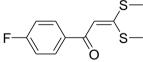
Supporting Information

Solid support mediated chemo and regioselective synthesis of 3*H*-1,5 benzodiazepines from diversely substituted α-oxo ketene dithioacetals

Nutan Sharma,^a Tejpal Singh Chundawat,^a Subash Chandra Mohapatra,^a Sunita Bhagat^a*

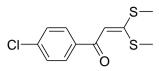
^a Organic Synthesis Research Laboratory, Department of Chemistry, A.R.S.D. College, University of Delhi, New Delhi-110021, India. Email id: sunitabhagat28@gmail.com

S. No.		Page No.
1.	General	S2-S2
2.	Syntheisof α-oxo ketene dithioacetals (2a-l)	S2-S5
3.	Synthesis of substituted 3H-1,5-benzodiazepines (4a-x)	S5-S12
4.	X-ray crystallographic data	S12-S13
5.	Refrences	S14-S14
6.	Copies of ¹ H and ¹³ C NMRs (2a-I)	S16-S39
7.	Copies of ¹ H and ¹³ C NMRs (4a-x)	S40-S84

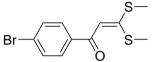

Experimental Section

General. The ¹H-NMR spectra were recorded in CDCl₃ & DMSO-d₆ solution on a Jeol JNM-ECX400P at 400 MHz using TMS as internal standard. The ¹³C-NMR spectra were recorded in CDCl₃ & DMSO-d₆ solution on Jeol JNM-ECX400P at 100 MHz. Thin-layer chromatography was performed using commercially prepared 100-mesh silica gel plates, and visualization was effected with short wavelength UV light (254 nm) and all melting points are uncorrected. Mass spectra were recorded on a micromass instruement (WATERS-KC455, ESI-MS). IR spectra was recorded in CHCl₃ on a Perkin Elmer Spectrum RX-1 FT-IR spectrophotometer. **Reagents.** All reagents were used directly as obtained commercially unless otherwise noted. Anhydrous forms of diethyether, THF, toluene, ethanol, hexanes, ethyl acetate, and CH₂Cl₂ were purchased from Merck Chemical Co. Aromatic and heterocyclic ketones, o-phenylenediamine, 3,4-Diaminotoluene, Silica gel, Neutral alumina, Basic alumina, Acidic alumina and Montmorillonite

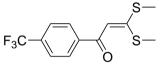
KSF were purchased from Aldrich Chemical Co., Inc.


General procedure for the synthesis of α -oxo ketene dithioacetals (2a-l) : The procedure for the synthesis of α -oxo ketene dithioacetals is previously reported.¹

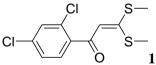
The compounds **2a**, **2b**, **2e**, **2f** are previously reported².


O 1-(4-Fluoro-phenyl)-3,3-bis-methylsulfanyl-propenone (2a). The compound was obtained as a yellow crystalline solid, mp 83-85°C: ¹H NMR (400 MHz, CDCl3): 7.92-7.88 (multiplet, 2H), 7.08 (t, J = 8.79Hz, 2H), 6.68 (s, 1H), 2.51 (s, 6H); ¹³C NMR (100 MHz,CDCl3): 184.05, 166.9, 166.1, 163.6, 135.3, 129.8, 115.3, 108.9, 17.3, 15.0.

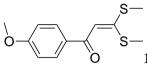
Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

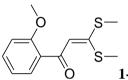


1-(4-Chloro-phenyl)-3,3-bis-methylsulfanyl-propenone (2b). The

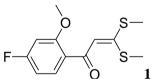

compound was obtained as a brown crystalline solid, mp 107-109°C: ¹H NMR (400 MHz, CDCl3): δ 7.83 (d, *J* = 8.05 Hz, 2H), 7.38 (d, *J* = 8.79 Hz, 2H), 6.68 (s, 1H), 2.54 (s, 3H), 2.51(s, 3H); ¹³C NMR (100 MHz, CDCl3): δ 184.1, 167.4, 137.8, 137.5, 129.0, 128.6, 108.7, 17.3, 15.0.

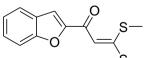
1-(4-Bromo-phenyl)-3,3-bis-methylsulfanyl-propenone (2c). The compound was obtained as a brown solid, mp 88-90°C: ¹H NMR (400 MHz, CDCl3): 7.76 (d, J = 8.79 Hz, 2H), 7.55 (d, J = 8.79 Hz, 2H), 6.67(s, 1H), 2.54 (s, 3H), 2.51(s, 3H); ¹³C NMR (100 MHz, CDCl3): δ 184.2, 167.6, 138.02, 131.6, 129.2, 126.5, 108.6, 17.3, 15.0.


3,3-Bis-methylsulfanyl-1-(4-trifluoromethyl-phenyl)-propenone (2d). The compound was obtained as a dark yellow solid, mp 84-86 °C: ¹H NMR (400 MHz, CDCl3): 7.98 (d, J = 8.05 Hz, 2H), 7.67 (d, J = 8.05 Hz, 2H), 6.7 (s, 1H), 3.85 (s, 3H), 2.56 (s, 3H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CDCl3): δ 184.1, 168.8, 142.0, 127.9, 125.4, 108.6, 17.3, 15.0.


1-(2,4-Dichloro-phenyl)-3,3-bis-methylsulfanyl-propenone (2e). The compound was obtained as a off-white solid, mp 113-115 °C: ¹H NMR (400 MHz, CDCl3): 7.47 (d, J = 8.05 Hz, 1H), 7.39 (d, J = 2.2 Hz, 1H), 7.27 (dd, J = 6.59, 2.2 Hz, 1H), 6.46 (s, 1H), 2.52 (s, 3H), 2.48 (s, 3H); ¹³C NMR (100 MHz, CDCl3): δ 185.02, 167.7, 138.8, 136.2, 131.6, 130.8, 129.9, 127.2, 112.5, 17.2, 15.0.

3,3-Bis-methylsulfanyl-1*-p***-tolyl-propenone** (**2f**). The compound was obtained as a dark orange brown solid, mp 96-98°C: ¹H NMR (400 MHz, CDCl3): 7.81 (d, J =

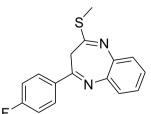

8.79 Hz, 2H), 7.22 (d, J = 8.05 Hz, 2H), 6.75 (s, 1H), 2.54 (s, 3H), 2.52 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl3): δ 185.3, 165.5, 142.2, 136.58, 129.0, 127.7, 109.4, 21.4, 17.2, 14.9.


C 1-(4-methoxy-phenyl)-3,3-bis-methylsulfanyl-propenone (2g). The compound was obtained as a yellow solid, mp 98-100 °C: ¹H NMR (400 MHz, CDCl3): 7.89 (d, J = 8.79 Hz, 2H), 6.91 (d, J = 8.79 Hz, 2H), 6.73 (s, 1H), 3.83 (s, 3H), 2.53 (s, 3H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl3): δ 184.4, 164.8, 162.4, 131.9, 129.7, 113.5, 109.3, 55.3, 17.2, 14.9.

¹O **1-(2-Methoxy-phenyl)-3,3-bis-methylsulfanyl-propenone** (2h). The compound was obtained as a yellow crystalline solid, mp 66-68 °C: ¹H NMR (400 MHz, CDCl3): 7.71 (dd, J = 9.52, 2.20 Hz, 1H), 7.38 (dt, J = 6.59, 2.20 Hz, 1H), 6.99 (t, J = 7.32 Hz, 1H), 6.92 (d, J = 8.05 Hz, 1H), 6.85 (s, 1H), 3.85 (s, 3H), 2.49 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl3): δ 185.9, 163.5, 157.3, 132.2, 130.8, 129.7, 120.7, 114.7, 55.5, 17.1, 14.9.

C 1-(4-Fluoro-2-methoxy-phenyl)-3,3-bis-methylsulfanyl-propenone (2i). The compound was obtained as a pale yellow solid, mp 96-98 °C: ¹H NMR (400 MHz, CDCl3): 7.77 (dd, J = 8.79, 7.32 Hz, 1H), 6.84 (s, 1H), 6.68 (td, J = 8.79, 8.05 Hz, 2.2, 1H), 6.62 (dd, J = 10.98, 2.2 Hz, 1H), 3.8 (s, 3H), 2.48 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl3): δ 184.3, 166.5, 164.0, 158.8, 132.6, 125.7, 114.4, 107.7, 99.4, 55.7, 17.2, 15.0.

