Electronic Supplementary Information

Eugenol isomerization promoted by arene-ruthenium(II) complexes in aqueous media: influence of the pH on the catalytic activity

Beatriz Lastra-Barreira, Alba E. Díaz-Álvarez, Lucía Menéndez-Rodríguez, Pascale Crochet*

Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica - IUQOEM, Universidad de Oviedo, C/ Julián Clavería 8, E-33006 Oviedo, Spain. Fax: (+34)-985 10 34 46, e-mail:

crochetpascale@uniovi.es

1. General methods. Organic solvents were dried by standard methods and distilled under nitrogen before use. All reagents were obtained from commercial suppliers and used without further purification, with the exception of compounds $[RuCl_2(\eta^6-C_6H_5OCH_2CH_2OH)(L)]$ (L = $P(OMe)_3$ (**1a**), $P(OEt)_3$ (**1b**), $P(O^iPr)_3$ (**1c**), $P(OPh)_3$ (**1d**), PPh_3 (**1e**))^[1] and $[RuCl_2(\eta^6-p-cymene)(L)]$ (L = $P(OMe)_3$ (**2a**), $P(OEt)_3$ (**2b**), $P(O^iPr)_3$ (**2c**), $P(OPh)_3$ (**2d**), PPh_3 (**2e**)),^[1,2] which were prepared by following the methods reported in the literature. GC measurements were made on an Hewlett-Packard HP6890 equipment using a Supelco Beta-DexTM 120 column (30 m length, 250 µm diameter). GC/MSD measurements were performed with an Agilent 6890N equipment coupled to a 5973 mass detector (70 eV electron impact ionization) using a HP-1MS column. Flash chromatography was performed using Merck silica gel 60 (230-400 mesh). ³¹P{¹H}, ¹H and ¹³C{¹H} NMR spectra were recorded on Bruker DPX-300 or Bruker AV-400 instruments.

2. General procedure for the catalytic isomerization of allylbenzenes. In all cases, the product resulting from the C=C bond migration was the only compound generated. The identity of the isolated products was assessed by comparison of their NMR spectroscopic data

with those reported in the literature and their fragmentation in GC/MSD. The C=C bond stereochemistry was confirmed by ¹H NMR.

Isomerization of allylbenzenes without additives: Under a nitrogen atmosphere, the appropriate ruthenium catalyst precursor (0.04 mmol, 1 mol%), 1 mL of the indicated solvent (water or ethanol) and eugenol (0.616 mL, 4 mmol) were introduced into a teflon-cap sealed tube. Then, the mixture was heated at 80°C, and the yield and selectivity of the process were monitored by GC analyses of aliquots. Similar procedures have been employed to perform the isomerization of 1,2-dimethoxy-4-allylbenzene, safrole, 2-allylphenol and allylbenzene.

Isomerization of allylbenzenes in the presence of NaOH or H_2SO_4 (pH = 4.8, 5.2, 7.2, 8.5, 10.2 or 12.9): Different aqueous solutions of NaOH or H_2SO_4 were prepared and their pH was determined with a WTW Microprocessor pHmeter equipped with a SenTix50T electrode. Catalytic experiments were carried out following a similar procedure than that described above, using these acidic or basic solutions, instead of water, as solvent. The following catalytic experiments have been performed: (*i*) The isomerization of eugenol promoted by $[RuCl_2(\eta^6-C_6H_5OCH_2CH_2OH){P(OEt)_3}]$ (**1b**) at pH = 4.8, 5.2, 7.2, 8.5, 10.2 and 12.9; (*ii*) The isomerization of 1,2-dimethoxy-4-allylbenzene, safrole, 2-allylphenol and allylbenzene promoted by $[RuCl_2(\eta^6-C_6H_5OCH_2CH_2OH){P(OEt)_3}]$ (**1b**) at pH = 12.9; (*iii*) The isomerization of eugenol promoted by $[RuCl_2(\eta^6-C_6H_5OCH_2CH_2OH){P(OEt)_3}]$ (**1b**) at pH = 12.9; (*iii*) The isomerization of eugenol promoted by $[RuCl_2(\eta^6-C_6H_5OCH_2CH_2OH){P(OEt)_3}]$ (**1b**) at pH = 4.8 and 12.9. (*iv*) The isomerization of eugenol promoted by $[RuCl_2(\eta^6-p-cymene)(PR_3)]$ (PR₃ = P(OMe)₃ (**2a**), P(OEt)₃ (**2b**), P(OⁱPr)₃ (**2c**), P(OPh)₃ (**2d**), PPh₃ (**2e**) at pH = 4.8, 7.2 and 12.9.

