J = 5.2 Hz, 1H, NHCH₂CH₂OH), 5.84 (d, J = 3.1 Hz, 1H, COC=CH); ¹³C NMR (150 MHz, CDCl₃) 14.2 (S(CH₂)₅CH₃), 22.6 S(CH₂)₄CH₂CH₃), 28.8 (S(CH₂)₃CH₂CH₂CH₃), 29.9 (S(CH₂)₂CH₂(CH₂)₂CH₃), 30.9 (SCH₂CH₂(CH₂)₃CH₃), 31.5 (SCH₂CH₂(CH₂)₃CH₃), 40.6 (COCH₂CH), 43.3 (COCH₂), 46.5 (NHCH₂CH₂OH), 60.8 (NHCH₂CH₂OH), 120.9 (COC=CH), 146.6 (COC=CH), 202.8 (C=O). HRMS (EI) [M+H]⁺ found 258.15262, C₁₃H₂₄NO₂S requires 258.15277.

4-(hexylthio)-2-(phenylamino)-cyclopent-2-enone 39

To a solution of enone 22 (0.108 g, 0.5 mmol) in dry MeCN (2 mL) was added aniline (0.046 mL, 0.5 mmol) and 4Å molecular sieves (0.1 g). The mixture was stirred at room temperature for 20 hours (incomplete conversion). Then, the mixture was stirred at 70 °C for 20 hours (incomplete conversion) after which AlCl₃ (6.7 mg, 0.05 mmol) was added and the mixture was stirred at 70 °C for another 20 hours (complete conversion). Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (15 mL). To the filtrate was added water (5 mL) and layers were separated. The aqueous layer was further extracted with DCM (15 mL). Combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield a dark brown oil which was purified by flash chromatography on silica with DCM to afford **39** as a brown oil (0.038 g, 0.15 mmol, 31%) that gets progressively darker over time. Data for 39: IR (film) v_{max} 3337, 2954, 2924, 2855, 1706, 1631, 1598, 1529, 1498, 1444, 1295, 1095, 929, 747, 689. ¹H NMR (600 MHz, CDCl₃) 0.88 (t, J = 6.9 Hz, 3H, S(CH₂)₅CH₃), 1.32-1.26 (m, overlapped peaks, 4H, S(CH₂)₃CH₂CH₂CH₃), 1.39 (quintet, J = 7.4 Hz, 2H, S(CH₂)₂CH₂(CH₂)₂CH₃), 1.61 (quintet, J = 7.6 Hz, 2H, SCH₂CH₂(CH₂)₃CH₃), 2.54-2.50 (dd, J = 19.5, 1.6 Hz, 1H, COCH₂), 2.57 (t, J = 7.6 Hz, 2H, $SCH_2CH_2(CH_2)_3CH_3$, 2.99-2.95 (dd, J = 19.5, 6.2 Hz, 1H, $COCH_2$), 4.09 (m, J = 3.1, 1.6 Hz, 1H, COCH₂CHS), 6.31 (br, 1H, NH), 6.60 (d, J = 3.1 Hz, 1H, COC=CH), 6.97 (t, J = 7.4 Hz, 1H, Ph), 7.05 (d, overlapped peaks, J = 7.6 Hz, 2H, Ph), 7.31 (t, overlapped peaks, J = 7.6 Hz, 2H, Ph); ${}^{13}C$ NMR (150 MHz, CDCl₃) 14.2 (S(CH₂)₅CH₃), 22.7 S(CH₂)₄CH₂CH₃), 28.8 (S(CH₂)₃CH₂CH₂CH₃), 29.9 (S(CH₂)₂CH₂(CH₂)₂CH₃), 30.8 (SCH₂CH₂(CH₂)₃CH₃), 31.5 (SCH₂CH₂(CH₂)₃CH₃), 41.0 (COCH₂CH), 42.0 (COCH₂), 117.2 (overlapped, Ph), 121.7 (COC=CH), 123.7 (Ph), 129.6 (overlapped, Ph), 140.3 (Ph), 141.1 (COC=CH), 202.5 (C=O). HRMS (EI) $[M]^+$ found 289.14987, $C_{17}H_{23}NOS$ requires 289.15003.