S— 1-Benzofuran-2-yl-3,3-bis-methylsulfanyl-propenone (2j). The compound was obtained as a dark yellow solid, mp 114-116 °C: ¹H NMR (400 MHz, CDCl3): 7.61 (d, J = 7.32 Hz, 1H), 7.48 (d, J = 8.05 Hz, 1H), 7.41 (s, 1H), 7.36 (t, J = 8.05 Hz, 1H), 7.20 (t, J = 8.79 Hz, 1H), 6.82 (s, 1H), 2.56 (s, 1H), 2.48 (s, 1H); ¹³C NMR (100 MHz, CDCl3): δ 175.6, 168.1, 155.1, 154.4, 127.7, 127.0, 123.5, 122.7, 112.0, 110.7, 108.8, 17.3, 15.1.

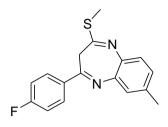

3,3-Bis-methylsulfanyl-1-pyridin-3-yl-propenone (**2k**). The compound was obtained as a yellow solid, mp 103-105 °C: ¹H NMR (400 MHz, DMSO-d⁶): 9.14 (d, J = 2.54 Hz, 1H), 8.72 (dd, J = 6.59, 2.2 Hz, 1H), 8.28 (td, J = 8.05, 2.2 Hz, 1H), 7.52 (dd, J = 8.05, 2.2 Hz, 1H), 6.87 (s, 1H), 2.67 (s, 3H), 2.49 (s, 3H); ¹³C NMR (100 MHz, CDCl3): δ 182.8, 167.9, 152.2, 148.8, 135.2, 133.9, 123.7, 108.9, 16.8, 14.6.

S— 3,3-Bis-methylsulfanyl-1-thiophen-2-yl-propenone (2l). The compound was obtained as a dark brown solid, mp 90-92°C: ¹H NMR (400 MHz, DMSO-d⁶): 7.98 (d, J = 2.93 Hz, 1H), 7.90 (dd, J = 5.13 Hz, 1H), 7.22 (t, J = 5.13 Hz, 1H), 6.79 (s, 1H), 2.66 (s, 3H), 2.49 (s, 3H); ¹³C NMR (100 MHz, CDCl3): δ 177.5, 165.1, 146.2, 133.3, 130.6, 128.4, 108.9, 16.7, 14.4.

General Procedure for the synthesis of substituted 3H- 1,5-benzodiazepines (4a-x).

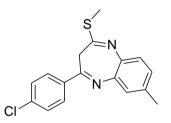
 α -oxo ketene dithioacetal **2(a-l)** (1 mmol) and amine (**3a/3b**) (1.5 mmol) were dissolved in diethyl ether (5mL). Basic alumina (1g) was then added to the mixture and stirred for a while followed by removal of the solvent under reduced pressure. The mixture was stirred at 90°C for 4 hr. After completion of the reaction (monitored by TLC), reaction mass was directly purified by column chromatography on neutral alumina using hexane–ethyl acetate 9.5 : 0.5 as eluent to afford the desired pure product.

Compounds 4c, 4e, 4k, 4m are previously reported 3 .

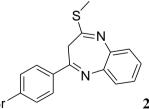


 F
 2-(4-Fluoro-phenyl)-4-methylsulfanyl-3H-benzo[b][1,5]diazepine (4a).

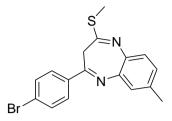
 The compound was obtained as a yellow solid, mp 95-97°C; IR (v_{max} cm⁻¹) (CHCl₃): 2924,


 1599, 1584 ; ¹H NMR (400 MHz, CDCl₃): 8.09 (t, J = 8.79 Hz, 2H), 7.49 (t, J = 9.52, 1H), 7.40 (t,

J = 9.52, 1H), 7.25 (t, J = 6.59, 2H), 7.15 (t, J = 8.79, 2H), 3.38 (s, 2H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl3): δ 165.6, 163.1, 156.1, 152.8, 140.5, 139.6, 133.3, 130.2, 128.8, 127.6, 125.7, 124.5, 115.6, 39.4, 13.8; ESI-MS (m/z) : 285.41 (M+1).

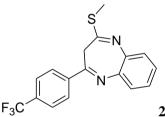

4-(4-Fluoro-phenyl)-7-methyl-2-methylsulfanyl-3H-

benzo[*b*][1,5]diazepine (4b) The compound was obtained as a yellow solid, mp 66-68°C; IR $(v_{max}cm^{-1})$ (CHCl₃): 2924, 1600, 1584 ; ¹H NMR (400 MHz, CDCl₃): 8.07 (dd, J = 8.79, 3.66, 2H), 7.29 (d, J = 8.05, 1H), 7.24 (s, 1H), 7.13 (t, J = 8.79, 2H), 7.06 (d, J = 8.79, 1H), 3.36 (s, 2H), 2.45 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl3): δ 165.6, 163.0, 155.3, 152.4, 139.4, 138.3, 134.4, 130.0, 128.4, 127.5, 126.9, 126.0, 115.7, 115.5, 39.4, 20.9, 13.8; ESI-MS (m/z) : 299.37 (M+1).

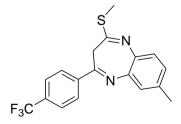


4-(4-Chloro-phenyl)-7-methyl-2-methylsulfanyl-3H-

benzo[*b*][1,5]diazepine (4d) The compound was obtained as yellow solid, mp 96-98°C; IR $(v_{max}cm^{-1})$ (CHCl₃): 2923, 1590 ; ¹H NMR (400 MHz, CDCl₃): 7.96 (d, *J* = 8.05 Hz, 2H), 7.38 (d, *J* = 8.79 Hz, 2H), 7.24 (d, *J* = 8.05 Hz, 1H), 7.19 (s, 1H), 7.03 (dd, J = 8.05, 1.46, 1H), 3.31 (s, 2H), 2.40 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl3): δ 155.2, 152.3, 139.2, 138.4, 136.9, 134.5, 129.2, 128.8, 128.4, 127.5, 127.0, 126.1, 39.3, 20.9, 13.8; ESI-MS (m/z) : 315.37, 317.37 (M+1, M+3).

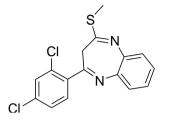


Br 2-(4-Bromo-phenyl)-4-methylsulfanyl-3*H*-benzo[*b*][1,5]diazepine (4e) The compound was obtained as light yellow solid, mp 92-94°C; IR (v_{max} cm⁻¹) (CHCl₃): 2924, 1586 ; ¹H NMR (400 MHz, CDCl₃): 7.95 (d, *J* = 8.79 Hz, 2H), 7.59 (d, *J* = 8.05 Hz, 2H), 7.50 (m, 1H), 7.40 (m, 1H), 7.26-7.24 (m, 2H), 3.35 (s, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl3): δ 156.2, 152.7, 140.5, 139.6, 135.9, 131.8, 129.5, 128.6, 127.7, 125.7, 125.5, 124.7, 39.3, 13.9; ESI-MS (m/z): 345.31, 347.31 (M+1, M+3).

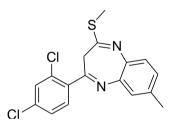

4-(4-Bromo-phenyl)-7-methyl-2-methylsulfanyl-3H-

benzo[*b*][1,5]diazepine (4f) The compound was obtained as a light yellow solid, mp 100-102°C; IR (v_{max} cm⁻¹) (CHCl₃): 2923, 1585 ; ¹H NMR (400 MHz, CDCl₃): 7.93 (d, J = 8.79 Hz, 2H), 7.58 (d, J = 8.79 Hz, 2H), 7.28 (d, J = 8.05 Hz, 1H), 7.20 (s, 1H), 7.07 (dd, J = 8.05 Hz, 2.2, 1H), 3.34 (s, 2H), 2.45 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 155.2, 152.4, 139.2, 138.3, 136.0, 134.5, 131.7, 129.4, 128.4, 127.5, 127.0, 126.1, 125.4, 39.3, 20.9, 13.8; ESI-MS (m/z) : 359.25, 361.25 (M+1, M+3).

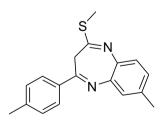
2-Methylsulfanyl-4-(4-trifluoromethyl-phenyl)-3H-


benzo[*b*][1,5]diazepine (4g) The compound was obtained as a yellow solid, mp 96-98°C; IR $(v_{max}cm^{-1})$ (CHCl₃): 2925, 1577, 1315; ¹H NMR (400 MHz, CDCl₃): 8.19 (d, *J* = 8.05 Hz, 2H), 7.71 (d, *J* = 8.05 Hz, 2H), 7.50 (dd, *J* = 7.32, 2.93 Hz, 1H), 7.41 (dd, *J* = 7.32, 2.93 Hz, 1H), 7.28-7.25 (m, 2H), 3.4 (s, 2H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 156.1, 152.3, 140.6, 140.3, 139.4, 132.2, 131.9, 128.7, 128.1, 127.7, 126.0, 125.5, 124.7, 39.5, 13.9; ESI-MS (m/z) : 335.34 (M+1).

