Cover Page for Supporting Information

Manuscript Title:

Palladium-Catalyzed Cleavage of the Me-Si Bond in *ortho*-Trimethylsilyl Aryltriflates: Synthesis of Benzosilole Derivatives from *ortho*-Trimethylsilyl Aryltriflates and Alkynes

Authors:

Tianhao Meng, Kunbing Ouyang, and Zhenfeng Xi*

Affiliations:

Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190 (China), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871 (China), State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry (SIOC), CAS, Shanghai 200032 (China).

E-mail: zfxi@pku.edu.cn

Contents:

1) General Information	S2
2) Reaction Condition Optimization of Reaction of 1a with Diphenylacetylene	S2-S3
3) Reaction Condition Optimization of Reaction of 1a with 4-Octyne	S3-S5
4) Typical Procedures and Characterization Data	S5-S10
5) Copies of ¹ H NMR and ¹³ C NMR Spectra for All New Compounds	S11-S27

1) General Information

Unless otherwise noted, all starting materials were commercially available and were used without further purification. All reactions were carried out using standard Schlenk techniques or under a nitrogen atmosphere in a Glovebox. The nitrogen in the glovebox was constantly circulated through a copper/molecular sieve catalyst unit. The oxygen and moisture concentrations in the glovebox atmosphere were monitored by an O₂/H₂O Combi-Analyzer to ensure both were always below 1 ppm. Solvents were purified by a Mbraun SPS-800 Solvent Purification System and dried over fresh Na chips in the glovebox.

¹H and ¹³C NMR spectra were recorded on a Bruker ARX 400 spectrometer (FT, 400 MHz for 1H; 100MHz for ¹³C) or a Bruker AVANCE III 500 spectrometer (FT, 500 MHz for 1H; 125MHz for ¹³C) at room temperature in CDCl₃ solutions and with tetramethylsilane (0.00 ppm) as internal standard, unless otherwise noted. High-resolution mass spectra (HRMS) were recorded on a on a Bruker Apex IV FTMS mass spectrometer using ESI (electrospray ionization) and FT-ICR mass analyser. GC/MS analyses were recorded on Agilent 7890A/5975C using EI MSD.

2) Reaction Condition Optimization of Reaction of 1a with Diphenylacetylene

STable 1. Optimization of Reaction Conditions for the Reaction of 1a with Diphenylacetylene^{*a*}

	OTf Ph	[Pc Lig \\\Ba:	I] (5 mmol%) and (10 mmol%) se (3.0 equiv)	Ph	
	TMS 1a	Ph tolu 120	ditive (2.0 equiv) Jene 0 °C, 24 h	Si- 2a	'n
Entry	[Pd]	Base	Ligand	Additive	GC Yield ^b
1	Pd(PPh ₃) ₄	K_2CO_3	-	KBr	19
2	PdCl ₂	LiOEt	Pt-Bu ₃	KBr	NR
3	$[Pd(\pi-allyl)Cl]_2$	LiOt-Bu	Pt-Bu ₃	-	15
4	$[Pd(\pi-allyl)Cl]_2$	LiOt-Bu	Pt-Bu ₃	KBr	32