Isomerization of eugenol in the absence of metallic precursor: Under a nitrogen atmosphere, 1 mL of aqueous solution of NaOH (pH = 12.9) or H_2SO_4 (pH = 4.8) and eugenol (0.616 mL, 4 mmol) were introduced into a teflon-cap sealed tube. Then, the mixture was heated at 80°C for 48 h. Eugenol remained unchanged after this time (no products detected by GC analyses).

Isomerization of eugenol in the presence of HCl or NaCl: Under a nitrogen atmosphere, ruthenium catalyst [RuCl₂(η^6 -C₆H₅OCH₂CH₂OH){P(OEt)₃}] (**1b**) (19.1 mg, 0.04 mmol, 1 mol%), 960 µL of water, 40 µL of aqueous HCl 1M or NaCl 1 M and eugenol (0.616 mL, 4 mmol) were introduced into a teflon-cap sealed tube. Then, the mixture was heated at 80°C, and the yield and selectivity of the process were monitored by GC analyses of aliquots.

Isomerization of eugenol in the presence of $AgNO_3$: Under a nitrogen atmosphere and in the dark, ruthenium catalyst [RuCl₂(η^6 -C₆H₅OCH₂CH₂OH){P(OEt)₃}] (1b) (19.1 mg, 0.04 mmol, 1 mol%), 920 µL of water, 80 µL of aqueous AgNO₃ 0.5 M and eugenol (0.616 mL, 4 mmol) were introduced into a teflon-cap sealed tube. Then, the mixture was heated at 80°C, and the yield and selectivity of the process were monitored by GC analyses of aliquots.

3. Purification and characterization of the final products. Products were extracted from the crude reaction medium with diethyl ether and purified by column chromatography over SiO_2 , using a mixture of hexanes/Et₂O as eluent.

NMR data of isoeugenol:

NMR ¹H, CDCl₃, *δ*: *trans*-isomer: 6.89-6.84 (m, 3 H, ArH), 6.35 (d, 1 H, ${}^{3}J_{HH} = 15.7$, CH=), 6.10 (dq, 1 H, ${}^{3}J_{HH} = 15.7$, ${}^{3}J_{HH} = 6.4$, =CHMe), 5.79 (broad s, 1 H, OH), 3.89 (s, 3 H, OMe), 1.89 (d, 3 H, ${}^{3}J_{HH} = 6.4$, Me); *cis*-isomer: 6.98-6.89 (m, 3 H, ArH), 6.39 (d, 1 H, ${}^{3}J_{HH} = 11.7$, CH=), 5.72 (dq, 1 H, ${}^{3}J_{HH} = 11.7$, ${}^{3}J_{HH} = 6.9$, =CHMe), 3.88 (s, 3 H, OMe), 1.94 (d, 3 H, ${}^{3}J_{HH} = 6.9$, Me), OH resonance not observed.

NMR ¹³C{¹H}, CDCl₃, δ : *trans*-isomer: 146.7 and 144.8 (both s, OC_{arom}), 130.8 (s, CH=), 130.7 (s, C_{arom}), 123.4 (s, =*C*HMe), 119.3 (s, CH_{arom}), 114.5 (s, CH_{arom}), 108.0 (s, CH_{arom}), 55.8 (s, OMe), 18.3 (s, Me).

NMR data of 1,2-dimethoxy-4-(1-1-propenyl)benzene:

NMR ¹H, CDCl₃, δ : *trans*-isomer: 6.88-6.75 (m, 3 H, ArH), 6.32 (d, 1 H, ³*J*_{HH} = 15.6, CH=), 6.08 (dq, 1 H, ³*J*_{HH} = 15.6, ³*J*_{HH} = 6.3, =C*H*Me), 3.85 and 3.83 (both s, 3 H each, OMe), 1.85 (d, 3 H, ³*J*_{HH} = 6.3, Me); *cis*-isomer: 6.88-6.75 (m, 3 H, ArH), 6.59 (d, 1 H, ³*J*_{HH} = 11.3, CH=), 5.70 (dq, 1 H, ³*J*_{HH} = 11.3, ³*J*_{HH} = 6.9, =C*H*Me), 3.84 and 3.83 (both s, 3 H each, OMe), 1.91 (d, 3 H, ³*J*_{HH} = 6.9, Me).

