Electronic Supplementary Information for

Iodo-Bodipys as Visible-light-absorbing Dual-functional Photoredox Catalysts for Preparation of Highly Functionalized Organic Compounds by Formation of C–C bonds via Reductive and Oxidative Quenching Catalytic Mechanisms

Ling Huang and Jianzhang Zhao*

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of

Technology, E-208 West Campus, 2 Ling-Gong Road, Dalian 116024, China

E-mail:zhaojzh@dlut.edu.cn

http://finechem.dlut.edu.cn/photochem

Index

The molecular ¹ HNMR and HRMS data S3-S10
The molecular ¹ HNMR and HRMS datas are Figure S1 – Figure S62S11-S41
Figure S63. ESR spectra of the B-1 and 1a S42
Figure S64-Figure S66 2af-2cf <i>e.e</i> % measurementS43-S44
Figure S67- Figure S68 ¹ HNMR determination of H ₂ O ₂ S44-S45
Figure S69. Normalized emission spectra of B-1 - B-2 , Eosin. Y and Ru-1 S45
Figure S70-Figure S71 Nanosecond time-resolved transient difference absorption of photocatalystS46
Figure S72. HRMS-ESI evidence of 4–Hydroxy TEMPO trapped free radicals
Figure S73. Normalized UV-vis absorption spectra and emission spectra of T-2S48
Figure S74. Plot of the photocatalysis yields vs. photoirradiation time

Figure S75. Quenching of the triplet excited state of Ru-1 by the substrateS4
Figure S76 -Figure S83 Transient absorption spectra of photocatalysts with substratesS49-S5
Figure S84. Stern–Volmer quenching of the T ₁ state lifetimes of photocatalysts by 1a S5
Figure S85. Stern–Volmer quenching of the T_1 state lifetimes of photocatalysts by $1m$ S5.
Table S1. Stern–Volme Quenching of the photocatalysts with tetrahydroisoquinolineS5
Table S2. Stern–Volme Quenching of the photocatalysts with phenyl diazonium salt

The molecular structure characterization data of the photoredox catalytic reactions. The structural characterization data of the substrates and products in Table 6 and Table 7, 1g-1*l*, 1h-1k, 2gh-2gk, 2*l*h-2*l*k, were reported previously.¹ For the following compounds, the yields in the photocatalysis are exemplified with B-1 as the photocatalysts. The results with B-2 as the photocatalyst were presented in the Tables.

1. L. Huang and J. Zhao, Chem. Commun. 2013, 49, 3751–3753.

1a. Yield: 714 mg (68 %). ¹H NMR (400 MHz, CDCl₃): δ 7.35–7.31 (m, 2H), 7.22–7.21 (m, 4H), 7.04–7.02 (d, J = 8.0 Hz, 2H), 6.89–6.86 (m, 1H), 4.45 (s, 2 H), 3.62–3.59 (m, 2H), 3.04–3.01 (m, 2H). TOF HRMS ESI⁺: Calcd [C₁₅H₁₅N+H]⁺ m/z 210.1283 found m/z 210.1288.

1b. Yield: 650 mg (57 %). ¹H NMR (400 MHz, CDCl₃): δ 7.35–7.31 (m, 2H), 7.22–7.21 (m, 4H), 7.04 (d, J = 8.0 Hz, 2H), 6.89–6.86(m, 1H), 4.45 (s, 2 H), 3.62–3.59 (m, 2 H), 3.04–3.01 (m, 2H). TOF HRMS ESI⁺: Calcd [C₁₅H₁₄FN+H]⁺ m/z 228.1189, found m/z 228.1183.

1c. Yield: 858 mg (71 %). ¹H NMR (400 MHz, CDCl₃): δ 7.17–7.11 (m, 4H), 6.98 (d, *J* = 8.0Hz, 2H), 6.86 (d, *J* = 8.0 Hz, 2H), (d, *J* = 8.0 Hz, 2H), 4.28 (s, 2H), 3.76 (s, 3 H), 3.45–3.42 (m, 2 H), 2.99–2.96 (m, 2H). TOF HRMS ESI⁺: Calcd [C₁₆H₁₇NO+H]⁺ *m*/*z* 240.1388, found *m*/*z* 240.1391.

