Table S1: Overview of the different applied parameters for ZnO:Al NPs syntheses obtained by heating-up thermal decomposition.

Reagents	Name	ZnO-ST	2AI-ST	3AI-ST	5AI-ST	8AI-ST	10AI-ST	2Al-no	2AI-PD	2AI-TD	2AI-BAm	2AI-SAc	2AI-120Ac	2AI-120Am
Dibenzyl ether		٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
Zn(acac)2.xH2O		٧	v	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	v
2 % Al(acac) ₃		-	v	-	-	-	-	٧	٧	٧	٧	٧	٧	v
3 % Al(acac)₃		-	-	٧	-	-	-	-	-	-	-	-	-	-
5 % Al(acac) ₃		-	-	-	٧	-	-	-	-	-	-	-	-	-
8 % Al(acac) ₃		-	-	-	-	٧	-	-	-	-	-	-	-	-
10 % Al(acac) ₃		-	-	-	-	-	٧	-	-	-	-	-	-	-
10 mmol 1,2-hexadecaned	liol	٧	٧	٧	٧	٧	٧	-	-	-	٧	٧	٧	٧
10 mmol 1,2-propanediol		-	-	-	-	-	-	-	٧	-	-	-	-	-
10 mmol 1,2-tetradecaned	liol	-	-	-	-	-	-	-	-	٧	-	-	-	-
6 mmol oleic acid		٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	-	-	-
6 mmol oleyl amine		٧	٧	٧	٧	٧	٧	٧	٧	٧	-	٧	-	-
6 mmol benzyl amine		-	-	-	-	-	-	-	-	-	٧	-	-	-
6 mmol stearic acid		-	-	-	-	-	-	-	-	-	-	٧	-	-
12 mmol oleic acid		-	-	-	-	-	-	-	-	-	-		٧	-
12 mmol oleyl amine		-	-	-	-	-	-	-	-	-	-	-	-	٧

Table S2: Band assignment for the FTIR spectrum (Figure 4) of ZnO:Al suspensions (2AL-ST and 2AL-BAm).

Wave number (cm ⁻¹)	Assignment
3100-3020	v CH=
3000-2850	$v_a CH_2$, $v_s CH_2$, $v_a CH_2$ -COO ⁻ , $v_a CH_3$, $v_s CH_3$
1680-1620	v C=C
1500-1400	v _a COO ⁻ , v _s COO ⁻
800-500	v Zn-O

Figure S1: Chromatograms headspace GC-MS results

Figure S2: Detailed information of the released gases during the synthesis of ZnO:Al nanoparticles analysed with headspace GC-MS. The pink bars represent the released gases during the nucleation step at 200 °C, while the orange bars represent gases evolved during the growth step at 300 °C.

Figure S3: Negative NOE cross-peaks at the alkene resonance of 5.48 ppm indicate the interaction of oleic acid or oleylamine with the nanoparticle surface in 2Al-ST.

Figure S4: Negative NOE cross-peaks at the alkene resonance of 5.48 ppm indicate the interaction of oleic acid with the nanoparticle surface in 2AI-BAm.

Figure S5: Analysis of the particles' size from the TEM images of the 0, 2, 3, 5, 8 and 10 at % ZnO:Al NPs. The average dry diameter of the 5 at % < 3 at % < 2 at % < 0 at % Al doping.

Figure S6a: profile of the precession ring diffraction pattern of ZnO:Al 0%, fitted with the ZnO wurtzite crystal structure.

Figure S6b: precession ring diffraction pattern of ZnO:Al 0%. All the rings can be indexed with the ZnO wurtzite structure parameters.

Figure S7a: profile of the precession ring diffraction pattern of ZnO:Al 3%, fitted with the ZnO wurtzite crystal structure.

Figure S7b: precession ring diffraction pattern of ZnO:Al 3%. All the rings can be indexed with the ZnO wurtzite structure parameters.

Figure S8a: profile of the precession ring diffraction pattern of ZnO:Al 5%, fitted with the ZnO wurtzite crystal structure.

Figure S8b: precession ring diffraction pattern of ZnO:Al 5%. All the rings can be indexed with the ZnO wurtzite structure parameters.

Figure S9a: profile of the precession ring diffraction pattern of ZnO:Al 8%, fitted with the ZnO wurtzite crystal structure.

Figure S9b: precession ring diffraction pattern of ZnO:Al 8%. All the rings can be indexed with the ZnO wurtzite structure parameters.

Figure S10a: profile of the precession ring diffraction pattern of ZnO:Al 10%, fitted with the ZnO wurtzite crystal structure.

Figure S10b: precession ring diffraction pattern of ZnO:Al 10%. All the rings can be indexed with the ZnO wurtzite structure parameters.

Figure S11a: profile of the precession ring diffraction pattern of ZnO:Al 10%, fitted with the gahnite crystal structure.

Figure S11b: precession ring diffractin pattern of ZnO:Al 10%. All the rings can be indexed with the gahnite structure parameters.

Figure S12: fitted profile of the precession ring diffraction pattern of ZnO:Al 0% and gold nanoparticles.

Figure S13: fitted profile of the precession ring diffraction pattern of ZnO:Al 2% and gold nanoparticles.

Figure S14: fitted profile of the precession ring diffraction pattern of ZnO:Al 3% and gold nanoparticles.

Figure S15: fitted profile of the precession ring diffraction pattern of ZnO:Al 5% and gold nanoparticles.

Figure S16: fitted profile of the precession ring diffraction pattern of ZnO:Al 8% and gold nanoparticles.

Figure S17: HRSTEM images of the main zones of 5 at % Al:ZnO (5AL-ST).