Two-Photon Induced Emissive Thiophene Donor-Acceptor Systems as Molecular Probes in Vitro Bio-imaging: Synthesis, Crystal Structure and Spectroscopic Properties.

Supporting information

Cheuk-Fai Chow *^a

^aDepartment of Science and Environmental Studies, The Hong Kong Institute of Edcuation,10 Lo Ping Road, Tai Po, New Territories, H.K. SAR, China. E-mail: cfchow@ied.edu.hk; Fax: (+852) 29487676; Tel: (+852) 29487671

S. Fig 1. The absorbance taken at (a) 360 nm of Bt_1 (6.0 x 10⁻⁵M), (b) 395 nm of Bt_2 (3.0 x 10⁻⁵M), (c) 355 nm of Tt_1 (3.0 x 10⁻⁵M), and (d) 395 nm of Tt_2 (3.0 x 10⁻⁵M) was plotted against the pH of the solution (v/v Buffer:DMSO 2:1).

S. Fig 2. (upper) Electrospray mass spectra of Bt_1 . (lower) Isotopic distribution and (inset) its simulation of $[Bt_1 \cdot H^+]$ peak at 310. All the mass spectra were performed in acetonitrile with 0.1% acetic acid.

S. Fig 3. (upper) Electrospray mass spectra of Bt_2 . (lower) Isotopic distribution and (inset) its simulation of $[Bt_2 \cdot H^+]$ peak at 453. All the mass spectra were performed in acetonitrile with 0.1% acetic acid.

S. Fig 4. (upper) Electrospray mass spectra of Tt_1 . (lower) Isotopic distribution and (inset) its simulation of $[Tt_1 \cdot H^+]$ peak at 392. All the mass spectra were performed in acetonitrile with 0.1% acetic acid.

S. Fig 5. (upper) Electrospray mass spectra of Tt_2 . (lower) Isotopic distribution and (inset) its simulation of $[Tt_2 \cdot H^+]$ peak at 535. All the mass spectra were performed in acetonitrile with 0.1% acetic acid.

S. Fig. 6. ¹H-NMR spectrum of Tt_1 (400 MHz, CDCl₃).

S. Fig. 7. ¹³C-NMR spectrum of **Tt**₁ (400 MHz, CDCl₃).

S. Fig. 8. ¹H-NMR spectrum of Bt_1 (400 MHz, CDCl₃).

S. Fig. 9. ¹³C-NMR spectrum of **Bt₁** (400 MHz, CDCl₃).

S. Fig. 10. ¹H-NMR spectrum of **Tt₂** (400 MHz, CDCl₃).

S. Fig. 11. ¹³C-NMR spectrum of **Tt**₂ (400 MHz, CDCl₃).

S. Fig. 12. ¹H-NMR spectrum of Bt_2 (400 MHz, CDCl₃).

S. Fig. 13. ¹H-NMR spectrum of Bt_2 (400 MHz, CDCl₃).