(S)-ethyl 2-(3-(hexylthio)-5-oxocyclopent-1-enylamino)-3-phenylpropanoate 40

To a solution of enone 22 (0.108 g, 0.5 mmol) in dry MeOH (2 mL) was added L-phenylalanine ethyl ester hydrochloride (0.115 g, 0.5 mmol) and 4Å molecular sieves (0.1 g). The mixture was stirred at room temperature for 2 days. Afterwards, the reaction mixture was filtered through a short plug of celite and the filter cake was washed with DCM (8 mL). The filtrate was concentrated under reduced pressure to yield a dark brown oil which was purified by flash chromatography on silica with petroleum ether/EtOAc (10:1 v/v) to afford a separable diastereomeric mixture of diastereomer 40a as a brown oil (0.034 g, 0.087 mmol, 17%) and diastereomer 40b as a brown oil (0.040 g, 0.10 mmol, 20%). Both isolated diastereomers get progressively darker over time. Data for 40a: IR (film) v_{max} 3363, 2954, 2926, 2856, 1736, 1708, 1632, 1495, 1455, 1190, 1146, 1029, 929, 813, 742, 699. ¹H NMR (600 MHz, CDCl₃) 0.88 (t, J = 6.9 Hz, 3H, S(CH₂)₅CH₃), 1.20 (t, J = 7.1 Hz, 3H, COOCH₂CH₃), 1.31-1.25 (m, overlapped peaks, 4H, $S(CH_2)_3CH_2CH_2CH_3$, 1.36 (quintet, J = 7.6 Hz, 2H, $S(CH_2)_2CH_2(CH_2)_2CH_3$), 1.55 (quintet, J = 7.6 Hz, 2H, SCH₂CH₂(CH₂)₃CH₃), 2.43-2.40 (dd, J = 19.4, 1.5 Hz, 1H, COCH₂), 2.47 (t, J = 7.4 Hz, 2H, SCH₂CH₂(CH₂)₃CH₃), 2.89-2.85 (dd, J = 19.4, 6.1 Hz, 1H, COCH₂), 3.03-3.00 (dd, J = 13.7, 7.1 Hz, 1H, PhCH₂), 3.12-3.09 (dd, J = 13.7, 5.9 Hz, 1H, PhCH₂), 3.90overlapped peaks, J = 7.4 Hz, 2H, COOCH₂CH₃), 4.51 (d, J = 8.4 Hz, 1H, NH), 5.72 (d, J = 3.1 Hz, 1H, COC=CH), 7.14 (d, J = 7.0 Hz, 2H, Ph), 7.24-7.21 (m, overlapped peaks, J = 7.3Hz, 1H, Ph), 7.29-7.25 (m, overlapped peaks, J = 7.5, 7.0 Hz, 2H, Ph); ¹³C NMR (150 MHz, $(COOCH_2CH_3),$ CDCl₃) 14.2 $(S(CH_2)_5CH_3),$ 14.3 22.7 $S(CH_2)_4CH_2CH_3)$, 28.8 $(S(CH_2)_3CH_2CH_2CH_3), 29.9 (S(CH_2)_2CH_2(CH_2)_2CH_3), 30.4 (SCH_2CH_2(CH_2)_3CH_3), 31.5$

(SCH₂CH₂(CH₂)₃CH₃), 38.3 (CH₂Ph), 40.5 (COCH₂CH), 43.0 (COCH₂), 58.5 (NHCHCOOEt), 61.4 (COOCH₂CH₃), 121.7 (Ph), 127.2 (COC=CH), 128.7 (overlapped, Ph), 129.3 (overlapped, Ph), 136.3 (Ph), 144.9 (COC=CH), 171.8 (COOEt), 201.6 (C=O). HRMS (EI) [M-H]⁺ found 388.19428, C₂₂H₃₀NO₃S requires 388.19464. Data for **40b**: IR (film) v_{max} 3377, 2956, 2925, 2856, 1737, 1708, 1632, 1495, 1455, 1190, 1147, 1029, 929, 816, 742, 699. ¹H NMR (600 MHz, CDCl₃) 0.88 (t, *J* = 6.9 Hz, 3H, S(CH₂)₅CH₃), 1.18 (t, *J* = 7.1 Hz, 3H, COOCH₂CH₃), 1.31-1.25 overlapped peaks, 4H, $S(CH_2)_3CH_2CH_2CH_3$, 1.36 (quintet, J = 7.6 Hz, (m, 2H. $S(CH_2)_2CH_2(CH_2)_2CH_3$, 1.57 (quintet, J = 7.6 Hz, 2H, $SCH_2CH_2(CH_2)_3CH_3$), 2.44-2.401 (dd, J = 19.4, 1.5 Hz, 1H, COCH₂), 2.49 (t, J = 7.4 Hz, 2H, SCH₂CH₂(CH₂)₃CH₃), 2.90-2.86 (dd, J = 19.4, 6.1 Hz, 1H, COCH₂), 3.06-3.02 (dd, J = 13.7, 6.8 Hz, 1H, PhCH₂), 3.12-3.09 (dd, J = 13.7, 6.3 Hz, 1H, PhCH₂), 3.93 (m, J = 3.0, 1.4 Hz, 1H, COCH₂CHS), 4.05 (q, J = 6.6 Hz, 1H, NHCHCOOEt), 4.15-4.10 (m, overlapped peaks, J = 7.1 Hz, 2H, COOCH₂CH₃), 4.50 (d, J = 8.4 Hz, 1H, NH), 5.75 (d, J = 3.1 Hz, 1H, COC=CH), 7.15 (d, J = 7.0 Hz, 2H, Ph), 7.25-7.22 (m, overlapped peaks, J = 7.0 Hz, 1H, Ph), 7.30-7.27 (m, overlapped peaks, J = 7.5, 7.0 Hz, 2H, Ph); ${}^{13}C$ NMR (150 MHz, CDCl₃) 14.2 (S(CH₂)₅CH₃), 14.3 (COOCH₂CH₃), 22.7 28.8 29.9 $S(CH_2)_4CH_2CH_3),$ $(S(CH_2)_3CH_2CH_2CH_3),$ $(S(CH_2)_2CH_2(CH_2)_2CH_3),$ 30.8 (SCH₂CH₂(CH₂)₃CH₃), 31.5 (SCH₂CH₂(CH₂)₃CH₃), 38.3 (CH₂Ph), 40.6 (COCH₂CH), 43.0 (COCH₂), 58.3 (NHCHCOOEt), 61.4 (COOCH₂CH₃), 121.4 (Ph), 127.2 (COC=CH), 128.7 (overlapped, Ph), 129.3 (overlapped, Ph), 136.1 (Ph), 150.0 (COC=CH), 171.9 (COOEt), 201.6 (C=O). HRMS (EI) [M-H]⁺ found 388.19413, C₂₂H₃₀NO₃S requires 388.19464.

