Electronic Supplementary Information

Conformational analysis of 6-fluorosalicylic acid

Josué M. Silla,^a Claudimar J. Duarte,^b Roberto Rittner,^b Matheus P. Freitas*,^a

^a Department of Chemistry, Federal University of Lavras, P.O. Box 3037, 37200-000, Lavras, MG, Brazil

^b Chemistry Institute, State University of Campinas, P.O. Box 6154, 13083-970, Campinas, SP, Brazil

* Corresponding author: matheus@dqi.ufla.br; Tel: +55 35 3829-1891; Fax: +55 35 3829-1271

Page S1. ¹H NMR spectrum of 6-fluorosalicylic acid in C₆D₆, at 499.87 MHz.

Page S2. ¹³C NMR spectrum of 6-fluorosalicylic acid in C₆D₆, at 125.69 MHz.

Page S3. 1 H x 19 F HETCOR spectrum of 6-fluorosalicylic acid in C₆D₆, at 499.87 MHz for 1 H and 470.30 MHz for 19 F.

Page S4. ¹H NMR spectrum of 6-fluorosalicylic acid in CDCl₃, at 499.87 MHz.

Page S5. ¹³C NMR spectrum of 6-fluorosalicylic acid in CDCl₃, at 125.69 MHz.

Page S6. 1 H x 19 F HETCOR spectrum of 6-fluorosalicylic acid in CDCl₃, at 499.87 MHz for 1 H and 470.30 MHz for 19 F.

Page S7. ¹H NMR spectrum of 6-fluorosalicylic acid in CD₃CN, at 499.87 MHz.

Page S8. ¹³C NMR spectrum of 6-fluorosalicylic acid in CD₃CN, at 125.69 MHz.

Page S9. 1 H x 19 F HETCOR spectrum of 6-fluorosalicylic acid in CD₃CN, at 499.87 MHz for 1 H and 470.30 MHz for 19 F.

Page S10. Table S1. NMR assignments for 6-fluorosalicylic acid (chemical shifts, δ , in ppm relative to TMS, and coupling constants, *J*, in Hz).

Page S11. Table S2. Thermodynamic parameters obtained for 1 using the PCM model in benzene and acetonitrile, at the WB97XD/6-311++g(d,p) level.

Page S12. Table S3. Thermodynamic parameters obtained for 1 using an explicit acetonitrile solvent, at the WB97XD/6-311++g(d,p) level.

Figure S1. ¹H NMR spectrum of 6-fluorosalicylic acid in C₆D₆, at 499.87 MHz.

Figure S2. ¹³C NMR spectrum of 6-fluorosalicylic acid in C₆D₆, at 125.69 MHz.

Figure S3. 1 H x 19 F HETCOR spectrum of 6-fluorosalicylic acid in C₆D₆, at 499.87 MHz for 1 H and 470.30 MHz for 19 F.

Figure S4. ¹H NMR spectrum of 6-fluorosalicylic acid in CDCl₃, at 499.87 MHz.

Figure S5. ¹³C NMR spectrum of 6-fluorosalicylic acid in CDCl₃, at 125.69 MHz.

Figure S6. 1 H x 19 F HETCOR spectrum of 6-fluorosalicylic acid in CDCl₃, at 499.87 MHz for 1 H and 470.30 MHz for 19 F.

Figure S7. ¹H NMR spectrum of 6-fluorosalicylic acid in CD₃CN, at 499.87 MHz.

Figure S8. ¹³C NMR spectrum of 6-fluorosalicylic acid in CD₃CN, at 125.69 MHz.

Figure S9. 1 H x 19 F HETCOR spectrum of 6-fluorosalicylic acid in CD₃CN, at 499.87 MHz for 1 H and 470.30 MHz for 19 F.

Table S1. NMR assignments for 6-fluorosalicylic acid (chemical shifts, δ , in ppm relative to TMS, and coupling constants, *J*, in Hz).