NMR ${}^{13}C{}^{1}H$, CDCl₃, δ : *trans*-isomer: 149.0 and 148.2 (both s, OC_{arom}), 131.1 (s, C_{arom}), 130.7 (s, CH=), 123.6 (s, =CHMe), 118.7 (s, CH_{arom}), 111.2 (s, CH_{arom}), 108.5 (s, CH_{arom}), 55.8 and 55.7 (both s, OMe), 18.3 (s, Me).

NMR data of isosafrole:

NMR ¹H, CDCl₃, δ : *trans*-isomer: 6.95 (s, 1 H, ArH), 6.80 (s, 2 H, ArH), 6.37 (dq, 1 H, ³J_{HH} = 15.6, ⁴J_{HH} = 1.5, CH=), 6.12 (dq, 1 H, ³J_{HH} = 15.6, ³J_{HH} = 6.5, =CHMe), 5.97 (s, 2 H, CH₂), 1.91 (dd, 3 H, ³J_{HH} = 6.5, ⁴J_{HH} = 1.5, Me); *cis*-isomer: 6.95-6.75 (s, 3 H, ArH), 6.42 (dq, 1 H,

 ${}^{3}J_{\text{HH}} = 11.2, {}^{4}J_{\text{HH}} = 1.5, \text{CH}=$), 6.00 (s, 2 H, CH₂), 5.76 (dq, 1 H, ${}^{3}J_{\text{HH}} = 11.2, {}^{3}J_{\text{HH}} = 6.9,$ =CHMe), 1.94 (dd, 3 H, ${}^{3}J_{\text{HH}} = 6.9, {}^{4}J_{\text{HH}} = 1.5, \text{Me}$).

NMR ¹³C{¹H}, CDCl₃, δ : *trans*-isomer: 148.0 and 146.6 (both s, OC_{arom}), 132.6 (s, C_{arom}), 130.7 (s, CH=), 123.8 (s, =*C*HMe), 120.1 (s, CH_{arom}), 108.2 (s, CH_{arom}), 105.4 (s, CH_{arom}), 100.9 (s, CH₂), 18.3 (s, Me).

NMR data of 2-(1-propenyl)phenol:

NMR ¹H, CDCl₃, δ : *trans*-isomer: 7.42-6.81 (m, 4 H, ArH), 6.77 (dq, 1 H, ³*J*_{HH} = 15.9, ⁴*J*_{HH} = 1.8, CH=), 6.28 (dq, 1 H, ³*J*_{HH} = 15.9, ³*J*_{HH} = 6.6, =C*H*Me), 1.95 (dd, 3 H, ³*J*_{HH} = 6.6, ⁴*J*_{HH} = 1.8, Me), resonance of OH group not observed; *cis*-isomer: 7.25-6.81 (m, 4 H, ArH), 6.48 (dd, 1 H, ³*J*_{HH} = 11.1, ⁴*J*_{HH} = 1.8, CH=), 6.04 (dq, 1 H, ³*J*_{HH} = 10.9, ³*J*_{HH} = 6.9, =C*H*Me), 1.80 (dd, 3 H, ³*J*_{HH} = 6.9, ⁴*J*_{HH} = 1.8, Me), resonance of OH group not observed.

NMR ¹³C{¹H}, CDCl₃, δ : *trans*-isomer: 152.9 (s, OC_{arom}), 128.4 (s, CH_{arom}), 128.2 (s, =CHMe), 127.7 (s, CH_{arom}), 125.9 (s, =CH), 121.4 and 116.4 (both s, CH_{arom}), 19.4 (s, Me); *cis*-isomer: 152.7 (s, OC_{arom}), 130.8 (s, C_{arom}), 130.0 (s, CH_{arom}), 128.0 (s, =CHMe), 125.5 (s, CH_{arom}), 125.4 (s, =CH), 121.0 and 115.9 (both s, CH_{arom}), 14.7 (s, Me)

NMR data of 1-propenylbenzene:

NMR ¹H, CDCl₃, δ : *trans*-isomer: 7.60-7.41 (m, 5 H, ArH), 6.66 (dq, 1 H, ³J_{HH} = 15.9, ⁴J_{HH} = 1.3, CH=), 6.47 (dq, 1 H, ³J_{HH} = 15.9, ³J_{HH} = 6.6, =CHMe), 2.12 (dd, 3 H, ³J_{HH} = 6.6, ⁴J_{HH} = 1.3, Me); *cis*-isomer: 7.60-7.20 (m, 5 H, ArH), 6.71 (dq, 1 H, ³J_{HH} = 11.4, ⁴J_{HH} = 1.6, CH=), 6.03 (dq, 1 H, ³J_{HH} = 11.4, ³J_{HH} = 7.0, =CHMe), 2.15 (dd, 3 H, ³J_{HH} = 7.0, ⁴J_{HH} = 1.6, Me). NMR ¹³C{¹H}, CDCl₃, δ : *trans*-isomer: 138.2 (s, C_{ipso}), 131.4 (s, CH=), 128.7 (s, CH_{meta}), 127.0 (s, CH_{para}), 126.1 (s, CH_{ortho}), 125.8 (s, =CHMe), 18.7 (s, Me).

4. Catalytic activity of the complexes [RuCl₂(η^6 -*p*-cymene)(PR₃)] (2a-e) in water.

Table S1.	Isomerization	of eugenol	into	isoeugenol	catalyzed	by	complexes	$[RuCl_2(\eta)]$	⁵ -p-
cymene)(L)] (2a-e) in wat	ter. ^a							

Catalyst [L]	Time	Yield (%) ^b	trans:cis ^b	
2a [P(OMe) ₃]	2 h	> 99	98:2	
2b [P(OEt) ₃]	3.5 h	> 99	97:3	
$2c \left[P(O^{i}Pr)_{3}\right]$	5.5 h	> 99	95:4	
2d [P(OPh) ₃]	23 h	85	88:12	
2e [PPh ₃]	7 h	> 99	94:6	
^a Reactions carried out at	80°C using 4 mmol of eug	enol, 1 mol% of Ru and 1	mL of water. $pH = 7.2$. ^b	
Determined by GC analyse	S.			

5. Influence of the pH on the catalytic activity of 1a-e

Table S2. Isomerization of eugenol into isoeugenol catalyzed by complexes [RuCl₂(η^6 -C₆H₅OCH₂CH₂OH)(L)] (**1a-e**) in presence of NaOH or H₂SO₄.^a

Catalyst [L]	pН	Time	Yield (%) ^b	trans:cis ^b
1a [P(OMe) ₃]	4.8	5 min	> 99	97:3
1a [P(OMe) ₃]	12.9	5 min	> 99	97:3
1b [P(OEt) ₃]	4.8	10 min	> 99	98:2
1b [P(OEt) ₃]	12.9	5 min	> 99	98:2
$1c [P(O^{i}Pr)_{3}]$	4.8	10 min	> 99	96:4
$\mathbf{1c} \left[P(O^{i}Pr)_{3} \right]$	12.9	10 min	> 99	97:3
1d [P(OPh) ₃]	4.8	7 h	95	89:11
1d [P(OPh) ₃]	12.9	7 h	98	90:10
1e [PPh ₃]	4.8	40 min	> 99	95:5
1e [PPh ₃]	12.9	25 min	> 99	96:4
none ^c	4.8	48 h	0	-
none ^c	12.9	48 h	0	-

^a Reactions carried out at 80°C using 4 mmol of eugenol, 1 mol% of Ru, 1 mL of water and appropriate quantity of NaOH or H₂SO₄ to reach the pH indicated. ^b Determined by GC analyses. ^c Experiments carried out in absence of metallic precursor.

6. Influence of the pH on the catalytic activity of 2a-e

Catalyst [L]	рН	Time	Yield (%) ^b	<i>trans:cis</i> ^b
2a [P(OMe) ₃]	4.8	50 min	> 99	97:3
2a [P(OMe) ₃]	12.9	55 min	> 99	96:4
2b [P(OEt) ₃]	4.8	1.75 h	> 99	98:2
2b [P(OEt) ₃]	12.9	1.5 h	> 99	97:3
$2c [P(O^{i}Pr)_{3}]$	4.8	2.5 h	> 99	97:3
$2c [P(O^{i}Pr)_{3}]$	12.9	2.5 h	> 99	97:3
2d [P(OPh) ₃]	4.8	10 h	> 99	90:10
2d [P(OPh) ₃]	12.9	10 h	> 99	90:10
2e [PPh ₃]	4.8	3 h	> 99	95:5
2e [PPh ₃]	12.9	3.5 h	> 99	94:6

Table S3. Isomerization of eugenol into isoeugenol catalyzed by complexes [RuCl₂(η^6 -*p*-cymene)(L)] (**2a-e**) in presence of NaOH or H₂SO₄.^a

^a Reactions carried out at 80°C using 4 mmol of eugenol, 1 mol% of Ru, 1 mL of water and appropriate quantity of NaOH or H₂SO₄ to reach the pH indicated. ^b Determined by GC analyses.

