Supplementary Information

Grafting BiOCl nanosheets onto a TiO₂ tubular array to form a hierarchical structure with improved photocatalytic performance

Yunyu Cai,^a Panpan Wang, ^a Yixing Ye, ^a Jun Liu, ^a Zhenfei Tian,^a Yishu Liu ^b and Changhao Liang ^a.*

^aKey Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
^b Anhui Provincial Laboratory of Biomimetic Sensor and Detecting Technology, West Anhui University, Lu'an, Anhui 237015, PR China.

*Corresponding author. Tel.: +86 551 65591129; Fax: +86 551 65591434.

E-mail address: chliang@issp.ac.cn (C. H. Liang).

The anodic amorphous TiO_2 nanotube array film is uniform and orderly in pores distribution as showing in Figure S1. The average diameter and length of the TiO_2 nanotubes are of 130 nm and 6 µm, respectively. In Figure S2, the nanosheets consisting of BiOCl nanospheres shows similar morphology with that of BiOCl nanosheets grafted on a TiO_2/Ti film. Figure S3 shows the XRD pattern of as-synthesized BiOCl nanospheres.

Figure S1. (a), (b) Top and side view of amorphous TiO_2 nanotubes array film by anodic oxidation.

Figure S2. (a) SEM image of BiOCl flower-like nanospheres; (b) a magnified image of the single nanosphere in (a).

Figure S3. XRD pattern of the synthesized BiOCl nanospheres.