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1 Appendix aspect ratid} is given a$:
1.1 Laminar Channel Flow -1 «h

| ) i oG =4(ya+ya ) e+ ") @
In laminar flow conditions, analytical solutions can be ob-

tained for the pressure-driven, steady-state flow of New-

tonian and power-law fluids in straight, rigid channedherea®(x) ranges froma*(0) = 0.5 to a*(1) = 0.2121
with constant cross section and no-slip boundary con@Pdb”(x) from b*(0) =1 tob*(1) = 0.6771. The func-
tion at the channel walls in some geometries. For tHeNsa",b" are tabulated i By combination of egs. (8)
simple case of a Newtonian fluid in a circular chann@nd (9) we can determine the hydrodynamic resistance of
with radiusr, the dependence of the flowrate on thie ductas

pressure drop along the channel is given by the Hagen- r_ AP _ nlmwlL (10)
Poiseuille equation yielding a hydrodynamic resistance Q ﬁ4g*(vhwn)

of R=Ap/Q= % for the channel. The corresponding

flow profile is parabolic and the Newtonian wall sheayith g*(vhwn) = l”(n)g(vﬂv,n)”*l. For the evaluation of
rate is given byk = 2. With an averaged diameter ohe experiments with rectangular channels of different as-
h= V/rr the shape factog (see eg. 4 in the main partpect ratios used in this work, the shape factg@%,n)

of the manuscript) for the circular channel is thus giVQihdg*(vﬁv,n) have been calculated using FEM simulations
asg = 4/mw. For power-law fluids in circular channelsof power-law fluid flows in rectangular channels. To this
the shape factor can be determined with the Weissenbesgd, flow rate and averaged wall shear rate of the sim-

Rabinowitsch equatiohas ulated flows have been determined in channels with as-
pect ratios fronhh = 0.4 to 1 with power-law exponents
g(n) = (3”+1)\/E' (7) N€[0.2;1. Fig. 5 shows contour plots of the evaluated
n shape factorg*({,n) andg({.n). Comparison of the

numerical results for the Newtonian fluith & 1) with
|available analytical expressiohshowed a numerical er-
ror smaller than 10% for all geometries under investiga-

For channels with rectangular constant cross sections
h, an analytical solution for the flow profile is only avai
able for Newtonian fluidé Moreover, in non-circular
ducts, the shear rate is not constant along the wall. 8"

semi-analytical solutions using average wall shearra’qedq, , , ,

for the relation betweer! flow rate and pressQg) for E | @ \ 1\.;0— o \
power-law fluids withn (¥) = Ay"1 in a duct with arbi- =7 ¢ s <] g i
trary constant cross section can be givef as 0.6 \\ 081 °-°3K_
o AP @ap/ Ly ® "\ ef 08 iy
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where the numerically determined shape facdton) is % o4 o6 o8 n10 02 04 06 08 ni1o
defined asi(n) = |, / (dXdy with the dimensionless co-

ordinatesx;¥, 0 of the cross section and the flow velocit)r:igure 5: Shape factorg(vﬂv,n) and 9*(\%’ n) in depen-
in the channel direction. Thus, the shape fadtalepends yence of shear viscosity exponenaind channel aspect
on the power-law inder of the fluid and on the geometry,a4io h/w. g(vnv’n) and g*(vnwn) have been evaluated for
of the duct. For some special geometriebas been tab- n—0203.. 1and? —04.06.0.8.1 from EEM sim-
ulatec?, and a method to calculagefor rectangular ducts .~~~ """ W o

is availablé-®. The corresponding averaged wall shea?—latlons' Fom < 0.4 and;; > 0.6 the simulation did not
rate can be calculated with eq. 4 in the main part, an &RVerge.

pression for the shape dependencg(af) on the channel
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1.2 Hencky strains at channel entrance of X = Q,/Q; is obtained as

analyzer and reference channel&y, K; da/ch 0.63(1—2a)

ox =1— = 13
For polymer solutions, the dependence of the entrance X Qa/Qr  2w/h—-0.63(1—a) (13)

pressure drogApent On the elongational Hencky strair'\Nhe

occuring at the channel entrance is strongly nonlme[% aspect ratitn/w and ratio of the fluid stream widths

and Apent can be expected to be smallpen; =~ 0 for . .
. . For non-Newtonian power-law fluids the flow pro-
e < 17. The average elongational Hencky strain formeas P P

fluid entering the analyzer and reference channel can a) b)
estimated with the ratio of the channel cross-sectio ., .