5^{c}	$[Pd(\pi-allyl)Cl]_2$	LiOt-Bu	Pt-Bu ₃	KBr	13
6 ^{<i>c</i>}	$[Pd(\pi-allyl)Cl]_2$	LiOt-Bu	Pt-Bu ₃	-	NR
7	$[Pd(\pi-allyl)Cl]_2$	LiOt-Bu	Pt-Bu ₃	KI	trace
8	$[Pd(\pi-allyl)Cl]_2$	LiOt-Bu	Pt-Bu ₃	NaI	NR
9	$[Pd(\pi-allyl)Cl]_2$	LiOt-Bu	Pt-Bu ₃	LiI	NR
10	$[Pd(\pi-allyl)Cl]_2$	Li ₂ CO ₃	Pt-Bu ₃	KBr	NR
11	$[Pd(\pi-allyl)Cl]_2$	Na ₂ CO ₃	Pt-Bu ₃	KBr	10
12	$[Pd(\pi-allyl)Cl]_2$	K_2CO_3	Pt-Bu ₃	KBr	41
13	$[Pd(\pi-allyl)Cl]_2$	Cs_2CO_3	Pt-Bu ₃	KBr	12
14	$[Pd(\pi-allyl)Cl]_2$	LiOEt	Pt-Bu ₃	-	16
	2 () /]				
15	[Pd(π-allyl)Cl] ₂	LiOEt	Pt-Bu ₃	KBr	84
15 16	$[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$	<i>LiOEt</i> NaOEt	<i>Рt-Вu</i> ₃ Рt-Bu ₃	KBr KBr	84 decompose
15 16 17	$[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$	<i>LiOEt</i> NaOEt LiOAc	<i>Рt-Вu</i> ₃ Рt-Вu ₃ Рt-Bu ₃	<i>KBr</i> KBr KBr	<i>84</i> decompose NR
15 16 17 18	$[Pd(\pi-allyl)Cl]_2$ [Pd(π -allyl)Cl]_2 [Pd(π -allyl)Cl]_2 [Pd(π -allyl)Cl]_2	<i>LiOEt</i> NaOEt LiOAc NaOAc	<i>Рt-Вu</i> ₃ Pt-Bu ₃ Pt-Bu ₃ Pt-Bu ₃	<i>KBr</i> KBr KBr KBr	84 decompose NR 22
15 16 17 18 19	$[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$	<i>LiOEt</i> NaOEt LiOAc NaOAc KOAc	Pt-Bu ₃ Pt-Bu ₃ Pt-Bu ₃ Pt-Bu ₃ Pt-Bu ₃	<i>KBr</i> KBr KBr KBr	 84 decompose NR 22 18
 15 16 17 18 19 20 	$[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$	LiOEt NaOEt LiOAc NaOAc KOAc NaOt-Bu	Pt-Bu ₃ Pt-Bu ₃ Pt-Bu ₃ Pt-Bu ₃ Pt-Bu ₃	KBr KBr KBr KBr KBr	 84 decompose NR 22 18 decompose
 15 16 17 18 19 20 21 	$[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$	LiOEt NaOEt LiOAc NaOAc KOAc NaOt-Bu	Pt-Bu ₃	KBr KBr KBr KBr KBr KBr	 84 decompose NR 22 18 decompose decompose
 15 16 17 18 19 20 21 22 	$[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$ $[Pd(\pi-allyl)Cl]_2$	LiOEt NaOEt LiOAc NaOAc KOAc NaOt-Bu KOt-Bu LiOEt	Pt-Bu ₃	KBr KBr KBr KBr KBr KBr KBr	84 decompose NR 22 18 decompose decompose NR
 15 16 17 18 19 20 21 22 23 	$[Pd(\pi-allyl)Cl]_{2}$ $[Pd(\pi-allyl)Cl]_{2}$ $[Pd(\pi-allyl)Cl]_{2}$ $[Pd(\pi-allyl)Cl]_{2}$ $[Pd(\pi-allyl)Cl]_{2}$ $[Pd(\pi-allyl)Cl]_{2}$ $[Pd(\pi-allyl)Cl]_{2}$ $[Pd(\pi-allyl)Cl]_{2}$ $[Pd(\pi-allyl)Cl]_{2}$	LiOEt NaOEt LiOAc NaOAc KOAc NaOt-Bu KOt-Bu LiOEt	Pt-Bu ₃ H·BF ₄ PMet-Bu ₂ H·BF ₄	KBr KBr KBr KBr KBr KBr KBr	 84 decompose NR 22 18 decompose decompose NR 11

^{*a*} Conditions: **1a** (0.1 mmol), diphenylacetylene (0.12 mmol), [Pd] (5 mol %), ligand (10 mol%), base (0.3 mmol), additive (0.2 mmol), toluene (1.5 ml), 120 C, 24 h. ^{*b*} GC yield (n-C₁₂H₂₆ as internal standard). ^{*c*} 0.1 mmol of *p*-nitrobenzaldehyde was added into the reaction.