(furan-2-yl)-(phenyl)-methanol 41

This compound was synthesised through an adaptation of the reported procedure.² To a solution of 2-furaldehyde (0.41 mL, 5 mmol) in dry tetrahydrofuran (5 mL) cooled to 0 °C was added dropwise a 3 M solution of phenylmagnesium bromide in diethyl ether (1.8 mL, 5.4 mmol). A slow rate of addition is crucial for a high yield and should be equal or lower than 0.125 mL/min. The mixture was stirred while allowing it to rise to room temperature and then stirred for an additional 60 minutes. Then, the mixture was quenched with 5M ammonium chloride solution (30 mL). Next, the mixture was extracted with diethyl ether (3×60 mL). The combined organic layer was dried (MgSO₄), filtered and concentrated under reduced pressure to yield **41** as a colourless oil (0.842 g, 4.8 mmol, 97%) which was deemed pure enough for the next synthetic step. Data for **41** in accordance with reference:² IR (film) v_{max} 3358, 3062, 3030, 1493, 1452, 1141, 1008, 927, 813, 728, 697. ¹H NMR (600 MHz, CDCl₃) 2.49 (br, 1H, OH), 5.83 (s, 1H, CHOH), 6.12 (d, J = 3.3 Hz, 1H, COC=CH), 6.32 (dd, J = 3.2, 1.8 Hz, 1H, COC=CHCH), 7.35-7.32 (m, overlapped peaks, J = 7.3, 1.3 Hz, 2H, Ph and COCH=CH), 7.40-7.37 (m, overlapped peaks, J = 8.6, 7.7 Hz, 2H, Ph), 7.47-7.44 (m, overlapped peaks, J = 8.9, 7.0 Hz, 2H, Ph); ¹³C NMR (150 MHz, CDCl₃) 70.2 (CHOH), 107.6 (COC=CH), 110.3 (COC=CHCH), 126.7 (Ph), 128.2 (Ph), 128.6 (Ph), 140.9 (Ph), 148.3 (COCH=CH), 156.0 (COC=CH). HRMS (EI) $[M]^+$ found 174.06839, $C_{11}H_{10}O_2$ requires 174.06808.

trans-5-phenyl-4-(phenylamino)-cyclopent-2-enone 42

To a solution of compound 41 (0.174 g, 1 mmol) in dry MeCN (6 mL) was added aniline (0.092 mL, 1 mmol) and Dy(OTf)₃ (30 mg, 0.05 mmol). The mixture was stirred at 80 °C for 4 hours. Then, the mixture was guenched with water (10 mL). The mixture was extracted with DCM (3×20 mL). The combined organic layer was dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil that was purified by flash chromatography on silica with petroleum ether/EtOAc (4:1 v/v) to afford 42 as a pale yellow solid (0.182 g, 0.73 mmol, 73%). Data for 42 in accordance with reference:³ mp 83-86 °C. IR (film) v_{max} 3369, 1708, 1694, 1600, 1515, 1496, 1313, 1254, 1131, 918, 881, 746, 691. ¹H NMR (600 MHz, CDCl₃) 3.41 (d, J = 2.6 Hz, 1H, COCHPh), 4.14 (br, 1H, NH), 4.76 (q, J = 1.5 Hz, 1H, COCHPhCHN), 6.41 (dd, J = 5.7, 1.6 Hz, 1H, COCH=CH), 6.54 (d, J = 7.8 Hz, 2H, Ph), 6.78 (t, J = 7.3 Hz, 1H, Ph), 7.17-7.14 (m, overlapped peaks, J = 8.5 Hz, 4H, Ph), 7.34-7.31 (m, overlapped peaks, J = 7.4 Hz, 1H, Ph), 7.39-7.36 (m, overlapped peaks, J = 7.6 Hz, 2H, Ph), 7.75 (dd, J = 5.7, 2.3 Hz, 1H, COCH=CH); ¹³C NMR (150 MHz, CDCl₃) 60.2 (COCHPh), 63.4 (COCHPhCHN), 114.0 (Ph), 118.7 (Ph), 127.6 (Ph), 128.2 (Ph), 129.2 (Ph), 129.6 (Ph), 134.7 (COCH=CH), 138.2 (Ph), 146.4 (Ph), 162.2 (COCH=CH), 206.9 (C=O). HRMS (EI) [M]⁺ found 249.11474, C₁₇H₁₅NO requires 249.11536.