rea = dy/w. Fig. 6 a showsdx in dependence of

D¢ and Dar of Kf and Kar: & = IN(QDf/QDy) = o= % % 2% 9%
IN(D¢/(X+1)Dy) <In(D¢/Dy); &a=IN(QaDf/QD) = T2 ' % o £
In(XD¢ /(X +1)Dr) < In(D¢/Dy). In geometries A, B 'y RO g, 8
and D this yieldse < 0.51, so that the entrance pres g * ., o e &
sure dropAp®™ can be neglected. In geometry C th™ e —
highest extensional strain occuring in the measurem " o; oos oo o8 o

is € ~ 2.6. The extensional entrance pressure drop c h/w

be estimated a&p®™ = A(&)&e.8 Thus, the ratio of the

entrance extensional pressure drop to the capillary preggure 6:; (a) Relative error of the flow ratéx caused by

sure drop across the reference channel in geometry C tiamapproximatiorX = Qq/Q; ~ da/d; in dependence of

be estimated a%em ~ N&) 16.10°5. Hence, even for the channel aspect rati'w and ratio of the fluid stream
pr n(7) i _ '

high Trouton ratiosTr = A(£) /1 (7) ~ 10% — 10% the en- widths Xmeas= da/d; calculated for the flow profile of a

trance pressure drop is insignificant for the measurem wtonian fluid. (b) The_resultlng error in the_ power-law
of X(Q) in geometry C. index n for geometry A is shown by the ratio between

the measured power-law ind@x,easand the real value
L . . n for values ofn = 1.0,0.83,0.71, 0.67,0.63,0.5. The
1.3 Validity of the approximation Qa/Qr ~ underlying non-Newtonian flow profiles where calculated
da/dr numerically. The error can be kept smaller by chosing a

For a Newtonian fluid the flow profile in a rectangulageometry’ wher&y is close to unity (.. geometry B).

channel with widthw and heighth, whereh < w s given

by? files have to be numerically simulated to determine the

error due to the approximatioQ,/Qr = dq/d;. As this
coshnzx/h) 1 erroris systematic, it is reduced by using the experimen-
- } tal valueXy® of the Newtonian flow ratio for the evalalu-
coshintw/2h) : _ . .
(11) ation of the power-law exponent: E.g. in a device with

where—0.5w < X < 0.5w and 0< y < h. For channels geometry A with a Newtonian flow rate rati.a < 1,

. p 1/n .
of high aspect ratit < w the lateral flow profile along the flow rate ratio for a power law flu(Q) :_XN/ will
the width of the channel is very flat, so that the flow @lso be smaller than unity. Thus, the experimental value

essentialy 2D. A numerical analysis shows, that = *n.A andX(Q)*Pmeasured byl/dr for Newtonian and
h dar . . ’ power law fluids will both deviate from the real flow rate
Jo J oo Uz(X, y)dxdy is well approximated by

-w/2 ratio into the same direction, so that the errors partially
h3wdp/dz[ compensate. For the basic setup as in geometry A, the

h
——F—|1-0.630—— (12) remaining deviation im caused by the approximation is
12n 2da W

5 0
Us(X,y) = 4h=dp/dz Z sin(nzy/h) [1

3 3
prn \Gaa N

QaAr = da.r
calculated as

for dar > 2h. Thus, the relative deviatiody of the width Mmeas  INXJ®3S InX
of the fluid streamXyeas= da/d; from the flow rate ratio n_ In Xmeas|n Xy, ’ 14
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whereX and Xy are related by eq. (6) in the main pape | x©)
asX = X,ﬁ/”. Figure 6b shows the ratio of the power-lay
index determined b, /d; to the exact value for several
values ofn in dependence of the Newtonian valg of

the device. By designing devices with moderate valu

for the Newtonian flow ratio wittXy € [0.5; 2] the error , : 0 7

is kept small € 7%). In principle, this systematic errot Quin Qo

could be accounted for in the numerical evaluation of the

measurements. Figure 7: Schematics of the numerical evaluation method:

TheN measurement values &f on [Qmin, Qmax (e, left)

correspond to ® unknown viscosity values atN2shear-

rates onYmin; Ymax (rede, right). The N viscosity values

Repeated measurements with Newtonian glycerol sofife apporoximated by interpolation betweerviscosity

tions showed that the experimental error in determiniivglues {U), for which a linear equation system containing

the flow rate ratioX (Q)®*P= d/dr is on the order of 1%. theN measured values fof can be solved.