3) Reaction Condition Optimization of Reaction of 1a with 4-Octyne

STable 2. Optimization of Reaction Conditions for the Reaction of 1a with 4-Octyne^a

	Pd(PPh_)				
1	1 u(1 1 113)4	K ₂ CO ₃	-	-	32
2	$Pd(PPh_3)_4$	K ₂ CO ₃	-	KBr	50
3	$Pd(PPh_3)_4$	-	-	KBr	18
4	$Pd(PPh_3)_4$	K ₂ CO ₃	-	KBr	27
5	$Pd(OAc)_2$	K ₂ CO ₃	-	KBr	NR
6	$Pd_2(dba)_3$	K ₂ CO ₃	-	KBr	NR
7	PdCl ₂	K_2CO_3	-	KBr	NR
8	Pd(PPh ₃)Cl ₂	K_2CO_3	-	KBr	NR
9	Pd(PPh ₃) ₄	K_2CO_3	-	NaI	9
10	Pd(PPh ₃) ₄	K_2CO_3	-	KI	15
11	Pd(PPh ₃) ₄	K_2CO_3	-	LiI	NR
12	Pd(PPh ₃) ₄	Li ₂ CO ₃	-	KBr	15
13	Pd(PPh ₃) ₄	Na ₂ CO ₃	-	KBr	23
14	Pd(PPh ₃) ₄	Cs_2CO_3	-	KBr	trace
15	Pd(PPh ₃) ₄	LiOEt	-	KBr	61
16	Pd(PPh ₃) ₄	NaOEt	-	KBr	-
17 ^c	Pd(PPh ₃) ₄	LiOAc	-	KBr	27
18	Pd(PPh ₃) ₄	NaOAc	-	KBr	41
19	Pd(PPh ₃) ₄	KOAc	-	KBr	23
20	Pd(PPh ₃) ₄	LiOt-Bu	-	KBr	37
21	Pd(PPh ₃) ₄	NaOt-Bu	-	KBr	NR
22	Pd(PPh ₃) ₄	KOt-Bu	-	KBr	decompose
23	Pd(PPh ₃) ₄	LiOH • H ₂ O	-	KBr	40
24	$Pd(PPh_3)_4$	NaOH	-	KBr	14
25	Pd(PPh ₃) ₄	КОН	-	KBr	decompose
26	Pd(PPh ₃) ₄	K ₃ PO ₄	-	KBr	25
27	Pd(PPh ₃) ₄	$K_2HPO_4 \bullet 3H_2O$	-	KBr	17
28	$Pd(PPh_3)_4$	NaH ₂ PO ₄ • 2H ₂ O	_	KBr	16
29	Pd(PPh ₂) ₄	LiOEt	-	-	31

30	$Pd(OAc)_2$	LiOEt	PPh ₃	KBr	trace
31	PdCl ₂	LiOEt	PPh ₃	KBr	18
32	$[Pd(\pi-allyl)Cl]_2$	LiOEt	PPh ₃	KBr	41
33	Pd(PPh ₃)Cl ₂	LiOEt	PPh ₃	KBr	7 9
34	$Pd_2(dba)_3$	LiOEt	PPh ₃	KBr	60
35	Pd(PPh ₃)Cl ₂	LiOEt	PCy ₃	KBr	NR
36	Pd(PPh ₃)Cl ₂	LiOEt	P-(2-Furyl) ₃	KBr	NR
37	Pd(PPh ₃)Cl ₂	LiOEt	XantPhos	KBr	61
38	Pd(PPh ₃)Cl ₂	LiOEt	DPEPhos	KBr	36
39	Pd(PPh ₃)Cl ₂	LiOEt	DPPF	KBr	23
40	Pd(PPh ₃)Cl ₂	LiOEt	DPPP	KBr	39

^{*a*} Conditions: **1a** (0.1 mmol), 4-Octyne (0.2 mmol), [Pd] (5 mol %), ligand (10 mol%), base (0.3 mmol), additive (0.2 mmol), toluene (1.5 ml), 120 C, 24 h. ^{*b*} GC yield (n-C₁₂H₂₆ as internal standard). ^{*c*} 0.1 mmol of Bu₄NBr was added into the reaction.