7-Methyl-2-methylsulfanyl-4-(4-trifluoromethyl-phenyl)-3H-


benzo[b][1,5]diazepine (**4h**) The compound was obtained as a yellow viscous material, IR (v_{max}cm⁻¹) (CHCl₃): 2924, 1578, 1313 ; ¹H NMR (400 MHz, CDCl₃): 8.12 (d, *J* = 8.05 Hz, 2H), 7.65 (d, *J* = 8.05 Hz, 2H), 7.24 (d, *J* = 7.32 Hz, 1H), 7.17 (d, *J* = 7.32 Hz, 1H), 7.02 (t, *J* = 7.32 Hz,

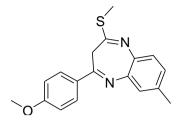
1H), 3.32 (s, 2H), 2.40 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl3): δ 155.1, 151.9, 140.4, 139.2, 138.4, 137.2, 136.1, 134.6, 128.6, 128.1, 127.6, 127.4, 126.1, 125.5, 39.5, 20.9, 13.8; ESI-MS (m/z) : 349.28 (M+1).


2-(2,4-Dichloro-phenyl)-4-methylsulfanyl-3*H*-benzo[*b*][1,5]diazepine

(4i) The compound was obtained as a yellow solid, mp 108-110°C; IR (v_{max} cm⁻¹) (CHCl₃): 2924, 1601, 1580 ; ¹H NMR (400 MHz, CDCl₃): 7.47 (dd, *J* = 7.32, 1.46 Hz, 2H), 7.40 (dd, *J* = 7.32, 1.46 Hz, 1H), 7.30-7.23 (m, 4H), 3.43 (s, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 156.3, 155.0, 139.9, 139.2, 136.9, 136.2, 133.4, 131.5, 129.8, 128.6, 127.5, 126.2, 124.6, 43.7, 14.0; ESI-MS (m/z) : 335.26, 337.26 (M+1, M+3).

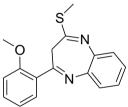
$\label{eq:2.4-Dichloro-phenyl} 4-(2,4-Dichloro-phenyl)-7-methyl-2-methylsulfanyl-3H-$

benzo[*b*][1,5]diazepine (4j) The compound was obtained as a yellow viscous material, IR $(v_{max}cm^{-1})$ (CHCl₃): 2923, 1584 ; ¹H NMR (400 MHz, CDCl₃): 7.47 (s, 1H), 7.37-7.20 (m, 4H), 7.11-7.04 (dddd, J = 8.05, 2.2 Hz, 1H), 3.41 (s, 2H), 2.45 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 155.9, 154.6, 139.7, 138.9, 137.7, 137.0, 136.1, 134.4, 133.4, 131.5, 129.8, 128.5, 127.5, 126.0, 43.6, 20.9, 13.9; ESI-MS (m/z) : 349.29, 351.29 (M+1, M+3).

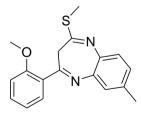


7-Methyl-2-methylsulfanyl-4-p-tolyl-3*H*-benzo[*b*][1,5]diazepine (4l)

The compound was obtained as a light yellow solid, mp 64-66°C; IR (v_{max} cm⁻¹) (CHCl₃): 2922, 1594, 1574 ; ¹H NMR (400 MHz, CDCl₃): 7.94 (d, *J* = 8.05 Hz, 2H), 7.28-7.24 (m, 4H), 7.04 (d, *J* = 8.79 Hz, 1H), 3.35 (s, 2H), 2.42 (s, 3H), 2.38 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ

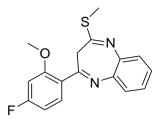

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

156.1, 155.5, 141.1, 138.3, 134.3, 129.3, 128.4, 128.0, 127.4, 126.6, 125.9, 39.3, 21.4, 20.9, 13.8; ESI-MS (m/z) : 295.39 (M+1).

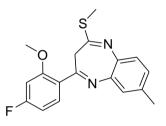


4-(4-Methoxy-phenyl)-7-methyl-2-methylsulfanyl-3H-

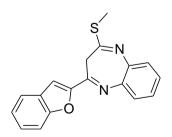
benzo[*b*][1,5]diazepine (4n) The compound was obtained as a off white solid, mp 92-94°C; IR (v_{max} cm⁻¹) (CHCl₃): 2923, 1593 ; ¹H NMR (400 MHz, CDCl₃): 8.05 (d, *J* = 8.05 Hz, 2H), 7.36-7.20 (m, 2H), 7.06 (d, J = 8.05 Hz, 1H), 6.97 (d, *J* = 8.79 Hz, 2H), 3.85 (s, 3H), 3.37 (s, 2H), 2.43 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.9, 155.5, 138.4, 134.4, 130.0, 128.3, 127.3, 126.6, 126.0, 114.0, 55.4, 39.2, 20.8, 13.8; ESI-MS (m/z) : 311.41 (M+1).


2-(2-Methoxy-phenyl)-4-methylsulfanyl-3*H***-benzo**[*b*][1,5]diazepine (40) The compound was obtained as a yellow viscous material, IR (v_{max} cm⁻¹) (CHCl₃): 2924, 1597, 754 ; ¹H NMR (400 MHz, CDCl₃): 7.57 (d, *J* = 6.59 Hz, 1H), 7.44 (d, *J* = 8.05 Hz, 2H), 7.39 (dd, *J* = 8.05, 2.2 Hz, 1H), 7.27 (dd, *J* = 7.32, 2.2 Hz, 1H), 7.21 (dt, *J* = 7.32, 2.2 Hz, 1H), 6.98 (d, *J* = 8.05 Hz, 2H), 3.92 (s, 3H), 3.51 (s, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl3): δ 158.1, 140.3, 131.7, 131.3, 128.7, 127.5, 125.6, 124.5, 120.9, 111.1, 55.3, 43.0, 14.0; ESI-MS (m/z) : 297.37 (M+1).

4-(2-Methoxy-phenyl)-7-methyl-2-methylsulfanyl-3H-

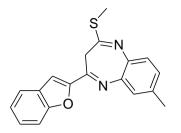

benzo[*b*][1,5]diazepine (4p) The compound was obtained as a yellow viscous material, IR $(v_{max}cm^{-1})$ (CHCl₃): 2923, 1599, 753 ; ¹H NMR (400 MHz, CDCl₃): 7.40 (t, *J* = 8.05 Hz, 2H), 7.33-7.19 (m, 2H), 7.05 (t, *J* = 8.79 Hz, 1H), 6.97 (t, *J* = 7.32 Hz, 2H), 3.9 (s, 3H), 3.46 (s, 2H), 2.43 (s, 3H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.1, 157.7, 157.0, 140.0, 138.0, 134.1,

131.5, 131.2, 128.7, 127.3, 126.8, 125.7, 120.8, 111.0, 55.3, 43.0, 20.9, 13.9; ESI-MS (m/z) : 311.36 (M+1).

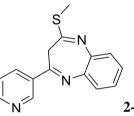

2-(4-Fluoro-2-methoxy-phenyl)-4-methylsulfanyl-3H-

benzo[*b*][1,5]diazepine (4q) The compound was obtained as a off white solid, mp 128-130°C; IR (v_{max} cm⁻¹) (CHCl₃): 2923, 1596 ; ¹H NMR (400 MHz, CDCl₃): 7.51 (d, *J* = 7.32 Hz, 1H), 7.44 (t, *J* = 8.05 Hz, 1H), 7.38 (dd, *J* = 7.32, 2.2 Hz, 1H), 7.27-7.19 (m, 2H), 6.71-6.66 (m, 2H), 3.91 (s, 3H), 3.47 (s, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 163.7, 159.5, 157.8, 156.3, 140.2, 132.9, 128.7, 127.5, 125.6, 124.4, 107.6, 99.4, 55.7, 42.9, 14.0; ESI-MS (m/z) : 315.34 (M+1).

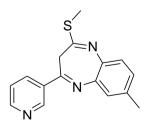
4-(4-Fluoro-2-methoxy-phenyl)-7-methyl-2-methylsulfanyl-3H-


benzo[*b*][1,5]diazepine (4r) The compound was obtained as a light yellow solid, mp 76-78°C; IR (v_{max} cm⁻¹) (CHCl₃): 2924, 1596 ; ¹H NMR (400 MHz, CDCl₃): 7.38-7.31 (m, 1H), 7.22-7.13 (m, 2H), 7.01-6.96 (m, 1H), 6.63-6.58 (m, 2H), 3.81 (s, 3H), 3.39 (s, 2H), 2.37 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 163.7, 159.6, 157.4, 156.8, 140.0, 138.0, 135.6, 134.2, 132.7, 128.6, 127.3, 126.9, 125.8, 124.3, 107.6, 99.4, 55.6, 42.8, 20.9, 13.9; ESI-MS (m/z) : 329.35 (M+1).