7. Conversion of eugenol vs time.

Graphic S1: Results corresponding to the catalytic experiments presented in the Table 1 of the manuscript. Only the first 4 hours are represented for clarity.

Graphic S2: Results corresponding to the catalytic experiments presented in the Table 2 of the manuscript. Only the first 4 hours are represented for clarity.

Graphic S3: Results corresponding to the catalytic experiments presented in the Table 3 of the manuscript. Only the first hour is represented for clarity.

8. Reactivity of $[RuCl_2(\eta^6-C_6H_5OCH_2CH_2OH)\{P(OEt)_3\}]$ (1b) towards acid and base.

Reactivity of $[RuCl_2(\eta^6-C_6H_5OCH_2CH_2OH)\{P(OEt)_3\}]$ (1b) towards H_2SO_4 .

In a 5 mL-volumetric flask, 40 mg of complex $[RuCl_2(\eta^6-C_6H_5OCH_2CH_2OH)\{P(OEt)_3\}]$ (1b) were dissolved in D₂O. Six NMR tubes were then charged with 0.6 mL of this solution and 0, 5 or 10 µL of aqueous H₂SO₄ 1 M (*i.e.* 0, 0.5 or 1 equivalents of H₂SO₄ per ruthenium) or 20, 40 or 80 µL of aqueous H₂SO₄ 2.5 M were added (*i.e.* 5, 10 or 20 equivalents of H₂SO₄ per ruthenium). In each case, both ³¹P{¹H} and ¹H NMR spectra reflected the presence of two species, the dichloro precursor $[RuCl_2(\eta^6-C_6H_5OCH_2CH_2OH)\{P(OEt)_3\}]$ (1b) and the monoaquo derivative $[RuCl(D_2O)(\eta^6-C_6H_5OCH_2CH_2OH)\{P(OEt)_3\}]$ [Cl] (1b'), in different proportion:

Figure S1. ³¹P{¹H} NMR spectra of complex **1b** in presence of different amounts of H_2SO_4 (0, 0.5, 1, 5, 10 or 20 equivalent per Ru). Spectra recorded in D_2O on a Bruker AV-400 apparatus. Resonances attributed to $[RuCl_2(\eta^6-C_6H_5OCH-CH_2OH)\{P(OEt)_3\}]$ (**1b**) and $[RuCl(D_2O)(\eta^6-C_6H_5OCH-CH_2OH)\{P(OEt)_3\}]$ [Cl] (**1b**') are labelled with * and Δ , respectively.

The formation of the bis-aquo complex $[Ru(D_2O)_2(\eta^6 - C_6H_5OCH_2CH_2OH)\{P(OEt)_3\}][Cl]_2$ could be discarded because the new product generated does not present plane of symmetry as reflected by the inequivalence of the two ortho and the two meta hydrogen atom of the C₆H₅OCH₂CH₂OH fragment in the ¹H NMR spectra:

Figure S2. Details of the ¹H NMR spectra of **1b** in D₂O with 5 equivalents of H₂SO₄ per ruthenium. Signals due to $[RuCl_2(\eta^6-C_6H_5OCH_2CH_2OH){P(OEt)_3}]$ (**1b**) and $[RuCl(H_2O)(\eta^6-C_6H_5OCH_2CH_2OH){P(OEt)_3}][Cl]$ (**1b**') are indicated with * and Δ , respectively. Signal attribution has been confirmed by ¹H-¹H NMR correlation spectroscopy (cosy).

Reactivity of $[RuCl_2(\eta^6-C_6H_5OCH_2CH_2OH)\{P(OEt)_3\}]$ (1b) towards NaOH.

