Supporting Information

Enantioselective separation of chiral ofloxacin using functional Cu(II)-coordinated G-rich oligonucleotides

Yan Fu, Xiaoli Duan, Xiongfei Chen, Jinli Zhang, Wei Li(*)

Key Laboratory of Systems Bioengineering MOE; Key Laboratory for Green Chemical Technology MOE, Tianjin University, Tianjin 300072, People's Republic of China

* To whom correspondence should be addressed.

Dr. Wei Li

Professor of Biochemical Engineering,

School of Chemical Engineering and Technology,

Tianjin University, Tianjin 300072, P.R. China

Tel: +86-22-27890643

Fax: +86-22-27890643

E-mail: liwei@tju.edu.cn

Fig. S1. (a) CD spectra of 20 μ M G-rich oligonucleotides in 10 mM Tris-HCl buffer at pH 7.0; (b) CD spectra of 20 μ M RET, RET-Cu(II) ([Cu²⁺]/base=0.1), as well as RET-Cu(II) in the presence of 50 μ M S- and racemic ofloxacin respectively at pH 7.0; (c) CD spectra of the polynucleotides used in this study at pH 7.0.

Markerlane 1lane 2lane 3lane 4Fig. S2. PAGE image of double-stranded RET in 10 mM Tris-HCl buffer (pH 7.0) in the absence(lane 1) and presence of Cu^{2+} at the $[Cu^{2+}]/[base]$ ratio of 0.1 (lane 2), 1 (lane 3) and 5 (lane 4)respectively.

Fig. S3. Calorimetric titrations of 5 μ M RET-Cu(II) complex ([Cu²⁺]/[base]=0.1) with 0.2 mM S-ofloxacin (a) and racemic ofloxacin (b) at pH 7.0 at 20 °C, a standard nonlinear least-squares regression binding model, involving a single class of non-interacting sites fitted best to the data; (c) Calorimetric titrations of 5 μ M RET in the absence of Cu²⁺ with 0.8 mM S-ofloxacin.

Fig. S4. Comparable CD spectra of native and regenerated RET at pH 7.0, regenerated RET was prepared from RET-Cu(II)-ofloxacin complex by adding EDTA, through ultrafiltration the filtered residue was resuspended by equivalent volume buffer.

Fig. S5. CD (a) and UV (b) spectra of S-ofloxacin in 10 mM Tris-HCl buffer (pH 7.0); (c) HPLC analysis of racemic ofloxacin.

Name	Sequence	Molecular weight (g·mol ⁻¹)	Extinction coefficient L·(mol·cm) ⁻¹
htelo	5'-AG ₃ (T ₂ AG ₃) ₃ -3'	6966.5	228500
	5'-(C ₃ TA ₂) ₃ C ₃ T-3'	6504.3	193700
RET	5'-A(G ₄ C) ₃ G ₅ C-3'	7004.5	212500
	5'-GC ₅ (GC ₄) ₃ T-3'	6475.2	169100
c-kit2	5'-C(C ₃ T) ₂ (CG) ₂ (C ₃ G) ₂ -3'	6201.0	163500
	5'-(CG ₃) ₂ (CG) ₂ (AG ₃) ₂ G-3'	6659.3	205600
VEGF	$5'-CG_4CG_3CCG_5CG_4T-3'$	6955.5	205000
	5'-AC ₄ GC ₅ GGC ₃ GC ₄ G-3'	6524.2	178400

Table S1. DNA sequences used in the experiments

Table S2. The e.e._R (S-enantiomer excess) of ofloxacin enantiomers in the residues at each operational stage in the enrichment process of R-enantiomer through three-stage operation^a

Sequence	Stage	e.e. _{<i>R</i>} (%)	As (%)
	1 st	29.3	48.0
RET-Cu(II)	2 nd	13.2	33.2
	3 rd	- 23.2	15.9
	1 st	38.9	52.2
c-kit2-Cu(II)	2 nd	13.3	34.2
	3 rd	-40.4	12.1
	1 st	26.6	55.3
VEGF-Cu(II)	2 nd	2.0	33.7
	3 rd	- 44.9	9.7

^a Experimental conditions: 100 µM racemic ofloxacin, 20 µM DNA, pH 7.0.

Table S3. The e.e._{*R*} (S-enantiomer excess) of ofloxacin enantiomers in the residues at each operational stage in the enrichment process of R-enantiomer through three-stage operation ^a

Sequence	Stage		
		e.e. _R (%)	As (%)
	1 st	23.7	28.5
RET	2 nd	21.9	18.2
	3 rd	13.9	13.1
	1 st	38.8	23.3
c-kit2	2 nd	34.0	18.2
	3 rd	23.9	11.8
	1 st	30.9	25.1
VEGF	2 nd	19.1	20.4
	3 rd	10.5	12.9

^a Experimental conditions: 100 µM racemic ofloxacin, 20 µM DNA, pH 7.0.

Table S4. The e.e._{*R*} (S-enantiomer excess) of ofloxacin enantiomers in the residues at each operational stage in the enrichment process of S-enantiomer through three-stage operation ^a

Sequence	Stage	e.e. _{<i>R</i>} (%)	As (%)
	1 st	29.3	48.0
RET-Cu(II)	2 nd	39.9	31.4
	3 rd	49.5	27.1
	1 st	38.9	52.2
c-kit2-Cu(II)	2 nd	61.1	44.1
	3 rd	78.1	30.3
	1 st	26.6	55.3
VEGF-Cu(II)	2 nd	43.1	40.1
	3 rd	57.6	31.7

^a Experimental conditions: 100 µM racemic ofloxacin, 20 µM DNA, pH 7.0.

Table S5. The e.e._{*R*} (S-enantiomer excess) of ofloxacin enantiomers in the residues at each operational stage in the enrichment process of S-enantiomer through three-stage operation ^a

Sequence	Stage	e.e. _{<i>R</i>} (%)	As (%)
RET	1 st	23.7	28.5
	2 nd	36.0	10.6
	3 rd	n.d. ^b	n.d. ^b
	1 st	38.8	23.3
c-kit2	2 nd	59.3	8.3
	3 rd	n.d. ^b	n.d. ^b
VEGF	1 st	30.9	25.1
	2 nd	52.8	12.7
	3 rd	n.d. ^b	n.d. ^b

 a Experimental conditions: 100 μM racemic ofloxacin, 20 μM DNA, pH 7.0; b The concentration is too low to be determined.