4-(hexylthio)-2-phenylcyclopent-2-enone 43

To a solution of compound 41 (0.087 g, 0.5 mmol) in dry MeCN (2 mL) was added aniline (0.044 mL, 0.48 mmol) and BF₃•OEt₂ (0.003 mL, 0.025 mmol). The mixture was stirred at 80 °C for 2 hours. Then, added 1-hexanethiol (0.068 mL, 0.48 mmol), followed by addition of MeOH (1 mL) and KO^tBu (0.014 g, 0.125 mmol) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was quenched with brine (10 mL) and the mixture was extracted with EtOAc (2×20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with petroleum ether/EtOAc (15:1 v/v) to afford 43 as a yellow oil (0.053 g, 0.19 mmol, 39%). Data for 43: IR (film) v_{max} 3058, 2954, 2925, 2855, 1705, 1494, 1447, 1303, 1128, 935, 762, 692. ¹H NMR (500 MHz, CDCl₃) 0.88 (t, J = 7.0 Hz, 3H, $S(CH_2)_5CH_3$, 1.32-1.26 (m, overlapped peaks, 4H, $S(CH_2)_3CH_2CH_2CH_3$), 1.39 (quintet, J = 7.0 Hz, 2H, S(CH₂)₂CH₂(CH₂)₂CH₃), 1.61 (quintet, J = 7.5, 2H, SCH₂CH₂(CH₂)₃CH₃), 2.57 $(t, J = 7.5 \text{ Hz}, 2H, \text{SCH}_2(\text{CH}_2)_3(\text{CH}_3), 2.63-2.59 \text{ (dd}, J = 19.0, 2.0 \text{ Hz}, 1H, \text{COCH}_2), 3.09-$ 3.04 (dd, J = 19.0, 6.5 Hz, 1H, COCH₂), 4.03 (dt, J = 6.5, 3.0 Hz, 1H, COCH₂CHS), 7.40-7.34 (m, overlapped peaks, J = 7.1 Hz, 3H, Ph), 7.66 (d, J = 3.0 Hz, 1H, COC=CH), 7.72-7.70 (m, overlapped peaks, J = 7.0 Hz, 2H, Ph); ¹³C NMR (125 MHz, CDCl₃) 14.1 (S(CH₂)₅CH₃), 22.6 $S(CH_2)_4CH_2CH_3),$ 28.7 $(S(CH_2)_3CH_2CH_2CH_3),$ 29.9 $(S(CH_2)_2CH_2(CH_2)_2CH_3),$ 30.5 (SCH₂CH₂(CH₂)₃CH₃), 31.4 (SCH₂CH₂(CH₂)₃CH₃), 41.2 (COCH₂CHS), 44.6 (COCH₂), 127.3 (overlapped, Ph), 128.6 (overlapped, Ph), 129.0 (Ph), 130.8 (Ph), 143.2 (COC=CH), 157.5 (COC=*C*H), 205.1 (*C*=O). HRMS (EI) [M]⁺ found 274.13840, C₁₇H₂₂OS requires 274.13859.

4-(ethylthio)-2-phenylcyclopent-2-enone 44

To a solution of compound 41 (0.174 g, 1 mmol) in dry MeCN (4 mL) was added aniline (0.088 mL, 0.96 mmol) and BF₃•OEt₂ (0.006 mL, 0.05 mmol). The mixture was stirred at 80 °C for 2 hours. Then, added ethanethiol (0.074 mL, 1 mmol), followed by addition of MeOH (2 mL) and KO^tBu (0.028 g, 0.25 mmol) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was quenched with brine (10 mL) and the mixture was extracted with EtOAc (2×20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with petroleum ether/EtOAc (10:1 v/v) to afford 44 as an orange oil (0.045 g, 0.21 mmol, 21%). Data for 44: IR (film) v_{max} 3057, 2968, 2925, 2870, 1702, 1494, 1447, 1304, 1267, 1128, 935, 762, 692. ¹H NMR (500 MHz, CDCl₃) 1.31 (t, J = 7.0 Hz, 3H, SCH_2CH_3 , 2.64-2.59 (q, overlapped peaks, 2H, SCH_2CH_3), 2.63-2.59 (dd, J = 19.0, 2.5 Hz, 1H, $COCH_2$, 3.10-3.05 (dd, J = 19.0, 6.5 Hz, 1H, $COCH_2$), 4.05 (dt, J = 6.5, 2.5 Hz, 1H, $COCH_2CHS$), 7.41-7.33 (m, overlapped peaks, 3H, Ph), 7.67 (d, J = 3.0 Hz, 1H, COC=CH), 7.72-7.70 (m, overlapped peaks, 2H, Ph); ¹³C NMR (125 MHz, CDCl₃) 15.1 (SCH₂CH₃), 24.6 (SCH₂CH₃), 41.0 (COCH₂CHS), 44.6 (COCH₂), 127.3 (overlapped, Ph), 128.6 (overlapped, Ph), 129.0 (Ph), 130.8 (Ph), 143.3 (COC=CH), 157.4 (COC=CH), 205.0 (C=O). HRMS (EI) $[M]^+$ found 218.07621, C₁₃H₁₄OS requires 218.07599.