2ad. Yield: 82.8 mg (77 %). ¹H NMR (400 MHz, CDCl₃): δ 7.34–7.28 (m, 4H), 6.92–6.90 (m, 2H), 7.24–7.22 (m, 1H). 7.18–7.17 (m, 1H), 7.04 (d, *J*= 8.0 Hz, 2H), 5.61–5.58 (m, 1H), 4.94–4.91 (m, 1H), 3.71–3.66 (m, 2H), 3.13–3.15 (m, 1H), 2.85–2.81(m, 1H). TOF HRMS ESI⁺: Calcd [C₁₆H₁₆N₂O₂+H]⁺ *m*/*z* 269.1290, found *m*/*z* 269.1285.

2bd. Yield: 87.1 mg (76 %). ¹H NMR (400 MHz, CDCl₃): δ 7.28–7.22 (m, 2H), 7.21–7.14 (m, 2H), 6.97–6.89 (m, 4 H). 5.43–5.41 (m, 1H), 4.85–4.83 (m, 1H), 4.60–4.55 (m, 2H), 3.62–3.58 (m, 2H), 3.03–3.01 (m, 1H), 2.75–2.74 (m, 1H), TOF HRMS ESI⁺: Calcd [C₁₆H₁₅N₂O₂F+H]⁺ *m/z* 287.1196 found *m/z* 287.1199.

2cd. Yield: 92.1 mg (77 %). ¹H NMR (400 MHz, CDCl₃): δ 7.25–7.21 (m, 2H), 7.17–7.13 (m, 2H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.83 (d, *J* = 8.0 Hz, 2H), 5.39–5.371 (m, 1H), 4.84–4.81 (m, 1H), 4.59–4.54 (m, 1H), 3.75 (s, 3H), 3.58–3.55 (m, 2H), 3.02–3.00 (m, 1H), 2.73–2.68 (m, 1H), TOF HRMS ESI⁺: Calcd [C₁₇H₁₈N₂O₃+H]⁺ *m/z* 299.1396, found *m/z* 299.1394.

2ae. Yield: 103.0 mg (91 %). ¹H NMR (400 MHz, CDCl₃): δ 7.29–7.09 (m, 6H), 7.01–6.98 (m, 2H), 6.84–6.79 (m, 1H), 5.26 – 5.22(m, 1H), 5.07–4.89 (m, 1H), 3.83–3.56 (m, 2H), 3.10–2.89 (m, 2H), 1.71–1.53 (m, 3H). TOF HRMS ESI⁺: Calcd [C₁₇H₁₈N₂O₂+H]⁺ *m/z* 283.1447, found *m/z* 283.1441.

2be. Yield: 71.0 mg (59 %). ¹H NMR (400 MHz, CDCl₃): δ 7.29–7.04 (m, 4H), 6.97–6.90 (m, 4 H), 5.13–5.02 (m, 2H), 3.82–3.52 (m, 2H), 2.99–2.84 (m, 2H), 1.69–1.56 (m, 3H). TOF HRMS ESI⁺: Calcd [C₁₇H₁₇N₂O₂F+H]⁺ *m/z* 301.1352, found *m/z* 301.1352.

2ce. Yield: 71.4 mg (57 %). ¹H NMR (400 MHz, CDCl₃): δ 7.24–7.09 (m, 4H), 6.92–6.90 (m, 2H), 6.83–6.76 (m, 2H). 5.06–4.86 (m, 2H), 3.79–3.72 (m, 4H), 3.52–3.48 (m, 1H), 2.97–2.95 (m, 1H), 2.83–2.78 (m, 1H), 1.68–1.52 (m, 3H). TOF HRMS ESI⁺: Calcd [C₁₈H₂₀N₂O₃+H]⁺ *m/z* 313.1552, found *m/z* 313.1546.

2af. Yield: 26.6 mg (50 %). ¹H NMR (400 MHz, CDCl₃): δ 7.25–7.23 (m, 2H), 7.16 (m, 4H), 6.95(d, J = 8.0 Hz, 2 H), 6.79–6.76 (m, 1H), 5.41–5.38 (m, 1H), 3.68–3.52 (m, 2H), 3.07–3.03 (m, 2H), 2.85–2.79 (m, 2H), 2.07 (s, 3H). TOF HRMS ESI⁺: Calcd [C₁₈H₁₉NO+H]⁺ m/z 266.1545, found m/z 266.1545.

