Electronic Supplementary Information of

Total synthesis of (12*R*)- and (12*S*)-12-hydroxymonocerins: stereoselective oxylactonization using a chiral hypervalent iodine(III) species

Morifumi Fujita,* Kazuhiro Mori, Mio Shimogaki, and Takashi Sugimura Graduate School of Material Science, University of Hyogo, Kohto, Kamigori, Hyogo 678-1297, Japan

Tables S1 and S2	S1–S2
¹ H and ¹³ C NMR spectra	S3–S37
NOESY spectra	S38–S45

$\delta_{\rm H} ({\rm ppm}) (J {\rm in}{\rm Hz})$					
natural 1	synthetic 1	natural 2	synthetic 2		
11.23(1H, s)	11.21 (1H, s)	11.24 (1H, s)	11.24 (1H, s)		
6.57 (1H, s)	6.55 (1H, s)	6.58 (1H, s)	6.57 (1H, s)		
5.06 (1H, dd, <i>J</i> 6.0, 3.0)	5.04 (1H, dd, <i>J</i> 5.5, 2.7)	5.05 (1H, ddd, <i>J</i> 6.0, 3.0, 1.0)	5.05 (1H, dd, <i>J</i> 5.5, 2.7)		
4.60 (1H, d, <i>J</i> 3.0)	4.58 (1H, d, <i>J</i> 2.7)	4.56 (1H, d, <i>J</i> 3.0)	4.55 (1H, d, <i>J</i> 2.7)		
4.35 (1H, m)	4.33 (1H, m)	4.41 (1H, m)	4.40 (1H, m)		
3.98 (1H, m)	3.95 (1H, m)	4.01 (1H, m)	4.00 (1H, m)		
3.95 (3H, s)	3.93 (3H, s)	3.94 (3H, s)	3.93 (3H, s)		
3.91 (3H, s)	3.88 (3H, s)	3.90 (3H, s)	3.88 (3H, s)		
2.67 (1H, ddd, J 14.5, 8.5, 6.0)	2.65 (1H, ddd, J 14.4, 8.9, 6.2)	2.65 (1H, ddd, <i>J</i> 14.5, 8.5, 6.0)	2.65 (1H, ddd, J 14.4, 8.9, 6.2)		
2.22 (1H, dd, <i>J</i> 14.5, 5.5)	2.20 (1H, dd, <i>J</i> 14.4, 5.5)	2.20 (1H, ddd, <i>J</i> 14.5, 5.5, 1.0)	2.19 (1H, dd, <i>J</i> 14.4, 6.2)		
1.84 (1H, ddd, <i>J</i> 14.0, 9.0, 6.0)	1.81 (1H, dt, <i>J</i> 14.4, 8.9)	1.82 (1H, ddd, <i>J</i> 14.0, 8.0, 3.5)	1.81 (1H, ddd, <i>J</i> 14.4, 8.9, 2.7)		
1.75 (1H, dt, J 14.0, 4.0)	1.72 (1H, dt, <i>J</i> 14.4, 2.7)	1.73 (1H, ddd, <i>J</i> 14.0, 9.0, 4.0)	1.72 (1H, ddd, <i>J</i> 14.4, 8.9, 4.1)		
1.18 (3H, d, <i>J</i> 6.0)	1.16 (3H, d, <i>J</i> 6.2)	1.19 (3H, d, <i>J</i> 6.0)	1.18 (3H, d, <i>J</i> 6.2)		

Table S1 Comparison of ¹H NMR data $\delta_{\rm H}$ (CDCl₃) for natural and synthetic 12-hydroxymonocerins.^{*a*}

^{*a*}Data for natural **1** and **2** are from ref. 2a (500 MHz). Data for synthetic **1** and **2** were recorded with 600 MHz operating frequency.

$\delta_{\rm C}$ (ppm)					
natural 1	synthetic 1	natural 2	synthetic 2		
167.6	167.6	167.7	167.7		
158.7	158.7	158.7	158.7		
156.3	156.3	156.3	156.2		
137.5	137.4	137.4	137.3		
130.6	130.6	130.9	130.8		
104.5	104.5	104.5	104.5		
102.0	101.9	102.0	102.0		
80.8	80.8	81.2	81.2		
78.4	78.5	75.9	75.9		
75.0	75.0	74.7	74.7		
67.2	67.3	65.0	65.0		
60.7	60.8	60.7	60.7		
56.3	56.3	56.3	56.3		
44.8	44.8	44.6	44.5		
39.6	39.5	39.5	39.4		
23.6	23.5	24.0	23.9		

Table S2 Comparison of ¹³C NMR data $\delta_{\rm C}$ (CDCl₃) for natural and synthetic 12-hydroxymonocerins.^{*a*}

^{*a*}Data for natural **1** and **2** are from ref. 2a (125 MHz). Data for synthetic **1** and **2** were recorded with 150 MHz operating frequency.

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

small *R*

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013


```
Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2013
```