4) Typical Procedures and Characterization Data

A typical procedure for the preparation of 2: Under nitrogen, $[PdCl(\pi-allyl)]_2$

(2.5 mol%) and Pt-Bu₃ (10 mol%) were added in 1.5 ml toluene. After this reaction mixture was stirred at room temperature for 15 min, *ortho*-trimethylsilyl aryltriflates **1** (0.3 mmol), arylalkynyl (0.36 mmol), LiOEt (0.9 mmol), KBr (0.6 mmol) were added and this reaction mixture was stirred at 120 °C for 24 h. The reaction mixture was extracted with EtOAc. The solvent was then evaporated in vacuo and the residue was purified by using SiO₂ column with petroleum ether and ethyl acetate as eluent to afford the final products.

A typical procedure for the preparation of 3: Under nitrogen, Pd(PPh₃)₂Cl₂

(5 mol%), PPh₃ (10 mol%), *ortho*-trimethylsilyl aryltriflates **1** (0.3 mmol), aliphatic alkyne (0.6 mmol), LiOEt (0.9 mmol) and KBr (0.6 mmol) were added in 1.5 ml toluene. and this reaction mixture was stirred at 120 °C for 24 h. The reaction mixture was extracted with EtOAc. The solvent was then evaporated in vacuo and the residue was purified by using SiO₂ column with petroleum ether and ethyl acetate as eluent to afford

the final products.

 Ph
 2a:^[1] Colorless solid, isolated yield 80% (75 mg); ¹H NMR (400 MHz,

 CDCl₃) δ: 0.47 (s, 6H, CH₃), 6.96-6.99 (m, 2H, CH), 7.04-7.07 (m, 2H,

 CH), 7.11-7.14 (m, 2H, CH), 7.18-7.21 (m, 2H, CH), 7.26-7.34 (m, 5H,

 CH), 7.60-7.62 (m, 1H, CH); ¹³C NMR (100 MHz, CDCl₃) δ: -3.51 (2CH₃), 123.98,

 125.66, 126.65, 127.05, 127.93 (2CH), 128.34 (2CH), 128.59 (2CH), 129.66 (2CH),

 129.76, 131.62, 138.13, 138.16, 139.96, 142.99, 150.71, 153.12.

2b: Colorless solid, isolated yield 86% (88 mg); ¹H NMR (400 MHz, CDCl₃) δ: 0.49 (s, 6H, CH₃), 3.85 (s, 3H, CH₃), 6.69 (d, *J* = 7.5 Hz, 1H, CH), 6.76 (d, *J* = 8.2 Hz, 1H, CH), 6.96-6.98 (m, 2H, CH), 7.04-7.32 (m, 9H, CH); ¹³C NMR (100 MHz, CDCl₃) δ: -4.03 (2CH₃), 55.41, 109.03,

117.41, 123.60, 125.57, 126.93, 127.87 (2CH), 128.22 (2CH), 128.57 (2CH), 129.68 (2CH), 131.87, 138.32, 140.07, 143.85, 152.32, 152.35, 162.96; HRMS (ESI, m/z) calcd. for [C₂₃H₂₂OSi]H⁺: 343.1513; found 343.1515.