2bf. Yield: 44.9 mg (79 %). ¹H NMR (400 MHz, CDCl₃): δ 7.18–7.11 (m, 4H), 6.95–6.91 (m, 4H), 5.30–5.27 (m, 1H), 3.57–3.49 (m, 2H), 3.04–3.00 (m, 2H), 2.82–2.76 (m, 2H), 2.07 (s, 3H). TOF HRMS ESI⁺: Calcd [C₁₈H₁₈NOF+H]⁺ *m*/*z* 284.1451, found *m*/*z* 284.1445.

2cf. Yield: 37.9 mg (64 %). ¹H NMR (400 MHz, CDCl3): δ 7.15–7.11 (m, 4H), 6.93–6.91 (m, 2H), 6.82–6.80 (m, 2H), 5.26–5.23 (m, 1H), 3.74 (s, 3H), 3.56–3.45 (m, 2 H), 3.04–2.98 (m, 2H), 2.79–2.75 (m, 2H), 2.06 (s, 3H). TOF HRMS ESI⁺: Calcd [C₁₉H₂₁NO₂+H]⁺ *m/z* 296.1651, found *m/z* 296.1650.

2mr. Yield: 59.1 mg (82 %). ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, J = 7.6 Hz, 1H), 7.65–7.60 (m, 2H), 7.39–7.33 (m, 3H), 6.62 (d, J = 4.0 Hz, 1H), 6.46 (d, J=8.0Hz 1H). TOF HRMS EI⁺: Calcd [C₁₀H₈O]⁺ m/z 144.0575. found m/z 144.0582.

2nr. Yield: 48.2 mg (61 %). ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, J = 8.0 Hz, 2H), 7.43 (s, 1H), 7.19 (d, J=7.2Hz 2H), 6.58 (d, J=7.6 Hz 1H), 6.44 (s, 1H), 2.35 (s, 3H). TOF HRMS EI⁺: Calcd [C₁₁H₁₀O]⁺ m/z 158.0732 found m/z 158.0735.

2or. Yield: 96.1 mg (87 %). ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, *J*=2.8 Hz, 1H), 7.55–7.47 (m, 4H), 6.62 (d, *J*=4.0Hz 1H), 6.46 (d, *J*=8.0Hz 1H). TOF HRMS EI⁺: Calcd [C₁₀H₇BrO]⁺ *m/z* 221.9680, found *m/z* 221.9689.

2pr. Yield: 70.9 mg (75 %). ¹H NMR (400 MHz, CDCl₃): δ 8.26 (d, J = 8.0 Hz, 2H), 7.81 (d, J= 7.6 Hz, 2H), 6.89 (d, J = 4.0 Hz, 1H), 6.56 (s, 1H). TOF HRMS EI⁺: Calcd [C₁₀H₇NO₃]⁺ m/z 189.0426, found m/z 189.0432.

2qr. Yield: 67.1 mg (71 %). ¹H NMR (400 MHz, CDCl₃): δ 7.74–7.68 (m, 2H), 7.61–7.57 (m, 1H), 7.53 (s, 1H), 7.44–7.41 (m, 1H), 6.96 (d, *J*=4.0 Hz 1H), 6.52 (d, *J* = 4.0 Hz, 1H). TOF HRMS EI⁺: Calcd [C₁₀H₇NO₃]⁺ *m/z* 189.0426, found *m/z* 189.0435.

2ms. Yield: 65.6 mg (82 %). ¹H NMR (400 MHz, CDCl₃): δ 7.63–7.59 (m, 2H), 7.46–7.44 (m, 1H), 7.40–7.36 (m, 2H), 7.32–7.28 (m, 2H), 7.09–7.07 (m, 1H),. TOF HRMS EI⁺: Calcd [C₁₀H₈S]⁺ *m/z* 160.0347 found *m/z* 160.0354.

2ns. Yield: 60.9 mg (70 %). ¹H NMR (400 MHz, CDCl₃): δ 7.51–7.48 (m, 2H), 7.44–7.29 (m, 2H), 7.24–7.22 (m, 1H), 7.19 (d, J = 8.0Hz 1H), 7.13–7.05 (m, 1H), 2.36 (s, 3H). TOF HRMS EI⁺: Calcd $[C_{11}H_{10}S]^+ m/z$ 174.0503, found m/z 174.0503.

