Electronic Supplementary Information (ESI) for the manuscript entitled:

Bio- and Oil-Fouling Resistance of Ultrafiltration Membranes Controlled by Star-Shaped Block and Random Copolymer Coatings

Dong-Gyun Kim, †^a Hyo Kang, †*^b Sungsoo Han, ^b Hee Joong Kim, ^a and Jong-Chan Lee*^a

- ^a School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea.
- ^b Materials R&D Center, Samsung Advanced Institute of Technology, Samsung Electronics
 Co., Ltd., Nongseo-dong, Giheung-gu, Gyeonggi-do 446-712, Republic of Korea.

[†]These authors contributed equally to this paper.

*Corresponding authors: J.-C. Lee (E-mail: jongchan@snu.ac.kr, Phone: +82 2 880 7070, Fax: +82 2 888 1604) and H. Kang (E-mail: denis.kang@samsung.com, Phone: +82 31 280 6626; Fax: +82 31 280 9359)

Fig. S1 XPS depth profiles (O/C ratios) of SRC15, SBC13, and SBC33 films on PSf-coated

silicon wafer obtained by sputtering of argon cluster ion beams.

Fig. S2 Comparison of static contact angle (SCA), advancing contact angle (ACA) and receding contact angle (RCA) of SRC15, SBC13, and SBC33 films on PSf-coated silicon

wafer.

Fig. S3 Interaction force histograms which were used to determine the mean interaction forces between BSA-tethered AFM tip and polymer films. (a) PSf, (b) SRC15, (c) SBC13,

and (d) SBC33 films on PSf-coated silicon wafer.

Fig. S4 Interaction force histograms which were used to determine the mean interaction forces between dodecyl-tethered AFM tip and polymer films. (a) PSf, (b) SRC15, (c) SBC13,

and (d) SBC33 films on PSf-coated silicon wafer.

Fig. S5 AFM height images of (a) SRC15, (b) SBC13, and (c) SBC33 thin films on PSf-

coated silicon wafer (Scale bar: 100 nm).

Scheme S1 Fouling behaviors of BSA and oil against the membrane surface.