In a 5 mL-volumetric flask, 40 mg of complex [RuCl₂(η^6 -C₆H₅OCH₂CH₂OH){P(OEt)₃}] (**1b**) were dissolved in D₂O. Six NMR tubes were then charged with 0.6 mL of this solution and 0, 5, 10, 15, 20 or 40 µL of aqueous NaOH 0.5 M (*i.e.* 0, 0.25, 0.5, 0.75, 1 or 2 equivalents of NaOH per ruthenium). In the presence of NaOH, the ¹H NMR spectra exhibit signals of free phenoxyethanol (in the range of 6.9-7.4 ppm for the phenyl ring) and different signals corresponding to η^6 -coordinated C₆H₅OCH₂CH₂OH (in the range 5.0-6.1 for the η^6 -phenyl fragment):

Figure S3. Details of the ¹H NMR spectra of 1b in D₂O with 0.5 equivalents of NaOH per ruthenium.

Figure S4. ${}^{31}P{}^{1}H$ NMR spectra of 1b in D₂O with 0.5 equivalents of NaOH per ruthenium.

9. Reactivity of [RuCl₂(η^6 -*p*-cymene){P(OMe)₃}] towards base.

First of all, the ¹H NMR of complex [RuCl₂(η^6 -*p*-cymene){P(OMe)₃}] was measured in D₂O. Like observed with phenoxyethanol derivatives, in aqueous solution an equilibrium between the aquo- and the chloro-complexes, [RuCl₂(η^6 -*p*-cymene){P(OMe)₃}] and [RuCl(H₂O)(η^6 -*p*-cymene){P(OMe)₃}][Cl], was observed:

¹H NMR for [RuCl₂(η^6 -*p*-cymene){P(OMe)₃}] in D₂O, δ : 5.72 (d, 2 H, ³J_{HH} = 5.8 Hz, CH of cymene), 5.59 (d, 2 H, ³J_{HH} = 5.8 Hz, CH of cymene), 3.66 (d, 9 H, ³J_{PH} = 12.0 Hz, P(OMe)₃), 2.62 (m, 1 H, CHMe₂), 2.00 (s, 3 H, Me), \approx 1.2 (signal overlapped by those of the other species). ³¹P{¹H} NMR, d: 119.7 (s) ppm.

¹H NMR for [RuCl(H₂O)(η^{6} -*p*-cymene){P(OMe)₃}][Cl] in D₂O, δ : 5.92 (d, 1 H, ³J_{HH} = 5.9 Hz, CH of cymene), 5.81 (broad s, 2 H, CH of cymene), 5.60 (d, 1 H, ³J_{HH} = 5.9 Hz, CH of

cymene), 3.70 (d, 9 H, ${}^{3}J_{PH} = 12.3$ Hz, P(OMe)₃), 2.62 (m, 1 H, CHMe₂), 2.01 (s, 3 H, Me), \approx 1.2 (signal overlapped by those of the other species). ${}^{31}P{}^{1}H$ NMR, d: 119.4 (s) ppm.

When NaOH was added to the medium, a new derivative A was formed:

Figure S5. ¹H NMR spectra of $[RuCl_2(\eta^6-p-cymene)\{P(OMe)_3\}]$ in D₂O with 1 equivalent of NaOH. Complexes $[RuCl_2(\eta^6-p-cymene)\{P(OMe)_3\}]$ and A are indicated with * and Δ , respectively.

Figure S6. ³¹P{¹H} NMR spectra of $[RuCl_2(\eta^6-p-cymene){P(OMe)_3}]$ in D₂O with 1 equivalent of NaOH. Complexes $[RuCl_2(\eta^6-p-cymene){P(OMe)_3}]$ and A are indicated with * and Δ , respectively.

We propose for A the chemical formula $[Ru(OH)_2(\eta^6-p-cymene){P(OMe)_2(OH)}]$ on the basis of:

(i) In the ¹H NMR spectrum, the signal corresponding to OMe integrates for 6 hydrogens.

(ii) The presence of one equivalent of free MeOH has been detected.

(iii) ¹H NMR data are consistent with a plane of symmetry in the molecule.

(iv) The same species A is detected in the reaction of $[RuCl_2(\eta^6-p-cymene)\{P(OMe)_2(OH)\}]^{[3]}$ with NaOH in D₂O.

10. References

- [1] B. Lastra-Barreira, J. Díez, P. Crochet, Green Chem. 2009, 11, 1681.
- [2] a) M. A. Bennett, A. K. Smith, J. Chem. Soc., Dalton Trans. 1974, 233; b) S. A. Serron, S. P. Nolan, Organometallics 1995, 14, 4611; c) E. Hodson, S. J. Simpson, Polyhedron 2004, 23, 2695.
- [3] Prepared from [{RuCl(μ -Cl)(η^6 -*p*-cymene)}₂] and dimethylphosphite.