20s. Yield: 92.4 mg (78 %). ¹H NMR (400 MHz, CDCl₃): δ 7.37 (d, *J* = 4.0Hz, 2H), 7.25 (d, *J* = 4.0 Hz, 2H), 6.94 (s, 1H), 6.82–6.80 (m, 2H). TOF HRMS EI⁺: Calcd [C₁₀H₇BrS]⁺ *m/z* 237.9452, found *m/z* 237.9458.

2ps. Yield: 72.8 mg (71 %). ¹H NMR (400 MHz, CDCl₃): δ 8.28 (d, *J*=8.0Hz, 2H), 7.76 (d, *J*=8.0Hz, 2H), 7.49–7.44 (m, 2H), 7.17–7.15 (m, 1H). TOF HRMS EI⁺: Calcd [C₁₀H₇NO₂S]⁺ *m/z* 205.0198, found *m/z* 205.0203.

2qs. Yield: 71.8 mg (70 %). ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, J = 8.0 Hz, 2H), 7.58–7.56 (m, 1H), 7.47–7.42 (m, 2H), 7.09 ppm (d, J=4.0, 2H). TOF HRMS EI⁺: Calcd [C₁₀H₇NO₂S]⁺ m/z 205.0198, found m/z 205.0204.

¹H NMR (400 MHz, CDCl₃) δ = 8.61 (d, *J* = 12.0 Hz, 1H), 7.50 –7.47 (m, 2H), 7.42–7.37 (m, 5H), 7.31 (d, *J* = 8.0 Hz, 1H), 4.80 (t, *J* = 6.9 Hz, 2H), 4.46–4.41 (m, 2H), 3.21 (t, *J* = 6.4 Hz, 2H), 1.49 ppm (t, *J* = 7.2 Hz, 3H).

¹ H NMR (400 MHz, CDCl₃) δ = 8.58 (d, *J* = 8.0 Hz, 1H), 7.62 (d, J = 8.0 Hz, 2H), 7.43 – 7.37 (m, 2H), 7.32–7.29 (m, 3H), 4.80 (t, *J* = 6.9 Hz, 2H), 4.47–4.41 (m, 2H), 3.21 (t, *J* = 6.4 Hz, 2H), 1.49 ppm (t, *J* = 7.2 Hz, 3H).

¹ H NMR (400 MHz, CDCl₃) δ = 8.60 (d, *J* = 8.0 Hz, 1H), 7.43 –7.38 (m, 2H), 7.32–7.30 (m, 3H), 7.01 (d, *J* = 7.6 Hz, 2H), 4.79 (t, *J* = 6.9 Hz, 2H), 4.46–4.41 (m, 2H), 3.84 (s, 3H), 3.20 (t, *J* = 6.4 Hz, 2H), 1.48 ppm (t, *J* = 7.2 Hz, 3H).

¹H NMR (400 MHz, CDCl₃) δ = 8.56 (d, *J* = 8.0 Hz, 1H), 8.36 (d, J = 7.2 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.46–7.41 (m, 2H), 7.32 (d, *J* = 4.0 Hz, 1H), 4.82 (t, *J* = 6.9 Hz, 2H), 4.49–4.43 (m, 2H), 3.22 (t, *J* = 6.4 Hz, 2H), 1.50 ppm (t, *J* = 7.2 Hz, 3H).

¹H NMR (400 MHz, CDCl₃): δ = 8.16 (d, 2 H, *J* = 8.0 Hz), 7.64–7.61 (m, 1H), 7.54–7.50 (m, 2 H), 7.42–7.38 (m, 3 H), 7.35–7.29 (m, 1 H), 7.24–7.20 (m, 1 H), 7.18–7.14 (m, 3H), 7.09 (d, 1 H, *J* = 8.0 Hz), 5.32 (s, 1 H), 4.87–4.85 (m, 1 H), 4.05–4.03 (m, 1 H), 3.96–3.93 (m, 1 H), 3.33–3.31 (m, 1 H), 3.05–2.86 ppm (m, 3 H)

¹H NMR (400 MHz, CDCl₃): δ = 8.14 (d, 2 H, *J* = 8.0 Hz), 7.65–7.61 (m, 1H), 7.54–7.50 (m, 4 H), 7.39–7.37 (m, 1 H), 7.24–7.20 (m, 1 H), 7.17–7.15 (m, 1 H), 7.09–7.05 (m, 3H), 5.30 (s, 1 H), 4.84–4.82 (m, 1 H), 4.04–4.02 (m, 1 H), 3.94–3.91 (m, 1 H), 3.29–3.28 (m, 1 H), 3.02–2.90 ppm (m, 3 H).