Parameter	(O)H/(COO)H	H-3	H-4	H-5	C-1	C-2	C-3	C-4	C-5	C-6	C(OOH)
C_6D_6											
δ	11.36	6.59	6.69	6.16	101.6	163.9	113.4	136.0	106.4	162.6	171.2
J		${}^{3}J_{\rm HH} = 8.4$ ${}^{4}J_{\rm HH} = {}^{5}J_{\rm HF} = 1.0$	${}^{3}J_{\rm HH} = 8.4$ ${}^{4}J_{\rm HF} = 6.0$	${}^{3}J_{\rm HF} = 10.9$ ${}^{3}J_{\rm HH} = 8.4$ ${}^{4}J_{\rm HH} = 1.0$	${}^{2}J_{\rm CF} = 12.8$	${}^{3}J_{\rm CF} = 3.0$	${}^{4}J_{\rm CF} = 3.6$	${}^{3}J_{\rm CF} = 12.1$	${}^{2}J_{\rm CF} = 23.0$	${}^{1}J_{\rm CF} = 260.7$	${}^{3}J_{\rm CF} = 3.0$
CDCl ₃											
δ	11.00	6.84	7.45	6.67	101.5	163.6	113.8	136.6	107.1	162.7	172.2
J		${}^{3}J_{\rm HH} = 8.4$ ${}^{4}J_{\rm HH} = {}^{5}J_{\rm HF} = 1.0$	${}^{3}J_{\rm HH} = 8.4$ ${}^{4}J_{\rm HF} = 6.2$	${}^{3}J_{\rm HF} = 11.2$ ${}^{3}J_{\rm HH} = 8.4$ ${}^{4}J_{\rm HH} = 1.0$	${}^{2}J_{\rm CF} = 12.2$	${}^{3}J_{\rm CF} = 2.8$	${}^{4}J_{\rm CF} = 3.4$	${}^{3}J_{\rm CF} = 12.4$	${}^{2}J_{\rm CF} = 23.2$	${}^{1}J_{\rm CF} = 260.5$	${}^{3}J_{\rm CF} = 2.8$
CD ₃ CN											
δ	-	6.78	7.45	6.66	103.1	164.3	114.0	136.8	107.6	163.3	171.1
J		${}^{3}J_{\rm HH} = 8.4$ ${}^{4}J_{\rm HH} = {}^{5}J_{\rm HF} = 1.0$	${}^{3}J_{\rm HH} = 8.4$ ${}^{4}J_{\rm HF} = 6.2$	${}^{3}J_{\rm HF} = 11.2$ ${}^{3}J_{\rm HH} = 8.4$ ${}^{4}J_{\rm HH} = 1.0$	${}^{2}J_{\rm CF} = 13.2$	${}^{3}J_{\rm CF} = 3.7$	${}^{4}J_{\rm CF} = 3.6$	${}^{3}J_{\rm CF} = 12.3$	${}^{2}J_{\rm CF} = 23.4$	${}^{1}J_{\rm CF} = 258.5$	${}^{3}J_{\rm CF} = 3.2$

Conformer	Benzene Acetonitrile						
	$\Delta G_{\rm rel}$ (%)	$\Delta H_{\rm rel}$	$T\Delta S_{rel}$	$\Delta G_{\rm rel}$ (%)	$\Delta H_{\rm rel}$	$T\Delta S_{rel}$	
1a	0.0 (84)	0.0	0.0	0.0 (76)	0.0	0.0	
1b	1.0 (16)	0.7	-0.2	0.7 (23)	0.4	-0.2	
1c	3.6 (0)	3.8	0.3	2.6 (1)	3.0	0.3	

Table S2. Thermodynamic parameters obtained for **1** using the PCM model in benzene and acetonitrile, at the WB97XD/6-311++g(d,p) level.

Conformer	$\Delta G_{\rm rel}$ (%)	$\Delta H_{ m rel}$	$T\Delta S_{rel}$
1a	0.0 (63)	0.0	0.0
1b	0.9 (14)	1.6	0.7
1c	0.6 (23)	-0.2	-0.8