4-(isopropylthio)-2-phenylcyclopent-2-enone 45

To a solution of compound 41 (0.174 g, 1 mmol) in dry MeCN (4 mL) was added aniline (0.088 mL, 0.96 mmol) and BF₃•OEt₂ (0.006 mL, 0.05 mmol). The mixture was stirred at 80 °C for 2 hours. Then, added 2-propanethiol (0.093 mL, 1 mmol), followed by addition of MeOH (2 mL) and KO^tBu (0.028 g, 0.25 mmol) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was quenched with brine (10 mL) and the mixture was extracted with EtOAc (2×20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with petroleum ether/EtOAc (10.1 v/v) to afford 45 as an orange oil (0.089 g, 0.38 mmol, 39%). Data for 45: IR (film) v_{max} 3056, 2960, 2924, 2865, 1703, 1494, 1447, 1304, 1129, 935, 762, 693. ¹H NMR (500 MHz, CDCl₃) 1.34 (2 overlapped d's, J = 6.5 Hz, 6H, SCH(CH₃)₂), 2.64-2.59 (dd, J = 19.0, 2.0 Hz, 1H, COCH₂), 3.06 (dd, J = 19.0, 6.5 Hz, 1H, COCH₂), 3.09 (m, J = 6.5 Hz, 1H, SCH(CH₃)₂), 4.07 (dt, J = 6.5, 2.0 Hz, 1H, $COCH_2CHS$), 7.40-7.34 (m, overlapped peaks, 3H, Ph), 7.67 (d, J = 3.0 Hz, 1H, COC=CH), 7.71-7.69 (m, overlapped peaks, 2H, Ph); ¹³C NMR (125 MHz, CDCl₃) 23.9 (SCH(CH₃)₂), 24.2 (SCH(CH₃)₂), 35.7 (SCH(CH₃)₂) 40.4 (COCH₂CHS), 45.5 (COCH₂), 127.4 (overlapped, Ph), 128.6 (overlapped, Ph), 128.9 (Ph), 130.9 (Ph), 143.0 (COC=CH), 157.5 (COC=CH), 205.1 (C=O). HRMS (EI) $[M]^+$ found 232.09188, C₁₄H₁₆OS requires 232.09164.

4-(*tert*-butylthio)-2-phenylcyclopent-2-enone 46

To a solution of compound 41 (0.174 g, 1 mmol) in dry MeCN (4 mL) was added aniline (0.088 mL, 0.96 mmol) and BF₃•OEt₂ (0.006 mL, 0.05 mmol). The mixture was stirred at 80 °C for 2 hours. Then, added 2-methyl-2-propanethiol (0.113 mL, 1 mmol), followed by addition of MeOH (2 mL) and KO^tBu (0.028 g, 0.25 mmol) and the mixture was stirred for 2 hours at room temperature. Afterwards, the reaction mixture was quenched with brine (10 mL) and the mixture was extracted with EtOAc (2×20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with petroleum ether/EtOAc (10:1 v/v) to afford 46 as a yellowbrown solid (0.149 g, 0.61 mmol, 61%). Data for 46: mp: 101-102 °C. IR (solid) v_{max} 3064, 2964, 2926, 2862, 1701, 1497, 1364, 1135, 933, 769, 695. ¹H NMR (500 MHz, CDCl₃) 1.42 (s, 9H, $SC(CH_3)_3$, 2.68-2.64 (dd, J = 19.0, 2.0 Hz, 1H, $COCH_2$), 3.14-3.09 (dd, J = 19.0, 6.5 Hz, 1H, $COCH_2$), 4.04 (dt, J = 6.5, 2.0 Hz, 1H, $COCH_2CHS$), 7.39-7.31 (m, overlapped peaks, 3H, Ph), 7.62 (d, J = 3.0 Hz, 1H, COC=CH), 7.71-7.69 (m, overlapped peaks, 2H, Ph); ¹³C NMR (125 MHz, CDCl₃) 31.5 (SC(CH₃)₃), 39.1 (COCH₂CHS), 44.4 (SC(CH₃)₃), 47.2 (COCH₂), 127.3 (overlapped, Ph), 128.5 (overlapped, Ph), 128.9 (Ph), 130.9 (Ph), 142.7 (COC=CH), 158.1 (COC=CH), 205.3 (C=O). HRMS (EI) $[M]^+$ found 246.10706 $C_{15}H_{18}OS$ requires 246.10729.

4-((2-hydroxyethyl)thio)-2-phenylcyclopent-2-enone 47

To a solution of compound 41 (0.174 g, 1 mmol) in dry MeCN (4 mL) was added aniline (0.088 mL, 0.96 mmol) and BF₃•OEt₂ (0.006 mL, 0.05 mmol). The mixture was stirred at 80 °C for 2 hours. Then, added 2-mercaptoethanol (0.07 mL, 1 mmol), followed by addition of MeOH (2 mL) and KO^tBu (0.028 g, 0.25 mmol) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was quenched with brine (10 mL) and the mixture was extracted with EtOAc (2×20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield an orange oil which was purified by flash chromatography on silica with petroleum ether/EtOAc (10:1 v/v) to afford 47 as an orange oil (0.099 g, 0.42 mmol, 42%). Data for 47: IR (film) v_{max} 3399, 3057, 2921, 2874, 1698, 1494, 1304, 1130, 1044, 929, 763, 728, 693. ¹H NMR (500 MHz, CDCl₃) 2.50 (br, 1H, OH), 2.61-2.57 $(dd, J = 19.0, 2.0 \text{ Hz}, 1\text{H}, \text{COC}H_2), 2.77 (dt, J = 6.0, 2.5 \text{ Hz}, 2\text{H}, \text{HOCH}_2\text{C}H_2\text{S}), 3.08-3.03 (dd, J = 10.0 \text{ Hz}, 10.0 \text{$ J = 19.0, 6.5 Hz, 1H, COCH₂), 3.77 (dt, J = 6.0, 2.5 Hz, 2H, HOCH₂CH₂S), 4.08 (dt, J = 6.5, 2.0 Hz, 1H, COCH₂CHS), 7.39-7.32 (m, overlapped peaks, 3H, Ph), 7.65 (d, J = 3.0 Hz, 1H, COC=CH), 7.70-7.68 (m, overlapped peaks, 2H, Ph); ¹³C NMR (125 MHz, CDCl₃) 33.6 (HOCH₂CH₂S), 41.1 (COCH₂CHS), 44.6 (COCH₂), 61.6 (HOCH₂CH₂S), 127.3 (overlapped, Ph), 128.6 (overlapped, Ph), 129.1 (Ph), 130.6 (Ph), 143.5 (COC=CH), 157.1 (COC=CH), 205.0 (C=O). HRMS (EI) $[M]^+$ found 234.07121, C₁₃H₁₄O₂S requires 234.07090.