2-Benzofuran-2-yl-4-methylsulfanyl-3*H*-benzo[*b*][1,5]diazepine (4s)

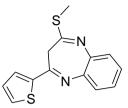

The compound was obtained as a fluorescent yellow solid, mp 109-111°C; IR (v_{max} cm⁻¹) (CHCl₃): 2923, 1592, 751 ; ¹H NMR (400 MHz, CDCl₃): 7.62 (d, *J* = 7.32 Hz, 1H), 7.56-7.53 (m, 2H), 7.39-7.32 (m, 3H), 7.23-7.19 (m, 3H), 3.33 (s, 2H), 2.40 (s, 3H); ¹³C NMR (100 MHz,

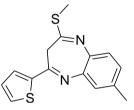
CDCl3): δ 156.4, 156.0, 152.4, 144.9, 140.5, 139.2, 129.0, 127.7, 126.9, 125.9, 124.7, 123.5, 122.2, 112.1, 110.9, 39.5, 13.8; ESI-MS (m/z): 307.54 (M+1).



2-Benzofuran-2-yl-7-methyl-4-methylsulfanyl-3H-

benzo[*b*][1,5]diazepine (4t) The compound was obtained as a yellow solid, mp 119-121°C; IR (v_{max} cm⁻¹) (CHCl₃): 2923, 1592, 751 ; ¹H NMR (400 MHz, CDCl₃): 7.61 (d, *J* = 8.05 Hz, 1H), 7.55 (d, *J* = 8.79 Hz, 1H), 7.37-7.31 (m, 2H), 7.25-7.16 (m, 3H), 7.03 (dd, *J* = 8.05, 1.46 Hz, 1H), 3.31 (s, 2H), 2.39 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 156.0, 155.4, 152.5, 144.5, 140.5, 139.0, 138.5, 134.5, 128.9, 127.9, 127.6, 127.3, 126.9, 126.1, 123.5, 122.2, 112.1, 110.7, 39.5, 20.9, 13.9; ESI-MS (m/z) : 321.55 (M+1).


2-Methylsulfanyl-4-pyridin-3-yl-3*H***-benzo[***b***][1,5]diazepine (4u) The compound was obtained as a yellow viscous material, IR (v_{max}cm⁻¹) (CHCl₃): 2923, 2852, 1598, 1574 ; ¹H NMR (400 MHz, DMSO-d₆): 9.28 (s, 1H), 8.71 (dd,** *J* **= 5.13, 2.2 , 1H), 8.46 (dd,** *J* **= 8.05, 2.2, 1H), 7.55 (q,** *J* **= 8.05 Hz, 1H), 7.46 (dd,** *J* **= 7.32, 2.2, 1H), 7.36 (dd,** *J* **= 7.32, 2.2, 1H), 7.33-7.26 (m, 2H), 3.56 (s, 2H), 2.40 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): \delta 157.5, 152.8, 152.0, 149.7, 140.6, 139.8, 136.0, 132.3, 129.1, 128.0, 126.5, 125.3, 124.3, 39.5, 13.9; ESI-MS (m/z) : 268.56 (M+1).**


7-Methyl-2-methylsulfanyl-4-pyridin-3-yl-3*H*-benzo[*b*][1,5]diazepine

(4v) The compound was obtained as a peach coloured solid, mp 86-88°C; IR (v_{max} cm⁻¹) (CHCl₃): 2923, 1596, 1576 ; ¹H NMR (400 MHz, DMSO-d₆): 9.23 (t, *J* = 2.2 Hz, 1H), 8.67 (td, *J* = 5.13, 1.46 Hz, 1H), 8.41 (dd, *J* = 8.05, 2.2 Hz, 1H), 7.51 (q, *J* = 8.05 Hz, 1H), 7.33-7.22 (m,

2H), 7.08 (td, J = 8.79, 2.2 Hz, 1H), 3.50 (s, 2H), 2.36 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 156.3, 152.2, 151.7, 149.4, 140.3, 139.4, 138.3, 135.7, 134.4, 132.2, 128.6, 127.7, 124.1, 39.5, 20.9, 13.7; ESI-MS (m/z) : 282.56 (M+1).

2-Methylsulfanyl-4-thiophen-2-yl-3*H***-benzo[***b***][1,5]diazepine (4w) The compound was obtained as a fluorescent yellow solid, mp 142-144 °C; IR (v_{max}cm⁻¹) (CHCl₃): 2923, 1588, 712; ¹H NMR (400 MHz, CDCl₃): 7.65 (s, 1H), 7.49 (t, 2H), 7.40-7.38 (m, 1H), 7.25-7.22 (m, 2H), 7.12 (t, 1H), 3.35 (s, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): \delta 156.5, 148.8, 143.7, 140.8, 139.4, 131.7, 129.5, 128.7, 128.0, 127.8, 125.6, 124.8, 40.3, 14.0; ESI-MS (m/z) : 273.52 (M+1).**

7-Methyl-2-methylsulfanyl-4-thiophen-2-yl-3*H***-benzo[***b***][1,5]diazepine (4x) The compound was obtained as a yellow viscous material, IR (v_{max}cm⁻¹) (CHCl₃): 2923, 1588, 710 ; ¹H NMR (400 MHz, DMSO-d₆) : 7.91 (td,** *J* **= 5.13, 1.46, 1H), 7.78 (t,** *J* **= 5.13, 1H), 7.24-7.14 (m, 3H), 7.06 (td,** *J* **= 8.05, 2.2, 1H), 3.47 (s, 2H), 2.38 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): \delta 157.5, 156.9, 143.7, 140.6, 139.4, 138.6, 133.2, 131.7, 128.9, 128.6, 128.0, 127.1, 126.5, 39.5, 21.0, 13.9; ESI-MS (m/z) : 287.50 (M+1).**

X-Ray crystallographic data

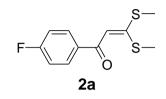
The crystals of **4c** of suitable quality were obtained from dichloromethane. The compound **4c** crystallized in Monoclinic crystal system with space group P 21/c. The single-crystal Xray data were collected on an Oxford XCalibur CCD diffractometer using graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The structures was solved using SIR- 92 and refined by full matrix least square technique on F2 using the SHELXL-97⁴⁻⁵ program within the WinGX v 1.80.05 software package. In **4c** hydrogens are mixed and all non-hydrogen atoms were refined anisotropically. Atomic coordinates, bond lengths, bond angles,

and thermal parameters for compounds 4c has been deposited at the Cambridge Crystallographic Data Centre. CCDC deposit number for 4c is 920827.

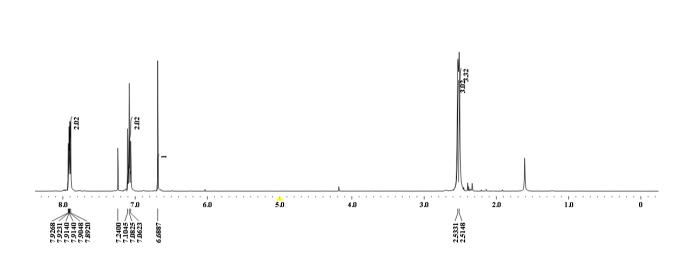
The main crystallographic data and structural refinement details for **4c** are given in table 1.

