Electronic Supplementary Information _ESI

A highly selective and ratiometric fluorescent sensor for relay recognition of zinc(II) and sulfide ions based on modulation of excited-state intramolecular proton transfer

Lijun Tang*, Mingjun Cai, Pei Zhou, Jia Zhao, Keli Zhong, Shuhua Hou, and Yanjiang Bian

Department of Chemistry, Liaoning Provincial Key Laboratory for the Synthesis and Application of Functional Compounds, Bohai University, Jinzhou 121013, China E-mail: ljtang@bhu.edu.cn

Table of contents

Fig. S1. Fluorescence spectra of BMD in different solvents
Fig. S2. Job's plot for BMD with Zn^{2+}
Fig. S3. HRMS spectrum of BMD solution in the presence of Zn^{2+}
Fig. S4 . Hill plot for binding of BMD (10 μ M) with Zn ²⁺ S4
Fig. S5. Linear dependence of intensity ratio ($F_{424 \text{ nm}}/F_{502 \text{ nm}}$) of probe BMD (10 µM)
was related to the concentration of $Zn^{2+}(1.0 \text{ to } 4.25 \ \mu\text{M})$ in CH_3CN/H_2O (2:8, v/v,
HEPES 10 mM, pH = 7.4)
Fig. S6 . pH effects on intensity ratio $(F_{424 \text{ nm}}/F_{502 \text{ nm}})$ of BMD- Zn ²⁺ S5
Fig. S7. HRMS spectrum of BMD solution in the presence of 0.5 equiv of Cd^{2+} S6
Fig. S8. HRMS spectrum of BMD solution in the presence of 1.0 equiv of Cd^{2+} S6

Fig. S9. HRMS spectrum of BMD- Zn^{2+} solution in the presence of Na ₂ SS7
Fig. S10. The intensity ratio $(F_{424 \text{ nm}}/F_{502 \text{ nm}})$ of sensor BMD-Zn ²⁺ (10 μ M) was
linearly related to the concentration of $S^{2\text{-}}(50\text{-}140\ \mu\text{M})S7$
Fig. S11 . Linear dependence of intensity ratio($F_{424 \text{ nm}}/F_{502 \text{ nm}}$) of BMD (10 µM) on
Zn^{2+} concentration (0-6 μ M) in three natural water samplesS8
Fig. S12 . Linear dependence of intensity ratio($F_{424 \text{ nm}}/F_{502 \text{ nm}}$) of BMD- Zn ²⁺ (10 μ M)
on $S^{2\text{-}}$ concentration (50-500 $\mu\text{M})$ in three natural water samplesS8
Fig. S13. ¹ H NMR spectra of sensor BMD
Fig. S14. ¹³ C NMR spectra of sensor BMD
Fig. S15. HRMS (positive) spectrum of sensor of BMD

Fig. S1. Fluorescence spectrum of BMD in different solvents.

Fig. S2. Job's plot for **BMD** with Zn^{2+} in CH₃CN/H₂O (2:8, v/v, HEPES 10 mM, pH = 7.4).

Fig. S3. HRMS spectrum of **BMD** solution in the presence of Zn^{2+} .

Fig. S4. Fluorescence intensity at 424nm (F_{424}) of **BMD** (10 µM) versus increasing concentration of Log[Zn²⁺]. The fluorescence response fits to a Hill coefficient of 1.01281, which is consistent with the 1:1 binding stoichiometry for the **BMD**-Zn²⁺ complex.

Fig. S5. Linear dependence of intensity ratio ($F_{424 \text{ nm}}/F_{502 \text{ nm}}$) of probe **BMD** (10 µM) on the concentration of Zn²⁺ (1.0 to 4.25 µM) in CH₃CN/H₂O (2:8, v/v, HEPES 10 mM, pH = 7.4).

The detection limit is calculated with the equation: detection limit= $3s/\rho$, where s is the standard deviation of blank measurements, ρ is the slope between intensity ratio $(F_{424 \text{ nm}}/F_{502 \text{ nm}})$ versus Zn²⁺ concentration.

Fig. S6. pH effects on intensity ratio $(F_{424 \text{ nm}}/F_{502 \text{ nm}})$ of **BMD**-Zn²⁺ in CH₃CN/H₂O (2:8, v/v).

Fig. S7. HRMS (positive) spectrum of **BMD** solution in the presence of 0.5 equiv of **Cd**²⁺.

Fig. S8. HRMS (positive) spectrum of **BMD** solution in the presence of 1.0 equiv of **Cd**²⁺.

Fig. S9 HRMS (positive) spectrum of **BMD**- Zn^{2+} solution in the presence of Na₂S.

Fig. S10. The intensity ratio $(F_{424 \text{ nm}}/F_{502 \text{ nm}})$ of probe **BMD**-Zn²⁺ (10uM) was linearly related to the concentration of S²⁻ (50–140 μ M) in CH₃CN/H₂O (2:8, v/v, HEPES10 mM, pH = 7.4).

Fig. S11. Linear dependence of intensity ratio($F_{424 \text{ nm}}/F_{502 \text{ nm}}$) of **BMD** (10 μ M) on Zn²⁺ concentration (0-6 μ M) in three natural water samples.

Fig. S12. Linear dependence of intensity ratio($F_{424 \text{ nm}}/F_{502 \text{ nm}}$) of **BMD**-Zn²⁺ (10 μ M) on S²⁻ concentration (50-500 μ M) in three natural water samples.

Fig. S13. ¹H NMR spectrum of sensor **BMD** in DMSO- d_6 .

Fig. S14. ¹³C NMR spectrum of sensor **BMD** in DMSO- d_6 .

Fig. S15. HRMS (positive) spectrum of sensor of BMD.

X-ray Crystallographic Details.

Diffraction intensities for BMD were collected using a Bruker APEX-II CCD diffractometer equipped with graphite-monochromated Mo-Ka radiation with radiation wavelength 0.71073 Å by using the $\varphi - \omega$ scan technique at 296(2) K. The structures were solved by the direct method and refined by the Full-matrix least-squares on F^2 using the SHELXL software.¹ Non-hydrogen atoms were refined with anisotropic temperature parameters. The hydrogen atoms of organic ligands were generated geometrically and refined isotropically. CCDC 919147 contain the supplementary crystallographic data in this paper. These data can be obtained free of charge The Crystallographic from Cambridge Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Reference

1. Sheldrick, G. M., Acta Crystallogr. A., 2008, 64, 112-122.