methyl 2-((4-oxo-3-phenylcyclopent-2-en-1-yl)thio)acetate 48

To a solution of compound 41 (0.174 g, 1 mmol) in dry MeCN (4 mL) was added aniline (0.088 mL, 0.96 mmol) and BF₃•OEt₂ (0.006 mL, 0.05 mmol). The mixture was stirred at 80 °C for 2 hours. Then, added methylthioglycolate (0.089 mL, 1 mmol), followed by addition of MeOH (2 mL) and KO^tBu (0.028 g, 0.25 mmol) and the mixture was stirred for 60 minutes at room temperature. Afterwards, the reaction mixture was guenched with brine (10 mL) and the mixture was extracted with EtOAc (3×20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to yield a dark orange oil which was purified by flash chromatography on silica with petroleum ether/EtOAc (4:1 v/v) to afford 48 as an orange oil (0.127 g, 0.49 mmol, 49%). Data for **48**: IR (film) v_{max} 3356, 2954, 2926, 2857, 1702, 1397, 1280, 1128, 764, 694. ¹H NMR (500 MHz, CDCl₃) 2.59-2.55 (dd, J = 19.0, 2.0 Hz, 1H, $COCH_2$), 3.07-3.02 (dd, J = 19.0, 6.5 Hz, 1H, $COCH_2$), 3.28 (s, 1H, $SCH_2CO_2CH_3$), 3.30 (s, 1H, SCH₂CO₂CH₃), 3.68 (s, 3H, SCH₂CO₂CH₃), 4.18 (dt, J = 6.5, 2.0 Hz, 1H, COCH₂CHS), 7.38-7.32 (m, overlapped peaks, 3H, Ph), 7.66 (d, J = 3.0 Hz, 1H, COC=CH), 7.70-7.68 (m, overlapped peaks, 2H, Ph); ¹³C NMR (125 MHz, CDCl₃) 32.3 (SCH₂CO₂CH₃), 41.7 (COCH₂CHS), 44.0 (COCH₂), 52.7 (SCH₂CO₂CH₃), 127.4 (overlapped, Ph), 128.6 (overlapped, Ph), 129.1 (Ph), 130.6 (Ph), 143.9 (COC=CH), 156.1 (COC=CH), 170.7 (SCH₂CO₂CH₃), 204.4 (C=O). HRMS (EI) $[M]^+$ found 262.06576, $C_{14}H_{14}O_3S$ requires 262.06582.

25-jan-2011 #360 RT: 24.20 AV: 1 NL: 2.09E7 T: + c EI Full ms [85.50-500.50]

Figure S5 – EI mass spectra for exact mass measurement of isolated diamine 1.

Figure S8 – EI mass spectra for exact mass measurement of isolated enone 2.

Figure S9 - ¹H NMR spectra at 600 MHz in CDCl₃ of isolated enone **3**.

Figure S10 - ¹³C NMR spectra at 150 MHz in CDCl₃ of isolated enone **3**.

Figure S11 – EI mass spectra for exact mass measurement of isolated enone 3.

Figure S14 – EI mass spectra for exact mass measurement of isolated diamine 4.

Figure S17 – EI mass spectra for exact mass measurement of isolated enone 5.

Figure S20 – EI mass spectra for exact mass measurement of isolated enone 6.

Figure S23 – EI mass spectra for exact mass measurement of isolated enone 7.

Figure S24 – ¹H NMR spectra at 600 MHz in CDCl₃ of isolated enone 8.

Figure S26 – EI mass spectra for exact mass measurement of isolated enone 8.

Figure S29 – EI mass spectra for exact mass measurement of isolated enone 9.

Figure S30 - ¹H NMR spectra at 600 MHz in CDCl₃ of isolated enone **10**.

S94

Figure S32 – EI mass spectra for exact mass measurement of isolated enone 10.

Figure S33 - ¹H NMR spectra at 600 MHz in CDCl₃ of isolated enone **11**.

S96

m/z

Figure S35 – EI mass spectra for exact mass measurement of isolated enone 11.

Figure S36 - ¹H NMR spectra at 600 MHz in CDCl₃ of isolated enone **12**.

Figure S37 - ¹³C NMR spectra at 150 MHz in CDCl₃ of isolated enone **12**.

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 632 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 28-28 H: 4-200 N: 1-9 O: 1-9 Na: 0-1 S: 1-2 I: 0-1

Figure S38 – EI mass spectra for exact mass measurement of isolated enone 12.