2c: Colorless solid, isolated yield 64% (71 mg); ¹H NMR (400 MHz, CDCl₃) δ : 0.48 (s, 6H, CH₃), 2.24 (s, 3H, CH₃), 2.36 (s, 3H, CH₃), 3.85 (s, 3H, CH₃), 6.68 (d, *J* = 7.5 Hz, 1H, CH), 6.74 (d, *J* = 8.2 Hz, 1H, CH), 6.87-6.94 (m, 4H, CH), 7.06-7.14 (m, 4H, CH), 7.23-7.25 (m, 1H, CH); ¹³C NMR (100 MHz, CDCl₃) δ :

-3.90 (2CH₃), 21.11, 21.32, 55.41, 108.85, 117.33, 123.56, 128.57 (2CH), 128.66 (2CH), 129.03 (2CH), 129.53 (2CH), 131.78, 135.12, 135.55, 136.39, 137.08, 143.18, 151.73, 152.76, 162.92; HRMS (ESI, m/z) calcd. for [C₂₅H₂₆OSi]H⁺: 371.1826; found 371.1817.

2d: Pale yellow solid, isolated yield 67% (89 mg); ¹H NMR (400 MHz, CDCl₃) δ : 0.46 (s, 3H, CH₃), 0.49 (s, 3H, CH₃), 3.88 (s, 3H, CH₃), 6.27 (d, *J* = 7.5 Hz, 1H, CH), 6.77 (d, *J* = 8.2 Hz, 1H, CH), 6.92 (br, 1H, CH), 7.11-7.17 (m, 4H, CH), 7.31-7.36 (m, 4H, CH), 7.45 (d, *J* = 8.2 Hz, 1H, CH), 7.54 (dd, *J* = 7.6, 1.3 Hz, 1H, CH),

7.65-7.70 (m, 2H, CH), 7.88 (d, J = 7.6 Hz, 1H, CH), 8.01 (d, J = 7.3 Hz, 1H, CH); ¹³C NMR (100 MHz, CDCl₃) δ : -4.13, -3.69, 55.43, 109.11, 117.97, 123.72, 124.86, 125.23, 125.27, 125.35 (2CH), 125.42 (3CH), 125.63, 126.58, 126.67, 127.26, 127.94, 128.05, 131.58, 131.84, 132.09, 133.20, 133.35, 135.93, 138.56, 146.97, 152.40, 153.34, 162.99; HRMS (ESI, m/z) calcd. for [C₃₁H₂₆OSi]H⁺: 443.1826; found 443.1824.

2e: Colorless solid, isolated yield 59% (67 mg); ¹H NMR (400 MHz, CDCl₃) δ : 0.47 (s, 6H, CH₃), 3.86 (s, 3H, CH₃), 6.66 (d, *J* = 7.5 Hz, 1H, CH), 6.77-6.91 (m, 5H, CH), 7.01 (t, *J* = 8.8 Hz, 2H, CH), 7.11-7.15 (m, 2H, CH), 7.28 (t, *J* = 7.9 Hz, 1H, CH); ¹³C NMR (100 MHz, CDCl₃) δ : -4.18 (2CH₃), 55.43, 109.22, 114.96 (d, *J* = 21.0 Hz, 2CH), 115.37 (d, *J* = 21.1 Hz, 2CH),

117.19, 123.38, 129.93 (d, $J_{C-F} = 7.8$ Hz, 2CH), 131.35 (d, $J_{C-F} = 7.8$ Hz, 2CH), 132.02, 133.85 (d, $J_{C-F} = 3.4$ Hz), 135.88 (d, $J_{C-F} = 3.5$ Hz), 143.41, 151.39, 151.95, 160.24 (d, $J_{C-F} = 88.1$ Hz), 162.69 (d, $J_{C-F} = 88.9$ Hz), 163.05; HRMS (ESI, m/z) calcd. for [C₂₃H₂₀F₂OSi]H⁺: 379.1324; found 379.1319.

