SUPPORTING INFORMATION FOR:

Cacalol and Cacalol acetate as photoproducers of singlet oxygen and as free radical scavengers, evaluated by EPR spectroscopy and TBARS

Virginia Gómez-Vidales,^{a*} Gilma Granados-Oliveros,^{a,b} Antonio Nieto-Camacho,^a Mirna Reyes-Solís,^a Manuel Jiménez-Estrada^a

 ^a Instituto de Química, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, Coyoacán, D.F., C.P. 04510. México.
 ^b GIADS, Facultad de Química Ambiental, Universidad Santo Tomás de Aquino, Bucaramanga, Colombia.

* Corresponding author: Tel. 52 55 56224617, Fax 52 55 5616 22 17. E-mail address: <u>gomvidal@unam.mx</u> (Virginia Gómez)

List of Contents:

Figures:

Figure A₁ UV-vis spectra for Cacalol and Cacalol acetate

Appendices:

Additional details of the EPR measurements

- A1.1 Quantum Yield for the production of Singlet Oxygen
- A1.2 Flux of Absorbed Photons.
- A2. Characterization of Compounds

Figure A1. UV-vis spectra of Cacalol and Cacalol acetate in ethanol solution, [**C**] = 1.0 mM, [**CA**] = 1.4 mM

A1.1 Quantum Yield for Production of Singlet Oxygen

The ¹O₂ radical quantum yield, ϕ^1 O₂, can be determined from the generation rate of singlet oxygen, *R*¹O₂, and the flux of absorbed photons, *I*_a[1]:

$$\phi^1 O_2 = R^1 O_2 / I_a$$

For determining the absolute ${}^{1}O_{2}$ generation rate, the method of EPR spin-trapping with TEMP was employed. TEMP reacts with ${}^{1}O_{2}$ to give the adduct TEMPO [2].

A1.2 Flux of Absorbed Photons.

The methodology to determine I_a is described in detail by Sun and Bolton [1]. The photon flux I_a absorbed by a sample is the product of the incident photon flux I_o and the integrated absorption fraction F_S (for a sample S) over the wavelength range used in the experiment (300-800 nm) (eq.1):

 $I_{a} = I_{o} F_{S} (1)$

 $F_{\rm S}$ is given by eq. 2

$$\int_{\lambda_1}^{\lambda_2} I_{\lambda} T_{\lambda}^f f_{\lambda}^s \, d\lambda / \int_{\lambda_1}^{\lambda_2} I_{\lambda} T_{\lambda}^f \, d\lambda \tag{2}$$

where I_{λ} is the relative incident photon flux in the wavelength band d λ , T_{λ}^{f} is the transmittance of the filter at wavelength λ , and

$$f_{\lambda}^{s} = 1 - 10^{-A_{\lambda}s} \qquad (3)$$

is the fraction of light absorbed at wavelength λ , where A_{λ}^{s} is the absorbance of the samples at wavelength λ . The integrals were determined by a sum over the wavelength range 300-800 nm.

The incident photon flux I_0 can be determined by a standard actinometer method, based on the photochemical conversion of the ferrioxalate salt. Irradiation with UV-vis light causes the reduction of Fe³⁺ to Fe²⁺ (reaction 1) [3, 4]:

$$2[Fe(C_2O_4)_3]^{3-} \xrightarrow{hg} 2Fe^{2+} + 5(C_2O_4)^{2-} + 2CO_2$$
(1)

The generation rate of Fe^{2+} ions $R_{Fe}^{2+}(M.s^{-1})$ can be determined spectrophotometrically at 510 nm after forming a complex with 1,10-phenanthroline (0.1%). The incident photon flux I_0 is then obtained from eq. 4:

$$I_{\rm o} = R_{\rm Fe}^{2+}/\phi_{\rm Fe}^{2+}F_{\rm RS}$$
 (4)