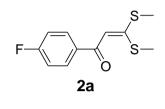
	4c
Empirical formula	C ₁₆ H ₁₃ ClN ₂ S
Formula weight	300.79
Temperature (K)	298(2) K
Wavelength [A]	0.71073
Crystal System	Monoclinic
Space Group	P 21/c
a [A]	4.2750(4)
b [A]	19.7528(15)
c [A]	17.138(2)
α[°]	90°
β[°]	92.163(9)°
γ [°]	90°
V [A3]	1446.1(3)
Z, D calcd [Mg/m ³]	4, 1.382
Abs. coefficient [mm ⁻¹]	0.399
F [000]	624
Crystal size [mm ³]	0.18 x 0.14 x 0.12
Theta range for data collection [°]	3.15 to 25.00
Index ranges	-5<=h<=5, -23<=k<=23, -14<=l<=19
Reflections collected	7718
Independent reflections	2419 [R(int) = 0.0234]
Completeness to theta = 25.00°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9537 and 0.9317
Refinement method	Full-matrix least-squares on F ²

Table 1. Crystallographic data and structural refinement parameters for compound 4c

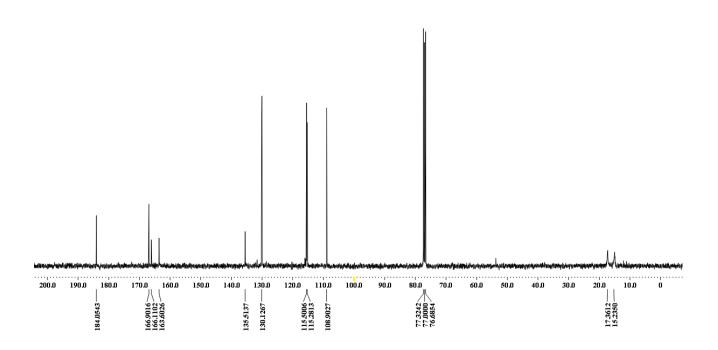

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

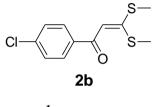
Data / restraints / parameters	2419 / 0 / 182
Goodness-of-fit on F ²	1.076
Final R indices [I>2sigma(I)]	$R_1 = 0.0457, wR_2 = 0.1045$
R indices (all data)	$R_1 = 0.0566, wR_2 = 0.1102$
Largest diff. peak and hole [A ⁻³]	0.185 and -0.194 e

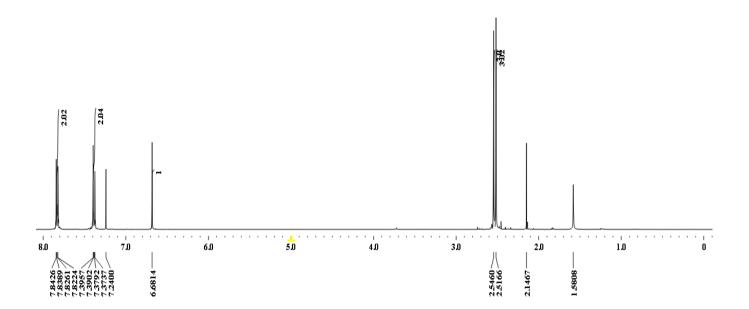

References

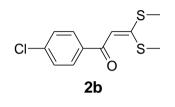

- 1. K.T. Potts, P.A. Winslow, Synthesis, 1987, 839.
- 2. M. Lubbe, R. Klassen, T. Trabhardt, A. Villinger, P. Langer, Synlett, 2008, 15, 2331.
- 3. Z.F. Li, Y.M. Zhang, Chinese Journal of Chemistry, 2001, 19, 996.
- 4. G.M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
- G.M. Sheldrick, SHELXL-97, Computer program for crystal structure refinement. University of Göttingen, Germany, 1997.