¹H NMR (400 MHz, CDCl₃): δ = 8.15 (d, 2 H, *J* = 8.0 Hz), 7.64–7.60 (m, 1H), 7.53–7.50 (m, 2 H), 7.39–7.38 (m, 1 H), 7.23–7.14 (m, 2 H), 7.08–7.05 (m, 3H), 6.90–6.88 (m, 2 H), 5.34 (s, 1 H), 4.91–4.90 (m, 1 H), 4.03–3.93 (m, 1 H), 3.89–3.85 (m, 1 H), 3.77 (s, 3H), 3.34–3.30 (m, 1 H), 3.01–2.90 ppm (m, 3 H).

¹H NMR (400 MHz, CDCl₃): δ = 8.20 (d, 2 H, *J* = 8.0 Hz), 8.07 (d, 2 H, *J* = 4.0 Hz) 7.59–7.55 (m, 1H), 7.49–7.45 (m, 2 H), 7.39–7.32 (m, 3 H), 7.23–7.14 (m, 2 H), 7.03–7.02 (m, 1H), 5.24 (s, 1 H), 4.75–4.74 (m, 1 H), 4.03–4.01 (m, 1 H), 3.91–3.89 (m, 1 H), 3.21–3.19 (m, 1 H), 2.94–2.82 ppm (m, 3 H).

Figure S1. ¹H NMR of 1a (400 MHz, CDCl₃).

Figure S2. TOF HRMS ESI⁺ of 1a.

Figure S3. ¹H NMR of 1b (400 MHz, CDCl₃).

Figure S4. TOF HRMS ESI $^+$ of 1b.

Figure S5. ¹H NMR of 1c (400 MHz, CDCl₃).

Figure S6. TOF HRMS ESI^+ of **1**c.

Figure S7. ¹H NMR of **2ad** (400 MHz, CDCl₃).

Figure S8. TOF HRMS ESI^+ of **2ad**.

Figure S9. ¹H NMR of **2bd** (400 MHz, CDCl₃).

Figure S10. TOF HRMS ESI^+ of **2bd**.

Figure S11. ¹H NMR of **2cd** (400 MHz, CDCl₃).

Figure S12. TOF HRMS ESI^+ of **2cd**.

Figure S13. ¹H NMR of **2ae** (400 MHz, CDCl₃).

Figure S14. TOF HRMS ESI⁺ 2ae.

Figure S15. ¹H NMR of 2be (400 MHz, CDCl₃).

Figure S16. TOF HRMS ESI⁺ 2be.

Figure S17. ¹H NMR of 2ce (400 MHz, CDCl₃).

Figure S18. TOF HRMS ESI⁺ 2ce.

Figure S19. ¹H NMR of 2af (400 MHz, CDCl₃).

Figure S20. TOF HRMS ESI⁺ 2af.

Figure S21. ¹H NMR of 2bf (400 MHz, CDCl₃).

Figure S22. TOF HRMS ESI⁺ 2bf.

Figure S23. ¹H NMR of 2cf (400 MHz, CDCl₃).

Figure S24. TOF HRMS ESI⁺ 2cf.

Figure S25. ¹H NMR of **2mr** (400 MHz, CDCl₃).

Figure S26. TOF HRMS EI^+ of 2mr.

Figure S27. ¹H NMR of **2nr** (400 MHz, CDCl₃).

Figure S28. TOF HRMS EI⁺ of 2nr.

Figure S29. ¹H NMR of **2or** (400 MHz, CDCl₃).

Figure S30. TOF HRMS EI⁺ of 2or.

Figure S31. ¹H NMR of **2pr** (400 MHz, CDCl₃).

Figure S32. TOF HRMS EI⁺ of 2pr.

Figure S33. ¹H NMR of **2qr** (400 MHz, CDCl₃).

Figure S34. TOF HRMS EI⁺ of 2qr.

Figure S35. ¹H NMR of **2ms** (400 MHz, CDCl₃).

Figure S36. TOF HRMS EI^+ of 2ms.

Figure S37. ¹H NMR of **2os** (400 MHz, CDCl₃).

Figure S38. TOF HRMS EI⁺ of 2os.