 ϕ_{Fe}^{2+} is the quantum yield of Fe²⁺ generation by photochemical reaction, and F_{RS} is the integrated absorption fraction of the Ferrioxalate salt solution over the range of the wavelengths involved in the experiment. The weighted average of the quantum yield of Fe²⁺ production from Fe³⁺ salt over the bandwidth of the transmitting filter is known to be 1.0. According to our results, the formation rate of Fe²⁺ was found to be 1.5 x 10⁻⁷ ± 0.03 M.s⁻¹ and I₀ was 1.5 x 10⁻⁷ ± 0.03 M s⁻¹. **C** and **CA** concentrations were chosen in the range where the incident light is completely absorbed (fraction I_a/I₀ = 1). In our experiments, *I_a* was found to be 1.5 x 10⁻⁷ ± 0.03 M s⁻¹.

A2. Characterization of Compounds

Cacalol

mp 92-94°C, $[\alpha]^{20}_{D}$ +10 , UV λ_{max} : 218 (ε30400), 256 (ε10500), 264 (ε10000), 284 (ε1840)

IR (KBr): 3580, 2966, 2934, 2870, 1450 cm⁻¹.

RMN ¹**H (CDCI₃) δ:** 1.18 (d, 3H, CH₃, C-15), 3.22 (m, 1H, C-4) 1.75–1.90 (m, 4H, C-3, C-2), 2.92 - 3.03 (m, 2H, C-1), 2.36 (d, 3H, CH₃, C-13), 2.52 (s, 3H, CH₃, C-14), 7.24 (m, 1H, C-12).

RMN ¹³**C (CDCI₃) δ:** 136.4 (C-12), 117.2 (C-11), 120.2 (C-7), 118.9 (C-6), 135.6 (C-5), 29.8 (C-4), 30.2 (C-3), 16.7 (C-2), 23 (C-1), 126.2 (C-10), 142.2 (C-9), 140.8 (C-8), 11.3 (C-13), 13.8 (C-14), 21.4 (C-15).

EM (IE) *m/z*: 230 (M⁺, 71 %), 215 (M⁺-15, 100 %).

Cacalol Acetate

mp 103-104°C; $[\alpha]^{20}_{D}$ -9; UV λ_{max} : 218 (ϵ 27000), 255 (ϵ 12000), 280 (ϵ 2100), 292 (ϵ 1320).

IR (KBr): 1760, 1630, 1600 cm⁻¹.

RMN ¹**H (CDCI₃) δ:** 1.18 (d, 3H, CH₃, C-15), 3.24 (m, 1H, C-4),1.75–1.90 (m, 4H, C-3, C-2), 2.77-2.88 (m, 2H, C-1), 2.38 (d, 3H, CH₃, C-13), 2.40 (s, 3H, CH₃-CO), 2.56 (s, 3H, CH₃, C-14), 7.22 (m, 1H, C-12).

RMN ¹³C (CDCI₃) δ: 168.6(CO-Me),135.4 (C-8),124.9 (C-11), 126.8 (C-7), 116.7 (C-6), 131.4 (C-5), 28.9 (C-4), 29.9 (C-3),16.6 (C-2), 23.4 (C-1),127.0 (C-10), 145.2 (C-9), 141.4 (C-12), 11.3 (C-13), 13.8 (C-14), 21.4 (C-15), 20.5 (CH₃-CO)
EM (IE) *m/z*: 272 (M⁺, 71 %), 215 (M⁺-15, 100 %).

References

[1] L. Sun, J.R. Bolton, The Journal of Physical Chemistry 100 (1996) 4127-4134.

[2] S. Rinalducci, J.Z. Pedersen, L. Zolla, Biochimica et Biophysica Acta (BBA) - Bioenergetics 1608 (2004) 63-73.

[3] A.M.M. Braun, M.-T.; Oliveros, E., Photochemical Technology, Wiley, Chichester (U. K.), 1991.

[4] J.N. Demas, W.D. Bowman, E.F. Zalewski, R.A. Velapoldi, The Journal of Physical Chemistry 85 (1981) 2766-2771.

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013