2f: White solid, isolated yield 73% (78 mg); ¹H NMR (400 MHz, CDCl₃) δ : 0.57 (s, 6H, CH₃), 3.85 (s, 3H, CH₃), 6.63 (d, *J* = 7.5 Hz, 1H, CH), 6.75 (d, *J* = 8.2 Hz, 1H, CH), 6.93-7.02 (m, 3H, CH), 7.16-7.22 (m, 2H, CH), 7.28 (t, *J* = 7.9 Hz, 1H, CH), 7.54 (dd, *J* = 5.1, 0.9 Hz, 1H, CH); ¹³C NMR (100 MHz, CDCl₃) δ : -3.30 (2CH₃),

55.43, 109.01, 117.07, 121.78, 126.14, 127.07 (2CH), 127.87, 127.93, 128.06, 132.36, 138.10, 139.90, 141.57, 142.54, 153.06, 162.85; HRMS (ESI, m/z) calcd. for [C₁₉H₁₈OS₂Si]H⁺: 355.0641; found 355.0642.

2g: Colorless oil, isolated yield 65% (66 mg); ¹H NMR (400 MHz, CDCl₃) δ : -0.13 (s, 9H, CH₃), 0.43 (s, 6H, CH₃), 3.83 (s, 3H, CH₃), 6.44 (d, *J* = 7.5 Hz, 1H, CH), 6.73 (d, *J* = 8.2 Hz, 1H, CH), 7.17-7.22 (m, 3H, CH), 7.33-7.39 (m, 3H, CH); ¹³C NMR (100 MHz, CDCl₃) δ :

-3.43 (2CH₃), 0.73 (3CH₃), 55.39, 109.08, 117.20, 126.13, 126.94, 127.87 (2CH), 128.63

(2CH), 131.69, 141.88, 143.05, 153.49, 162.77, 166.35; HRMS (ESI, m/z) calcd. for $[C_{20}H_{26}OSi_2]H^+$: 339.1595; found 339.1601.

2h: Colorless oil, isolated yield 53% (56 mg); ¹H NMR (400 MHz, CDCl₃) δ : -0.12 (s, 9H, CH₃), 0.42 (s, 6H, CH₃), 2.40 (s, 3H, CH₃), 3.83 (s, 3H, CH₃), 6.46 (d, *J* = 7.5 Hz, 1H, CH), 6.72 (d, *J* = 8.2 Hz, 1H, CH), 7.06-7.08 (m, 2H, CH), 7.17-7.22 (m, 3H, CH); ¹³C NMR (100 MHz, CDCl₃) δ : -3.41 (2CH₃), 0.81 (3CH₃), 21.30, 55.39, 109.03, 117.21, 126.17, 128.52 (4CH), 131.64, 136.46, 138.86, 142.88, 153.65,

162.75, 166.55; HRMS (ESI, m/z) calcd. for $[C_{21}H_{28}OSi_2]H^+$: 353.1752; found 353.1744.

2i: Colorless solid, isolated yield 56% (65 mg); ¹H NMR (400 MHz, CDCl₃) δ : -0.30 (s, 9H, CH₃), 0.51 (s, 3H, CH₃), 0.53 (s, 3H, CH₃), 3.85 (s, 3H, CH₃), 6.17 (d, *J* = 7.5 Hz, 1H, CH), 6.71 (d, *J* = 8.2 Hz, 1H, CH), 7.08 (t, *J* = 7.8 Hz, 1H, CH), 7.27-7.34 (m, 2H, CH),

 1 OMe 1 7.42-7.51 (m, 2H, CH), 7.64 (d, J = 8.4 Hz, 1H, CH), 7.85 (t, J = 7.7 Hz, 2H, CH); 13 C NMR (100 MHz, CDCl₃) δ : -3.52, -3.01, 0.32 (3CH₃), 55.37, 109.08, 117.39, 125.26, 125.72, 125.76, 125.89, 125.99, 126.46, 127.39, 128.02, 131.85, 132.09, 133.33, 139.73, 145.27, 153.68, 162.76, 164.85; HRMS (ESI, m/z) calcd. for [C₂₄H₂₈OSi₂]H⁺: 389.1752; found 389.1753.