However, the measured valug$Q)®*P for the 1% PAA

and 2% PAA polymer solutions suggest a bigger error gf.y are fixed. As the viscosity must be monotonic on

a_bo_ut 5% _(e.g. see fig. 3a in main segnon). St_ronger @€ich of the interpolated intervalg, % 1] once the width

viations might occur due to temporal dirt or und|scoveretq the shear rate interval§min — Jmax)/ (N — 1) is suffi-

air bubbles changing the channels resistance or degragansy small, the method gives much more accurate val-

tion of the polymer solution. Thus, an errorbar-88% ;e than the direct evaluation with eq. 6 (main part). With

was used for the vglues in fig. 3a. The_: overall resultinge p(Q)-curve for the pressure drop across the channels

error for the evaluation af(y) can be estimated from thex | - peing monotonically increasing with the flow rate,

2% PAA measurement data (red symbols) from differefe roughness o (Q) is physically limited, so that strong

geometries in fig. 4. The standard relative deviation frofciyations inX (Q) have to be attributed to experimental

the polynomial fit curve (red solid line) is 6%. This valug oy Therefore, with a sufficient density of measurement

was takeq as the errorbar fofy) of both the 1% and 2% values onQmin; Qmax, theN measurement valueg (Q)

PAA solutions. can be fitted with a smoothing function without losing in-
formation on the viscosity curve. The solid dark blue line

1.5 Numerical evaluation of shear exponent in fig. 3b in the main part shows a polynomial fiF of order

n(y) 7 to the measureX (Q) vall_Jes o_f the WLM-solution, the

resulting curves for the viscosity exponenfty) and the

By simultaneously usingy measured values of the flowintegrated viscosity)(y) are shown by the dashed blue

ratio X(Q) on an interval[Qmin; Qmax it is possible to lines in fig. 4 (main part).

numerically determinej = 1...N interpolation values In detail, for the numerical evaluatioh interpolation

HS for the shear viscosity on the interval of shear rat@ointsr; were distributed over the intervgnin, ¥max]

[¥min; Ymax] associated witHQmin; Qmax. Instead of as- _ N

suming a power-law, the method is based on a linear inter- o Ymax ! (15)

polation for the logarithmized values of the viscosity be- i = Yonin

tween theN vaIuesHJ-S. Then, eq. 2 in the main partleads o . . )

to a linear equation system for thé unknown viscos- where the according interpolation values for the viscosity

ity valuesH?. Due to the differential nature of the mea®/¢"® set: s

surement, the viscosity curve given b;f is indefinite HP=n(T)) (16)

in its absolute value, yet the shape of the viscosity cur¥ae 2N unknown valuesn(ai),n (%) corresponding

)

and the corresponding values for the viscosity exponéat the N measurement point¥;(Q) on the interval

1.4 Experimental error

min
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[Qmin; Qmax can thus be expressed by tRainknown in- References

terpolation valuei;ijS using the interpolation hat function

0 for s

x+1 for
1—x for
0 for

x< -1
—-1<x<0
O<x<1
x>1

Fn(X) = 7)

(2]

as
n(#i) =Y NGy (ki)HP,  with
J

_ - [
Nks,ij (Ki) = Fh(xl%ij (i)
(18)
[4]

wherek = a,r and
. log i — 109 ¥min

XS.. i)=(N-1)————————
ij (M) = ( ) l0g ¥max— 109 ¥min (5]

Using eq. (18) we can rewrite eq. 2 from the main paper
as:

—-j+1 (19

_ S S S S
(KLa;Na,inj — L ;Nr,inj) 0. (20) [6]
This is a linear, homogeneous equation system With
equations, which can be written with the vectdr=
(HP,...,HY)T as:

MS.H =0,

(1) [7]

where
M3 = XiLaNSjj —LNS;, i, j=1,...,N (22)
Eqg. 21 does not define a unique solution for the viscosit)£,8]

and any multipleH’ = aH of a solutionH is a solution
too. To obtain absolute values of the viscosity, one value
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