Electronic Supplementary Information (ESI)

Synthesis, Crystal Structure and Luminescence Process of A Near Ultraviolet-Green to Red Spectral Converter BaY₂S₄: Eu²⁺, Er³⁺[†]

Wenli Zhou, Shengzhi Deng, Chunying Rong, Qingji Xie, Shixun Lian,* Jilin Zhang, Chengzhi Li and Liping Yu

Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education); Key Laboratory of Sustainable Resources Processing and Advanced Materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China. E-mail: lianshixun@yahoo.com.cn;

Compound	a/x	b/y	c/z	V
$BaY_{1.76}Er_{0.24}S_4^{\ a}$	4.0250(4)	12.2096(1)	14.4723(1)	711.23
Y1(Er1)	0.25	0.0668(1)	0.3916(5)	
Y2(Er2)	0.25	0.0785(9)	0.8976(0)	
Ba	0.25	0.2419(5)	0.1617(8)	
S 1	0.75	0.0232(8)	0.7845(5)	
S 2	0.75	0.0845(3)	0.5763(8)	
S 3	0.75	0.1243(7)	0.0232(2)	
S 4	0.75	0.2082(6)	0.3354(6)	
$BaY_2S_4^{\ b}$	4.0263	12.2134	14.484	712.248
Y1	0.25	0.0672(7)	0.3915(1)	
Y2	0.25	0.0791(1)	0.8984(6)	
Ba	0.25	0.2423(5)	0.1616(8)	
S 1	0.75	0.0217(3)	0.7830(4)	
S 2	0.25	0.0819(8)	0.5771(6)	
S 3	0.75	0.1251(0)	0.0234(5)	
S 4	0.75	0.2073(8)	0.3359(5)	

Table S1. Cell Constants a, b, c (in angstroms), and V (in cubic angstroms) and Atomic Coordinates (x,

<i>y</i> , <i>z</i>) of I	$BaY_{1.76}Er_0$	24S4 Compound
----------------------------	------------------	---------------

.

^{*a*} Data determined from powder XRD data by using the Rietveld refinement. The compound crystallizes in No. 62 space group (*Pmnb*) within an orthorhombic symmetry. Z = 4. $\alpha = \beta = \gamma = 90^{\circ}$. The reliability factors of the refinement for BaY_{1.76}Er_{0.24}S₄ are R_p = 2.7 % and R_{wp} = 3.9 %. ^{*b*} Experimental data reported by Lowe-Ma et al.

Table 52. Dona Lei	iguis (in angsuoi	113) Of Du 1 1.76D10.24	.04 Compound.
Y1(Er1)-S2	2.68221	Y2(Er2)-S2	2.68013
Y1(Er1)-S2	2.77104	Y2(Er2)-S2	2.68013
Y1(Er1)-S2	2.77104	Y2(Er2)-S3	2.73019
Y1(Er1)-S4	2.77385	Y2(Er2)-S4	2.75348
Y1(Er1)-S4	2.77385	Y2(Er2)-S3	2.76909
Y1(Er1)-S1	2.77714	Y2(Er2)-S3	2.76909
Ba-S1	3.33020	Ba-S1	3.37250
Ba-S2	3.17274	Ba-S2	3.17274
Ba-S3	3.18314	Ba-S3	3.18314
Ba-S4	3.24610	Ba-S4	3.24610

Table S2. Bond Lengths (in angstroms) of BaY_{1.76}Er_{0.24}S₄ Compound.

Figure S1 Temperature dependence of Eu²⁺ luminescence in BYS: 0.0025Eu²⁺ sample.

Figure S2 (a) Luminescence decay curves of BYS: $0.0025Eu^{2+}$, $0.24Er^{3+}$ phosphor under the excitation of 500 nm at range of 300 - 500 K and (b) the temperature dependent lifetimes of the Er^{3+} emission.

Figure S3 Visible (a) and near-infrared (b) emission spectra of $BaY_{2-x}S_4$: xEr^{3+} phosphor as a function of the concentration of Er^{3+} ions upon the excitation of 455 nm.

Figure S3 shows the photoluminescence (PL) spectra of the Ba_{2-x}Y₂S₄: *x*%Er³⁺ phosphors with *x*=0.01, 0.02, 0.06, 0.12, 0.24 and 0.36 obtained at room temperature by using an excitation wavelength (λ_{ex}) of 455 nm. Under this excitation condition, four emission peaks at 524, 548, 661, and 1540 nm can be distinguished. They are associated with the radiative Er³⁺ ions de-excitation from the states ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$, ${}^{4}F_{9/2}$, and ${}^{4}I_{13/2}$ to the ground state ${}^{4}I_{15/2}$, respectively. In the most dilute Er³⁺-containing (x = 0.01) BaY₂S₄, the PL is prominent at 554 nm, the peaks at 661 and 1540 nm are almost negligible. With increasing Er³⁺ concentration, the green emission intensities initially increase and then reach a maximum at around x = 0.06; over this value, it slowly reduces, while the red and infrared ones continue to increase and finally get a maximum at approximately x = 0.24, at which the green emission nearly disappears. The reduction for the green emission with increasing Er³⁺ concentration can be justified by the cross relaxation ${}^{4}F_{5/2} + {}^{4}I_{15/2} \rightarrow {}^{4}F_{9/2} + {}^{4}I_{13/2}$ (see Figure 10), which results in the increase of 663 nm (${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$) and 1540 nm (${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$) luminescence of Er³⁺ ions.

Figure S4 Emission spectra of BaY_2S_4 : $0.24Er^{3+}$ and BaY_2S_4 : $0.24Er^{3+}$, $0.0025Eu^{2+}$ phosphors upon the excitation of 455 nm. Integrated red emission intensity of Er^{3+} enhances about tenfold by introduction of Eu^{2+} ions.