2j: Colorless oil, isolated yield 51% (53 mg); ¹H NMR (400 MHz, CDCl₃) δ : -0.04 (s, 9H, CH₃), 0.42 (s, 6H, CH₃), 3.83 (s, 3H, CH₃), 6.68 (d, *J* = 7.5 Hz, 1H, CH), 6.74 (d, *J* = 8.2 Hz, 1H, CH), 6.89 (dd, *J* = 3.4, 1.0 Hz, 1H, CH), 7.04-7.07 (m, 1H, CH), 7.23-7.27 (m, 1H,

CH), 7.33 (dd, J = 5.1, 1.0 Hz, 1H, CH); ¹³C NMR (100 MHz, CDCl₃) δ : -3.57 (2CH₃), 0.48 (3CH₃), 55.41, 109.23, 116.92, 124.67, 125.72, 126.52, 126.54, 131.90, 141.81, 149.17, 153.40, 158.02, 162.78; HRMS (ESI, m/z) calcd. for [C₁₈H₂₄OSSi₂]H⁺: 345.1159; found 345.1156. Ph 2k:, Pale yellow solid, isolated yield 56% (55 mg); ¹H NMR (400 MHz, CDCl₃) δ : 0.46 (s, 6H, CH₃), 2.37 (s, 3H, CH₃), 6.93-6.98 (m, 3H, CH), 7.44 (s, 1H, CH); ¹³C NMR (100 MHz, CDCl₃) δ : -3.42 (2CH₃), 21.21, 123.80, 125.51, 126.96, 127.89 (2CH), 128.29 (2CH), 128.59 (2CH), 129.59 (2CH), 130.26, 132.60, 136.30, 138.21, 138.32, 140.04, 141.71, 148.14, 153.02; HRMS (ESI, m/z) calcd. for [C₂₃H₂₂Si]H⁺: 327.1564; found 327.1565.

Ph 2l:^[2] Colorless solid, isolated yield 63% (62 mg); ¹H NMR (500 MHz, CDCl₃) δ : 0.46 (s, 6H, CH₃), 3.83 (s, 3H, CH₃), 6.77 (dd, J = 8.5, 2.6 Hz, 1H, CH), 6.96 (t, J = 7.8 Hz, 3H, CH), 7.02-7.05 (m, 1H, CH), 7.09-7.12 (m, 2H, CH), 7.17-7.20 (m, 3H, CH), 7.27-7.33 (m, 3H, CH); ¹³C NMR (125 MHz, CDCl₃) δ : -3.37 (2CH₃), 55.42, 113.81, 118.17, 124.94, 125.41, 127.00, 127.89 (2CH), 128.31 (2CH), 128.59 (2CH), 129.59 (2CH), 138.45, 140.12, 140.27, 140.39, 143.60, 152.86, 158.91.

 Ph
 2m:^[1] White solid, isolated yield 58% (63 mg); ¹H NMR (400

 MHz, CDCl₃) δ: 0.52 (s, 6H, CH₃), 7.00-7.16 (m, 6H, CH),

 7.23-7.27 (m, 1H, CH), 7.33-7.42 (m, 6H, CH), 7.64-7.67 (m, 1H,

 CH), 7.81-7.83 (m, 1H, CH), 8.06 (m, 1H, CH); ¹³C NMR (100 MHz, CDCl₃) δ: -2.87

 (2CH₃), 122.43, 125.75, 125.79, 126.47, 127.15, 127.82, 127.95 (2CH), 128.39 (2CH),

 128.45, 128.58 (2CH), 129.77 (2CH), 132.37, 132.69, 134.59, 136.45, 138.20, 140.07,

 144.72, 147.55, 153.65.