Figure S39. ¹H NMR of 2ps (400 MHz, CDCl₃).

Figure S40. TOF HRMS EI⁺ of 2ps.

Figure S41. ¹H NMR of **1** (400 MHz, CDCl₃).

Figure S42. ¹³C NMR of **1** (100 MHz, CDCl₃).

Figure S43. TOF HRMS EI^+ of 1.

Figure S44. ¹H NMR of 2ns (400 MHz, CDCl₃).

Figure S45. TOF HRMS EI⁺ of 2ns.

Figure S46. ¹H NMR of 2qs (400 MHz, CDCl₃).

Figure S47. TOF HRMS El⁺ of 2qs.

Figure S48. ¹H NMR of **2x** (400 MHz, CDCl₃).

Figure S49. ¹H NMR of **T-1** (400 MHz, CDCl₃).

Figure S50. ¹³C NMR of **T-1** (100 MHz, CDCl₃).

Figure S51. TOF HRMS MALDI of T-1.

Figure S52. ¹H NMR of T-2 (400 MHz, CDCl₃).

Figure S53. ¹³C NMR of T-2 (100 MHz, CDCl₃).

Figure S54. TOF HRMS MALDI of T-2.

Figure S55. ¹H NMR of 2gh (100 MHz, CDCl₃).

ppm

Figure S56. ¹H NMR of 2gi (100 MHz, CDCl₃).

Figure S57. ¹H NMR of 2gj (100 MHz, CDCl₃).

Figure S58. ¹H NMR of 2gk (100 MHz, CDCl₃).

Figure S59. ¹H NMR of **2lh** (100 MHz, CDCl₃).

Figure S60. ¹H NMR of **2li** (100 MHz, CDCl₃).

Figure S61. ¹H NMR of **2**Ij (100 MHz, CDCl₃).

Figure S62. ¹H NMR of **2lk** (100 MHz, CDCl₃).

Figure S63. (a) ESR spectra of the mixture **B-1** (1.0×10^{-5} M) and DMPO (1.0×10^{-2} M) in air-saturated CH₂Cl₂ upon irradiation; (b) ESR spectrum of the mixture **B-1** (1.0×10^{-5} M), **1a** (3.0×10^{-3} M) and DMPO (1.0×10^{-2} M) in air-saturated CH₂Cl₂ upon irradiation; (c) ESR spectrum of a solution of **B-1** (1.0×10^{-4} M), TEMP (0.10 M), in air-saturated CH₂Cl₂ (d) ESR spectrum of **B-1** (1.0×10^{-5} M), TEMP (0.10 M), in air-saturated CH₂Cl₂ (d) ESR spectrum of **B-1** (1.0×10^{-5} M), TEMP (0.10 M), 1a (3.0×10^{-3} M) in air-saturated CH₂Cl₂ upon irradiation. All the irradiations were performed with 532 nm continuous laser and the duration is 300 s (141 mW/cm²). 22 °C.

2,2,6,6-tetramethylpiperidine (TEMP)

For detection of ${}^{1}O_{2}$

5,5-dimethyl-1-pyrroline-Noxide (DMPO)

For detection of $O_2^{\bullet-}$

Figure S64. Determination of the *e.e*% of **2af**, the mobile phase is isopropanol/ n-hexane = 95/5 (v/v), AD-H column.

Figure S65. Determination of the *e.e.* % of **2bf**, the mobile phase is isopropanol/ n-hexane = 95/5 (v/v), AD-H column.

Figure S66. Determination of the *e.e.* % of **2cf**, the mobile phase is isopropanol/ *n*-hexane = 95/5 (v/v), AD-H column.

Figure S67. ¹H NMR determination of the H_2O_2 generated in the photocatalytic reactions. The peak at 10.47 ppm is due to H_2O_2 (CDCl₃, 400 MHz).

Figure S68. ¹H NMR determination of the H_2O_2 generated in the photocatalytic reactions, 9.99 ppm peak is H_2O_2 (in CDCl₃,400 MHz).

Figure S69. Normalized emission spectra of **B-1**– **B-2**, **Eosin. Y** and **Ru-1** Excited at 505 nm, 590 nm, 510 nm, 462 nm. in CH_2Cl_2 (1.0×10^{-5} M; 25 °C).