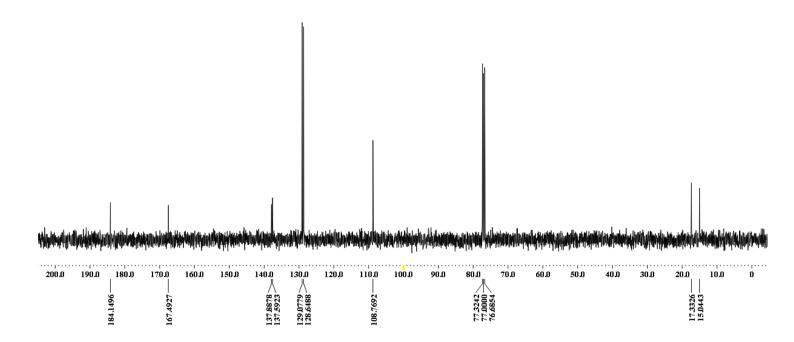
COPIES OF ¹HNMR & ¹³CNMR DATA

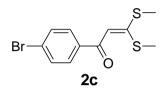


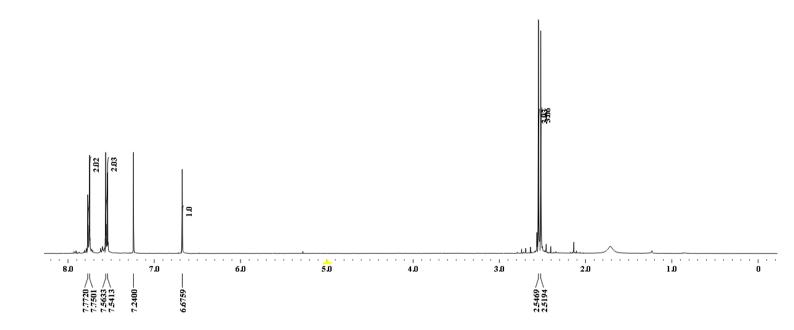


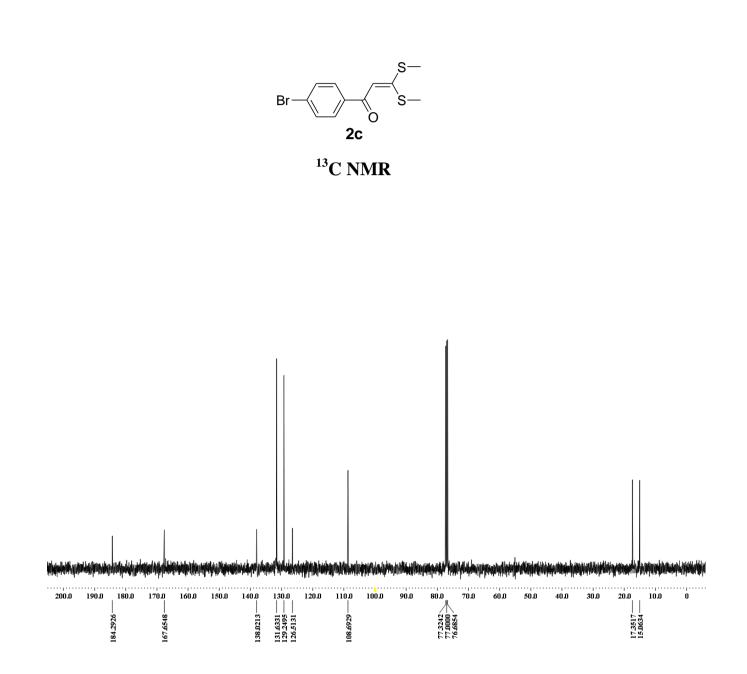


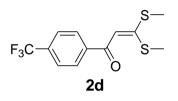

¹³C NMR

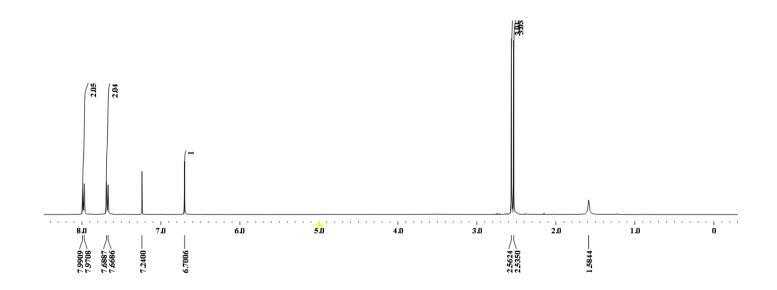


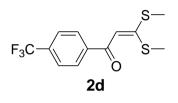


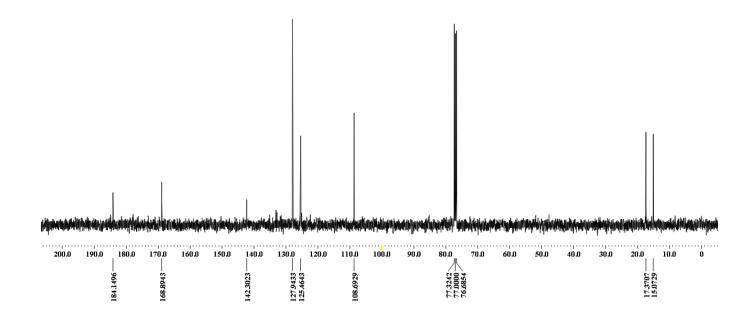


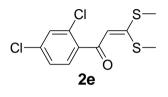


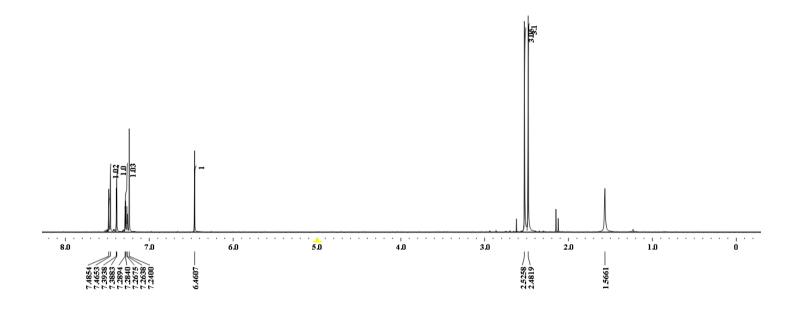


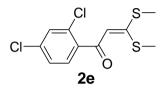


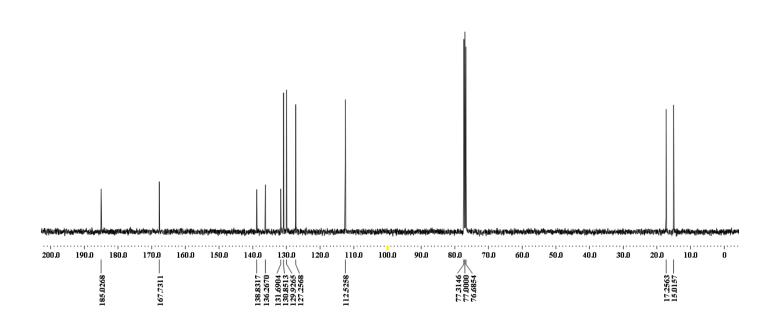


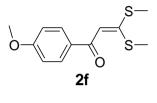


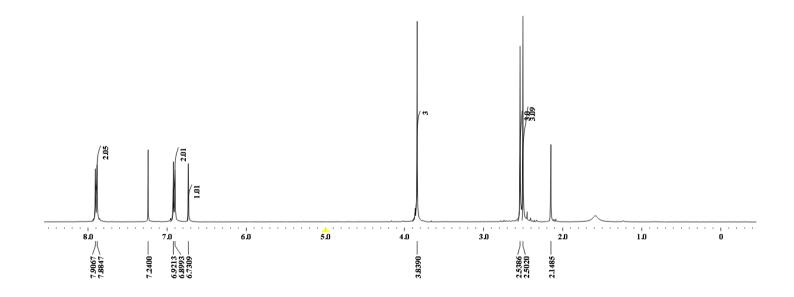


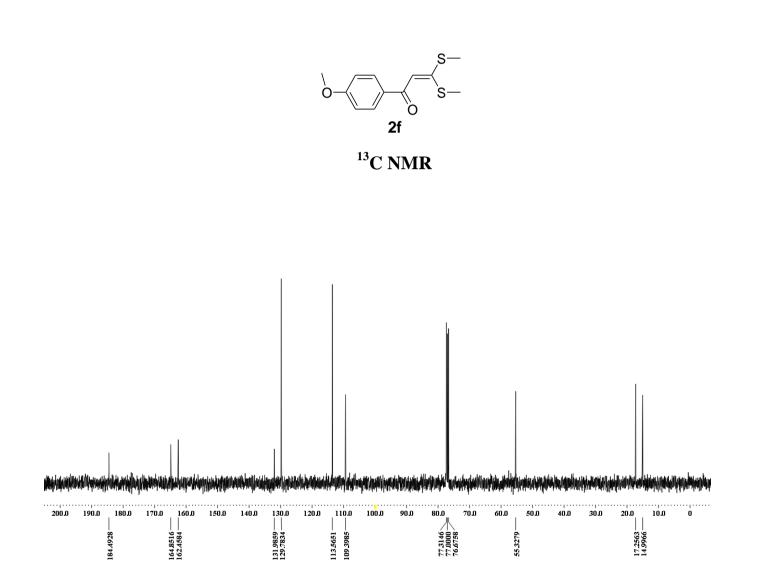


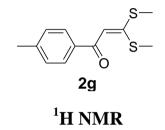


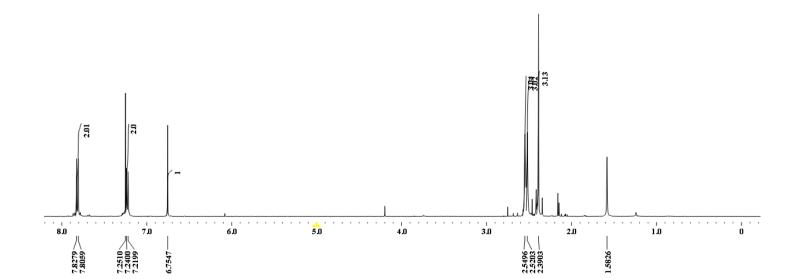