Figure S39 - ¹H NMR spectra at 600 MHz in CDCl₃ of isolated enone **13**.

4-(3-methoxyphenylthio)-2-morpholinocyclopent-2-enone **13**

Figure S41 – EI mass spectra for exact mass measurement of isolated enone 13.

S105

Methyl 3-(3-morpholino-4-oxocyclopent-2-enylthio)-propanoate 14

Figure S43 - ¹³C NMR spectra at 150 MHz in CDCl₃ of isolated enone **14**.

Figure S44 – EI mass spectra for exact mass measurement of isolated enone 14.

Figure S45 - ¹H NMR spectra at 600 MHz in CDCl₃ of isolated enone **15**.

3-(3-morpholino-4-oxocyclopent-2-enylthio)-propanoic acid 15

Figure S47 – EI mass spectra for exact mass measurement of isolated enone 15.

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

4-(2-hydroxyethylthio)-2-morpholinocyclopent-2-enone 16

Figure S50 – EI mass spectra for exact mass measurement of isolated enone 16.

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

Figure S53 – EI mass spectra for exact mass measurement of isolated enone 17.

Figure S54 - ¹H NMR spectra at 600 MHz in CDCl₃ of isolated enone **18**.

18-apr-11 #44 RT: 3.53 AV: 1 SB: 36 0.16-2.91 NL: 5.37E7 T: + c CI Full ms [74.50-800.50]

Figure S56 – EI mass spectra for exact mass measurement of isolated enone 18.

08-feb-2011_110208133757 #124 RT: 10.49 AV: 1 SB: 53 0.59-9.70 NL: 2.46E7 T: + c CI Full ms [59.50-340.50]

Figure S59 – EI mass spectra for exact mass measurement of isolated enone 19.

9.0

Figure S60 – ¹H NMR spectra at 500 MHz in CDCl₃ of isolated compound **20**.

06-mar-2012 #429 RT: 39.47 AV: 1 NL: 1.39E7 T: + c E1Full ms [79.50-800.50]

Figure S62 – EI mass spectra for exact mass measurement of isolated compound 20.

Figure S63 - ¹H NMR spectra at 600 MHz in CDCl₃ of isolated compound **21**.

07-feb-2011_110207153930 #46 RT: 4.13 AV: 1 SB: 32 0.48-3.24 NL: 9.33E6 T: + c EI Full ms [74.50-800.50] 100_ 126

Figure S65 – EI mass spectra for exact mass measurement of isolated compound 21.

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

Figure S66 – ¹H NMR spectra at 600 MHz in CDCl₃ of isolated enone **22**.

Figure S68 – EI mass spectra for exact mass measurement of isolated enone 22.

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

Figure S69 - ¹H NMR spectra at 600 MHz in CDCl₃ of isolated enone **23**.

Figure S70 – 13 C NMR spectra at 150 MHz in CDCl₃ of isolated enone **23**.

Figure S71 – EI mass spectra for exact mass measurement of isolated enone 23.

Figure S72 - ¹H NMR spectra at 600 MHz in CDCl₃ of isolated enone **24**.

Figure S74 – EI mass spectra for exact mass measurement of isolated enone 24.

4-(cyclohexylthio)-2-hydroxycyclopent-2-enone 25

Figure S75 - ¹H NMR spectra at 600 MHz in CDCl₃ of isolated enone **25**.

Figure S77 – EI mass spectra for exact mass measurement of isolated enone 25.

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

Figure S78 - ¹H NMR spectra at 600 MHz in CDCl₃ of isolated enone **26**.

Figure S80 – EI mass spectra for exact mass measurement of isolated enone 26.

2-hydroxy-4-(phenylthio)-cyclopent-2-enone 27

Figure S81 – ¹H NMR spectra at 600 MHz in $CDCl_3$ of isolated enone 27.

18-apr-11 #113 RT: 9.67 AV: 1 SB: 39 0.38-3.44 NL: 2.15E9 T: + c CI Full ms [74.50-800.50]

Figure S83 – EI mass spectra for exact mass measurement of isolated enone 27.

Figure S86 – EI mass spectra for exact mass measurement of isolated enone 28.

Figure S87 – ¹H NMR spectra at 600 MHz in $CDCl_3$ of isolated enone **29**.

4-(3-methoxyphenylthio)-2-hydroxycyclopent-2-enone 29

Figure S89 – EI mass spectra for exact mass measurement of isolated enone 29.

methyl 3-(3-hydroxy-4-oxocyclopent-2-enylthio)-propanoate 30

Figure S92 – EI mass spectra for exact mass measurement of isolated enone 30.

Figure S95 – EI mass spectra for exact mass measurement of isolated enone 31.

Figure S97 - ¹³C NMR spectra at 125 MHz in CDCl₃ of isolated compound **32**.

06-mar-2012 #1039 RT: 92.33 AV: 1 SB: 753 21.70-86.87 NL: 5.92E5 T: + c E1Full ms [79.50-800.50]

Figure S98 – EI mass spectra for exact mass measurement of isolated compound 32.

18-apr-11_110418155947 #8 RT: 0.75 AV: 1 NL: 5.49E7 T: + c CI Full ms [74.50-800.50]

Figure S101 – EI mass spectra for exact mass measurement of isolated enone 33.

Figure S103 - ¹³C NMR spectra at 150 MHz in CDCl₃ of isolated enone **34**.