Figure S70. Nanosecond time-resolved transient difference absorption of **B-1**. (a) transient absorption difference spectra and (b) decay trace at 520 nm. In deaerated CH₂Cl₂. $\lambda_{ex} = 532$ nm, 20 °C.

Figure S71. Nanosecond time-resolved transient difference absorption of **B-2**. (a) transient absorption difference spectra and (b) decay trace at 630 nm. In deaerated CH_2CI_2 . $\lambda_{ex} = 532$ nm, 20 °C.

TOF HRMS ESI $^{\scriptscriptstyle 2}$: Calcd [C_{21}H_{25}N_3O_6-H]- m/z 414.1665, found m/z 414.1680

Figure S72. HRMS-ESI⁻ evidence for 4–Hydroxy TEMPO trapped free radicals.

Figure S73. Normalized UV–vis absorption spectra and emission spectra of **T-2** (in toluene, 1.0×10^{-5} M, 20 °C).

Figure S74. Plot of the photocatalysis yields vs. photoirradiation time with different photocatalysts.

Typical procedures: to a flask were added photocatalysts (1 mol%), tetrahydroisoquinoline derivatives (0.4 mmol), nitromethane (6 mL). The reaction mixture was stirred at rt under air. The solution was then irradiated using a 35 W xenon lamp through a cut off filter (0.72 M NaNO₂ aqueous solution, transparent for light > 385 nm). Aliquot of 0.3 mL of the solution was taken, the solvent was removed under reduced pressure. Proton nuclear magnetic resonance (¹H NMR) in CDCl₃ was carried out to determine the reaction yield. Peaks at 4.42 ppm are the substrate characteristic peak, the peak at 5.53 ppm is the characteristic peak of the product.

Figure S75. Quenching of the triplet excited state of Ru-1 by the substrate of the photocatalytic reactions. (a) quenching of the Ru(bpy)₃²⁺ phosphorescence by **1a** (*N*-phenyl-1,2,3,4-tetrahydroisoquinoline), (b) quenching of the Ru(bpy)₃²⁺ phosphorescence by **1m** (phenyl diazonium salts), $\lambda_{ex} = 452$ nm. In deaerated CH₃CN. 20 °C.

Figure S76. Nanosecond time-resolved transient difference absorption spectra of **Eosin Y**. (a) Decay trace of **Eosin Y** at 520 nm, (b) Transient difference absorption spectra of **Eosin Y**. Excited with pulsed laser ($\lambda_{ex} = 532$ nm). In deaerated CH₃CN. 1.0×10^{-5} M, 20 °C.

Figure S77. Nanosecond time-resolved transient difference absorption spectra of Eosin Y in the presence of 64 mM **1a**. (a) Decay trace of Eosin Y at 520 nm, (b) Transient difference absorption spectra of Eosin Y in the presence of 64 mM **1a**. Excited with nanosecond pulsed laser ($\lambda_{ex} = 532$ nm). In deaerated CH₃CN. 1.0 × 10⁻⁵ M, 20 °C.

Figure S78. Nanosecond time-resolved transient difference absorption spectra of **B-1**. (a) Decay trace of **B-1** at 540 nm, (b) Transient difference absorption spectra of **B-1**. Excited with nanosecond pulsed laser ($\lambda_{ex} = 532$ nm). In deaerated CH₃CN. 1.0×10^{-5} M, 20 °C.

Figure S79. Nanosecond time-resolved transient difference absorption spectra of **B-1** added 6.4 mM **1a** (a) Decay trace of **B-1** at 540 nm, (b) Transient difference absorption spectra of **B-1** added 0.0064 M⁻¹ **1a**. Excited with nanosecond pulsed laser ($\lambda_{ex} = 532$ nm). In deaerated CH₃CN. 1.0 × 10⁻⁵ M, 20 °C.

Figure S80. Nanosecond time-resolved transient difference absorption spectra of **B-2**. (a) Decay trace of **B-2** at 380 nm, (b) Transient difference absorption spectra of **B-2**. Excited with nanosecond pulsed laser ($\lambda_{ex} = 532$ nm). In deaerated CH₃CN. 1.0 × 10⁻⁵ M, 20 °C.

Figure S81. Nanosecond time-resolved transient difference absorption spectra of **B-2** in the presence of 6.4 mM **1a.** (a) Decay trace of **B-2** at 540 nm, (b) Transient difference absorption spectra of **B-2** in the presence of 6.4 mM **1a**. Excited with nanosecond pulsed laser ($\lambda_{ex} = 532$ nm). In deaerated CH₃CN. 1.0 × 10⁻⁵ M, 20 °C.