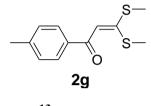


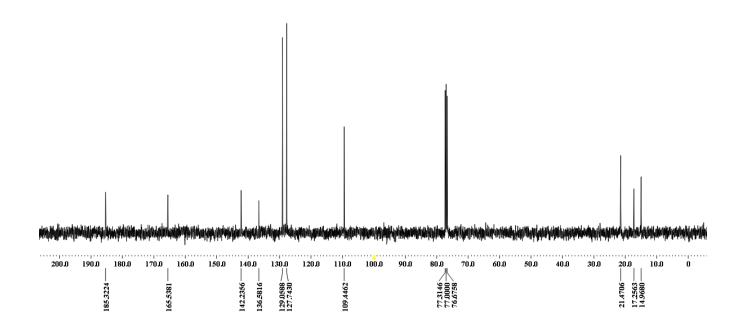


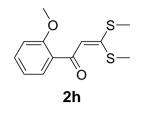

¹³C NMR

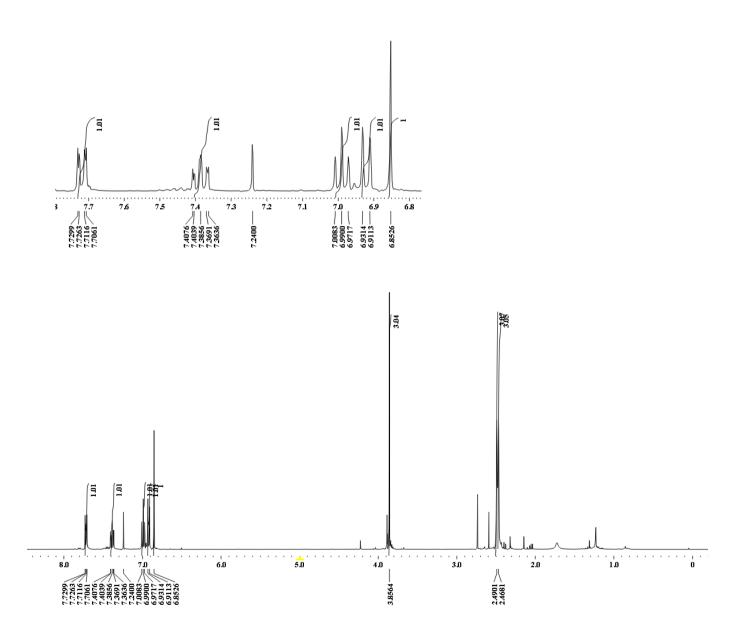


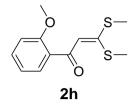


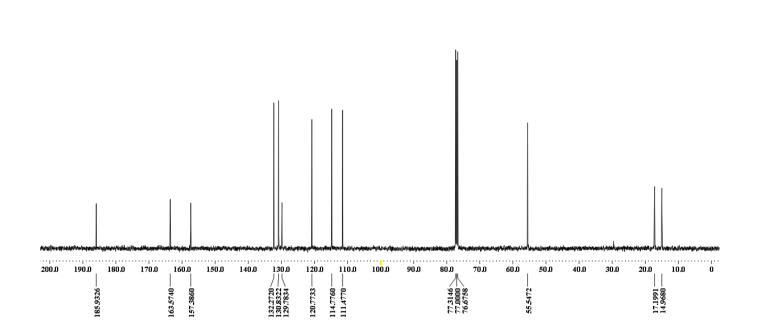


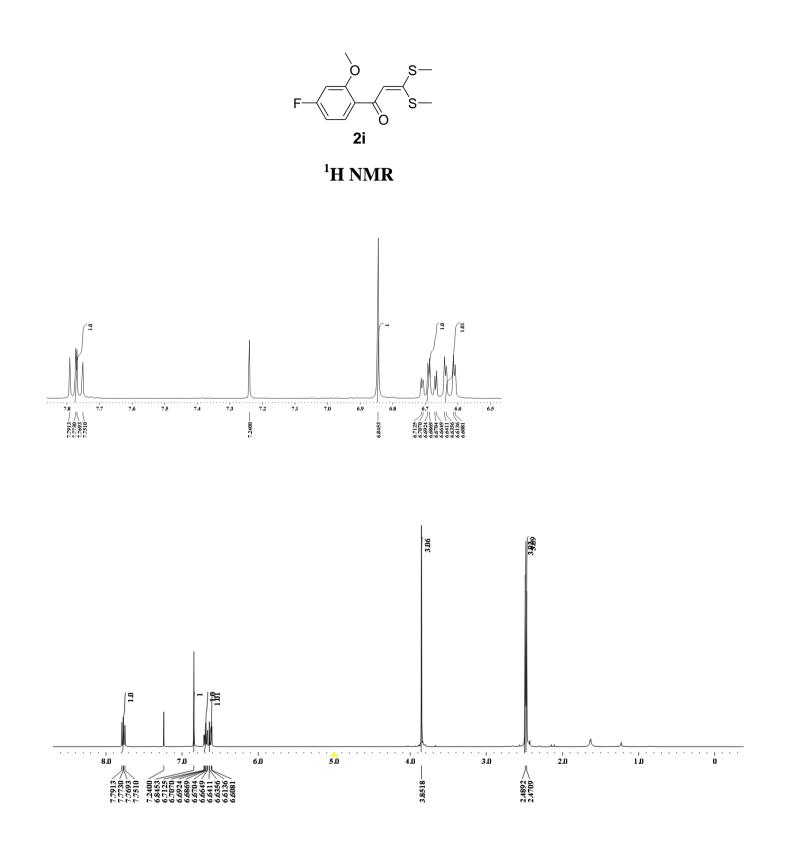


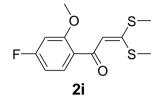


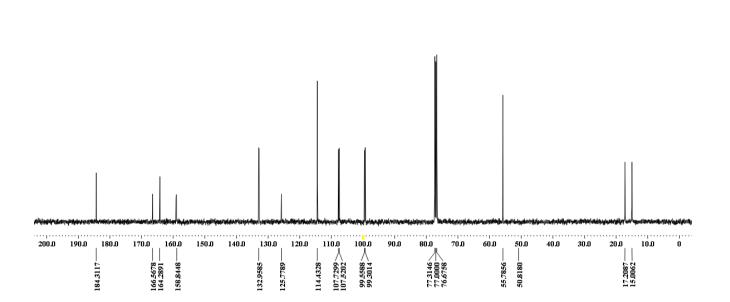


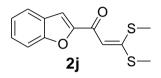


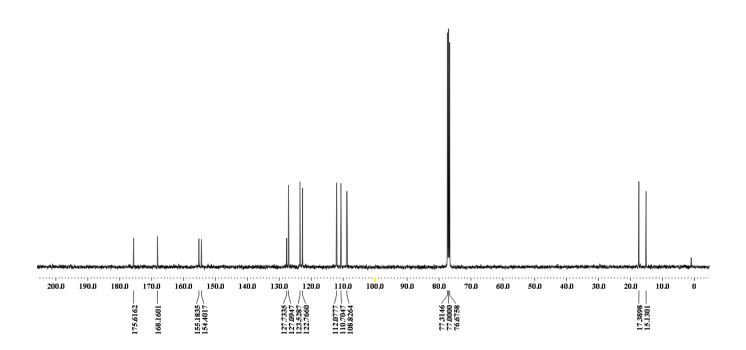


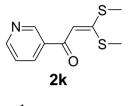


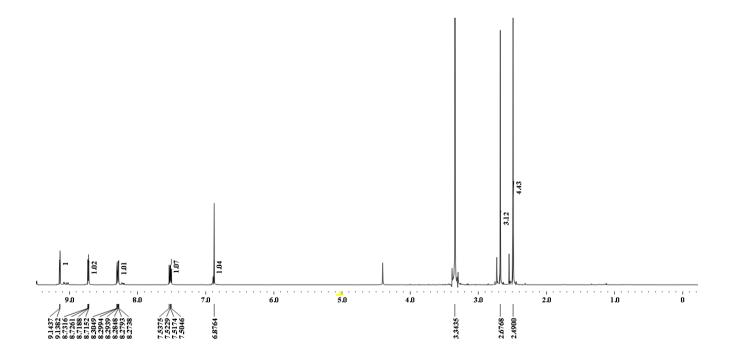


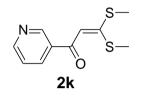

¹³C NMR

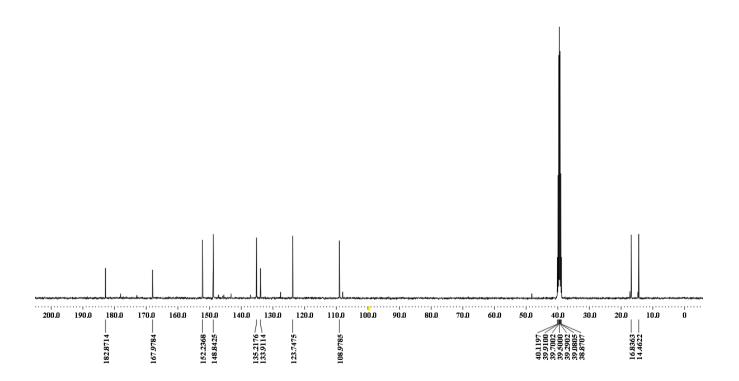


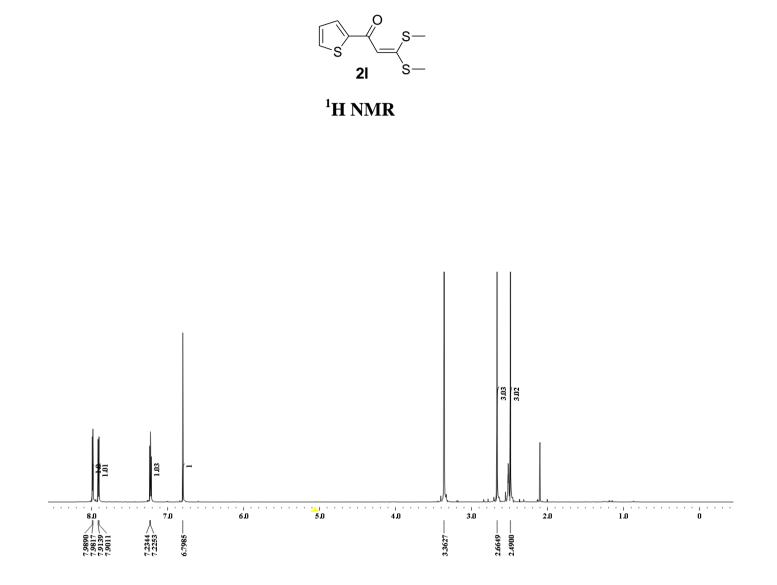

¹³C NMR

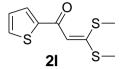