Figure S104 – EI mass spectra for exact mass measurement of isolated enone 34.

27-may-2011 #56 RT: 4.28 AV: 1 SB: 7 1.01-1.46 NL: 1.47E7 T: + c CIFull ms [86.50-650.50]

Figure S107 – EI mass spectra for exact mass measurement of isolated enone 35.

2-(allylamino)-4-(hexylthio)-cyclopent-2-enone 36

Figure S109 - ¹³C NMR spectra at 150 MHz in CDCl₃ of isolated enone **36**.

Figure S110 – EI mass spectra for exact mass measurement of isolated enone 36.

4-(hexylthio)-2-(prop-2-ynylamino)-cyclopent-2-enone 37

Figure S111 - ¹H NMR spectra at 600 MHz in CDCl₃ of isolated enone **37**.

26-may-2011 #143 RT: 10.54 AV: 1 SB: 7 7.03-7.47 NL: 5.15E5 T: + c E1Full ms [86.50-600.50] 134

Figure S113 – EI mass spectra for exact mass measurement of isolated enone 37.

2-(2-hydroxyethylamino)-4-(hexylthio)-cyclopent-2-enone 38

Figure S114 - ¹H NMR spectra at 600 MHz in CDCl₃ of isolated enone **38**.

Figure S115 – 13 C NMR spectra at 150 MHz in CDCl₃ of isolated enone **38**.

Figure S116 – EI mass spectra for exact mass measurement of isolated enone 38.

Figure S117 - ¹H NMR spectra at 600 MHz in CDCl₃ of isolated enone **39**.

Figure S119 – EI mass spectra for exact mass measurement of isolated enone 39.

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

Figure S122 – EI mass spectra for exact mass measurement of isolated enone 40a.

26-may-2011 #469 RT: 34.40 AV: 1 SB: 130 11.05-20.50 NL: 2.11E7 T: + c EIFull ms [86.50-600.50]

Figure S125 – EI mass spectra for exact mass measurement of isolated enone 40b.

Figure S126 - ¹H NMR spectra at 600 MHz in CDCl₃ of isolated compound **41**.

26-may-2011 #66 RT: 4.90 AV: 1 NL: 3.22E5 T: + c EI Full ms [86.50-600.50]

Figure S128 – EI mass spectra for exact mass measurement of isolated compound 41.

trans-5-phenyl-4-(phenylamino)-cyclopent-2-enone 42

Figure S129 - ¹H NMR spectra at 600 MHz in CDCl₃ of isolated compound **42**.

trans-5-phenyl-4-(phenylamino)-cyclopent-2-enone 42

Figure S130 - ¹³C NMR spectra at 150 MHz in CDCl₃ of isolated compound **42**.

Figure S131 – EI mass spectra for exact mass measurement of isolated compound 42.

Figure S132 - ¹H NMR spectra at 600 MHz in CDCl₃ of isolated compound **43**.

26-may-2011 #119-122 RT: 8.78-9.00 AV: 4 SB: 1 9.00 NL: 1.35E7 T: + c EI Full ms [86.50-600.50]

Figure S134 – EI mass spectra for exact mass measurement of isolated compound 43.

Figure S135 - ¹H NMR spectra at 500 MHz in CDCl₃ of isolated compound 44.

Figure S136 - ¹³C NMR spectra at 125 MHz in CDCl₃ of isolated compound 44.

06-mar-2012 #314 RT: 29.50 AV: 1 NL: 6.71E5 T: + c E1 Full ms [79.50-800.50]

Figure S137 – EI mass spectra for exact mass measurement of isolated compound 44.

Figure S138 – ¹H NMR spectra at 500 MHz in CDCl₃ of isolated compound 45

06-mar-2012 #339 RT: 31.67 AV: 1 NL: 1.51E7

Figure S140 – EI mass spectra for exact mass measurement of isolated compound 45.

Figure S141 - ¹H NMR spectra at 500 MHz in CDCl₃ of isolated compound **46**.

06-mar-2012 #413 RT: 38.08 AV: 1 NL: 7.52E5 T: + c EI Full ms [79.50-800.50]

Figure S143 – EI mass spectra for exact mass measurement of isolated compound 46.

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

Figure S144 - ¹H NMR spectra at 500 MHz in CDCl₃ of isolated compound **47**.

Figure S145 - ¹³C NMR spectra at 125 MHz in CDCl₃ of isolated compound **47**.

06-mar-2012 #373 RT: 34.61 AV: 1 NL: 1.08E7 T: + c E1Full ms [79.50-800.50]

Figure S146 – EI mass spectra for exact mass measurement of isolated compound 47.

Figure S147 - ¹H NMR spectra at 500 MHz in CDCl₃ of isolated compound **48**.

06-mar-2012 #964 RT: 85.83 AV: 1 NL: 7.67E6 T: + c El Full ms [79.50-800.50] 100- 130

Figure S149 – EI mass spectra for exact mass measurement of isolated compound 48.

References

- 1. S. W. Li, R. A. Batey, Chem. Commun., 2007, 3759-3761.
- 2. A. G. Csaky, M. Mba, J. Plumet, Synlett, 2003, 2092-2094.
- 3. G. K. Veits, D. R. Wenz, J. R. de Alaniz, Angew. Chem., Int. Ed. Engl., 2010, 49, 9484-9487.