Figure S82. Nanosecond time-resolved transient difference absorption spectra of **B-1** in the presence of 6.4 mM **1m.** (a) Decay trace of **B-1** at 540 nm, (b) Transient difference absorption spectra of **B-1** added 6.4 mM **1m**. Excited with nanosecond pulsed laser ($\lambda_{ex} = 532$ nm). In deaerated CH₃CN. 1.0×10^{-5} M, 20 °C.

Figure S83. Nanosecond time-resolved transient difference absorption spectra of **B-2** in the presence of 0.66 mM **1m**. (a) Decay trace of **B-2** at 380 nm, (b) Transient difference absorption spectra of **B-2** in the presence of 0.66 mM **1m**. Excited with nanosecond pulsed laser ($\lambda_{ex} = 532$ nm). $\lambda_{ex} = 532$ nm (in deaerated CH₃CN. 1.0 × 10⁻⁵ M, 20 °C).

Figure S84. (a) The Stern–Volmer quenching of the triplet state lifetimes of the different triplet photosensitizers **B-1**, **B-2** and Eosin Y in the presence of **1a** (*N*-phenyltetrahydroisoquinione). *c* [photocatalysts] = 1.0×10^{-5} M, $\lambda_{ex} = 532$ nm. (b) The Stern–Volmer quenching of the phosphorescence of **Ru-1** in the presence of **1a** (*N*-phenyltetrahydroisoquinione). *c* [**Ru-1**] = 1.0×10^{-5} M. In CH₃CN, $\lambda_{ex} = 452$ nm, 20 °C.

Figure S85. (a) The Stern–Volmer quenching of the triplet state lifetimes of the photocatalysts **B-1** and **B-2** in the presence of **1m** (Aryl diazonium salts). *c* [photocatalysts] = 1.0×10^{-5} M, $\lambda_{ex} = 532$ nm. (b) The Stern–Volmer quenching of the phosphorescence in the presence of **1m** (phenyl diazonium salts). *c* [**Ru-1**] = 1.0×10^{-5} M. In CH₃CN, $\lambda_{ex} = 452$ nm, 20 °C.

Table S1. Tr	iplet Excited	l-Stat	e Lif	fetimes (τ _T), Sterr	n–Voln	ne Quenching Constant (K _{sv}), and Bimolecu	ılar
Quenching	Constants	(<i>k</i> _q)	of	photocatalysts	with	N-phenyl-1,2,3,4-tetrahydroisoquinoline	as
quencher ^a							

	τ _τ / μs	K _{sv} / 10 ² M ⁻¹	<i>K</i> _q / 10 ⁷ M ⁻¹ s ⁻¹
B-1	56.9	8.25	1.45
B-2	3.6	7.65	36.4
Eosin Y	76.3	19.5	2.56
Ru(bpy) ₃ ²⁺	0.9	0.49 ^{<i>b</i>}	5.47 ^{<i>b</i>}

^{*a*} The data were obtained with photocatalysts concentration at 1.0×10^{-5} M in deaerated CH₃CN solution, excited with pulsed 532 nm laser, 20 °C. ^{*b*} The data were obtained by measurement of the quenching of the phosphorescence of Ru(bpy)₃²⁺ excited with 452 nm, 20 °C.

Table S2. Triplet Excited State Lifetimes (τ_T), Stern–Volme Quenching Constant (K_{sv}), and Bimolecular Quenching Constants (k_q) of photocatalysts with phenyl diazonium salt as quencher.^{*a*}

	$\tau_T/\mu s$	K _{sv} / 10 ³ M ⁻¹	<i>K</i> _q / 10 ⁸ M ⁻¹ s ⁻¹
B-1	56.9	7.91	1.39
B-2	2.1	8.44	40.2
Eosin Y	76.3		_
$\operatorname{Ru}(\operatorname{bpy})_3^{2+}$	0.9	$0.68 \ ^{b}$	7.51 ^b

^{*a*} The data were obtained with photocatalysts concentration at 1.0×10^{-5} M in deaerated CH₃CN solution, excited with 532 nm laser, 20 °C. ^{*b*} The data were obtained quenching of the phosphorescence excited with 452 nm, 20 °C.