Ph Si Ph **2n**: White solid, isolated yield 84% (91 mg); ¹H NMR (400 MHz, CDCl₃) δ: 0.63 (s, 6H, CH₃), 7.02-7.17 (m, 5H, CH), 7.22-7.53 (m, 8H, CH), 7.76-7.87 (m, 3H, CH); ¹³C NMR (100 MHz, CDCl₃) δ: -2.90 (2CH₃), 122.78, 125.26, 125.70, 126.55, 127.13, 127.98 (2CH),

128.16, 128.45 (2CH), 128.65 (2CH), 128.84, 129.69 (2CH), 130.14, 132.41, 135.92, 135.97, 138.28, 139.82, 142.74, 149.35, 153.06; HRMS (ESI, m/z) calcd. for $[C_{26}H_{22}Si]H^+$: 363.1564; found 363.1571.

Et 3a:^[1] Colorless oil, isolated yield 70% (45 mg); ¹H NMR (400 MHz, CDCl₃) δ : 0.30 (s, 6H, CH₃), 1.09-1.13 (m, 6H, CH₃), 2.42 (q, *J* = 7.6 Hz, 2H, CH₂), 2.54 (q, *J* = 7.6 Hz, 2H, CH₂), 7.15 (td, *J* = 7.0, 1.2 Hz, 1H, CH), 7.27-7.35 (m, 2H, CH), 7.48 (d, *J* = 6.8 Hz, 1H, CH); ¹³C NMR (75 MHz, CDCl₃) δ : -3.47 (2CH₃), 13.53, 15.07, 19.82, 22.26, 120.81, 125.57, 129.59, 131.29, 138.47, 142.64, 150.00, 152.44.

Pr Jb:^[1] Colorless oil, isolated yield 76% (56 mg); ¹H NMR (400 MHz, CDCl₃) δ : 0.29 (s, 6H, CH₃), 0.94-1.00 (m, 6H, CH₃), 1.49-1.56 (m, 4H, CH₂), 2.38 (t, *J* = 7.9 Hz, 2H, CH₂), 2.51 (t, *J* = 7.8 Hz, 2H, CH₂), 7.14 (t, *J* = 7.6 Hz, 1H, CH), 7.23-7.34 (m, 2H, CH), 7.47 (d, *J* = 6.8 Hz, 1H, CH); ¹³C NMR (75 MHz, CDCl₃) δ : -3.41 (2CH₃), 14.40, 14.57, 22.00, 23.69, 28.98, 31.96, 120.97, 125.54, 129.56, 131.21, 138.45, 142.03, 150.33, 151.17.

Bu 3c:^[1] Colorless oil, isolated yield 53% (43 mg); ¹H NMR (400 MHz, CDCl₃) δ : 0.28 (s, 6H, CH₃), 0.92-0.96 (m, 6H, CH₃), 1.36-1.48 (m, 8H, CH₂), 2.39 (t, J = 7.8 Hz, 2H, CH₂) 2.52 (t, J = 7.6 Hz, 2H, CH₂), 7.15 (t, J = 7.1 Hz, 1H, CH), 7.25-7.34 (m, 2H, CH), 7.47 (d, J = 6.9 Hz, 1H, CH); ¹³C NMR (75 MHz, CDCl₃) δ : -3.42 (2CH₃), 14.05, 14.09, 23.11, 23.14, 26.73, 29.39, 31.04, 32.70, 120.91, 125.51, 129.55, 131.21, 138.47, 141.87, 150.34, 151.29.

References:

[1] (a) M. Onoe, K. Baba, Y. Kim, Y. Kita, M. Tobisu and N. Chatani, J. Am. Chem. Soc.,
2012, 134, 19477; (b) M. Tobisu, M. Onoe, Y. Kita and N. Chatani, J. Am. Chem. Soc.,
2009, 131, 7506. (c) A. Kawachi, A. Tani, K. Machida and Y. Yamamoto,
Organometallics, 2007, 26, 4697.

[2] Y. Liang, W. Geng, J. Wei and Z. Xi, Angew. Chem., Int. Ed., 2012, 51, 1934.

5) Scanned ¹H NMR and ¹³C NMR Spectra of All New Compounds

180 160 140 120 100 80 60 40 20 0 ppm