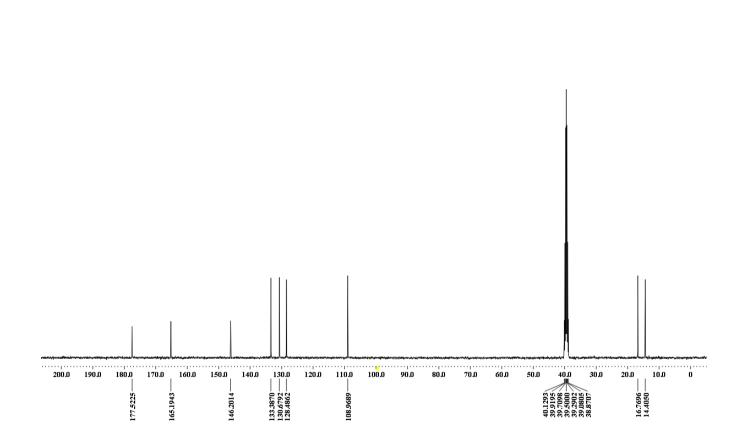


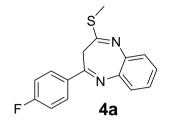


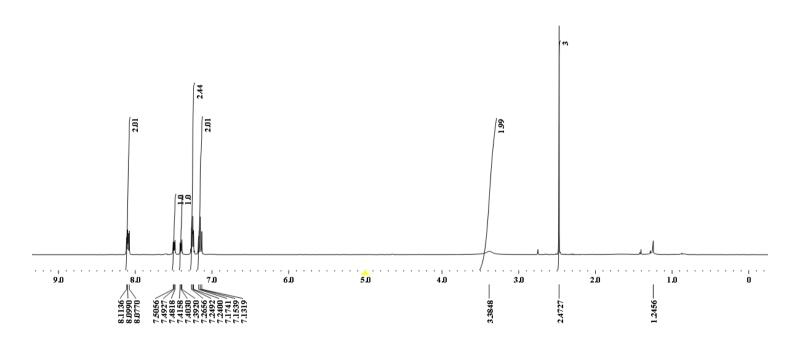


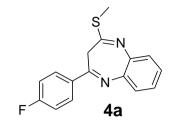


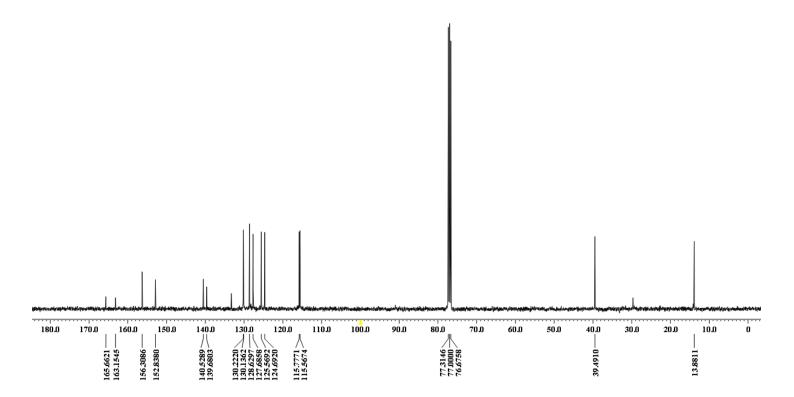


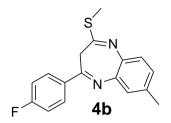


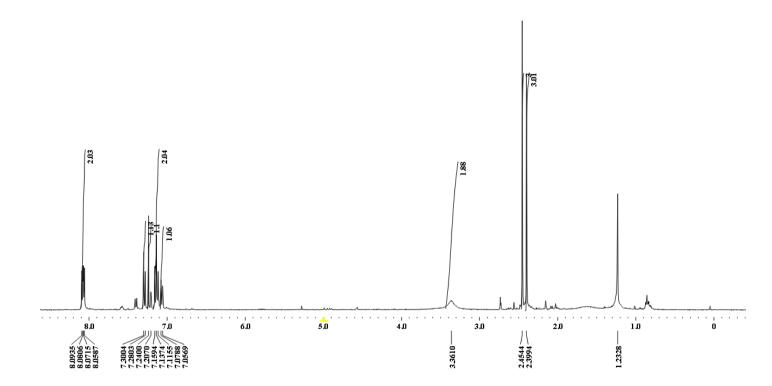


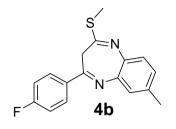


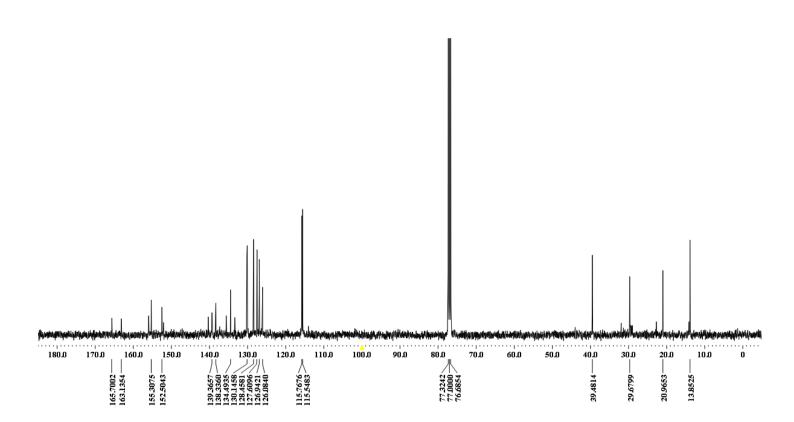

¹³C NMR

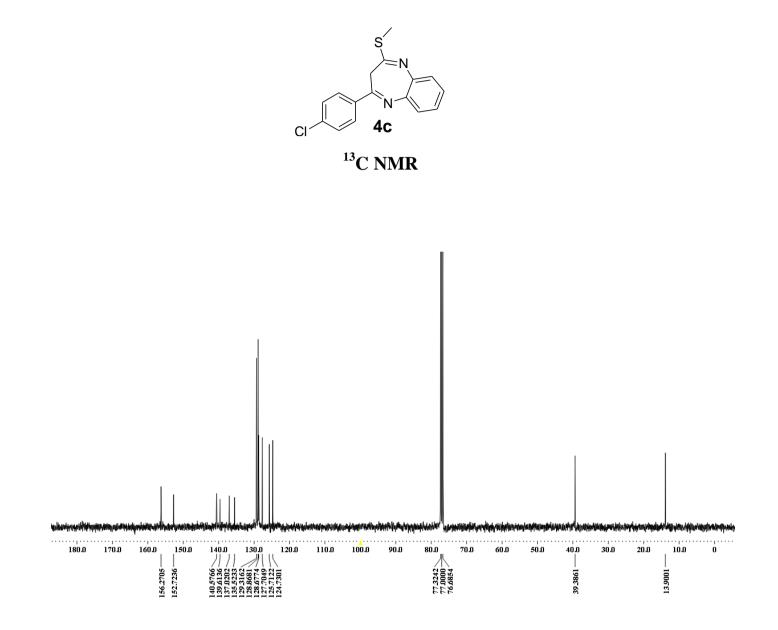


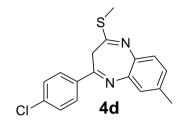


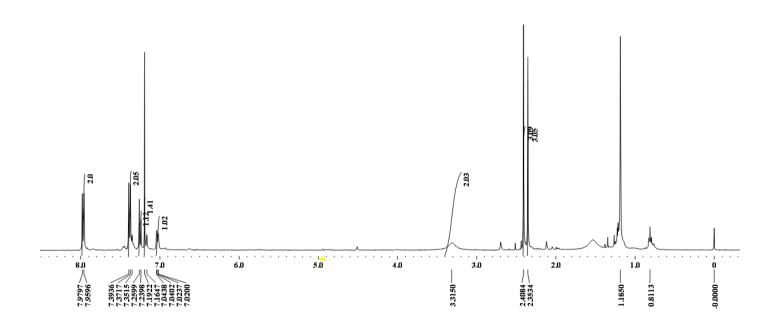


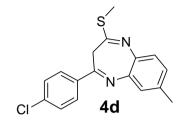


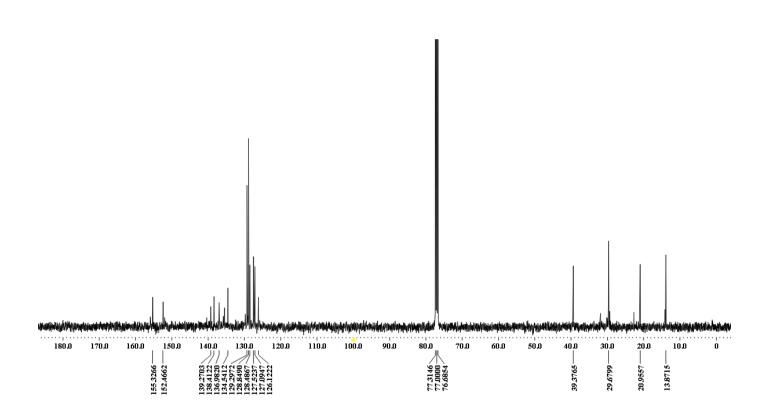


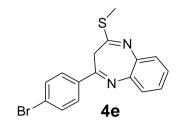

¹H NMR

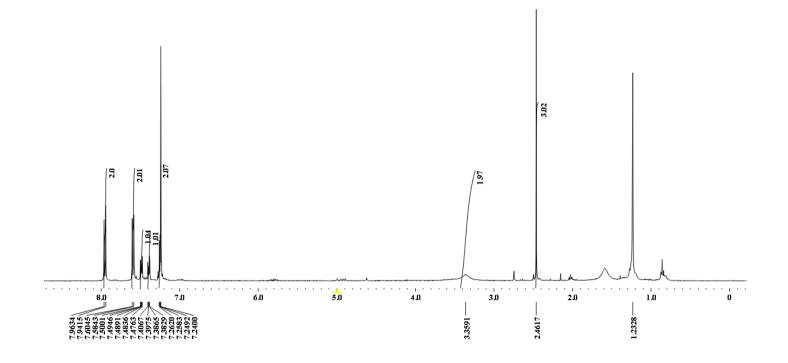


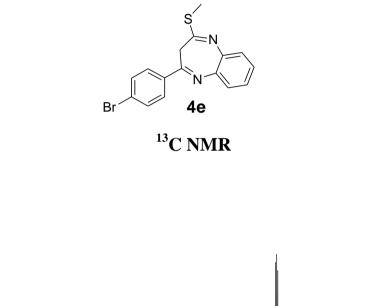

¹³C NMR

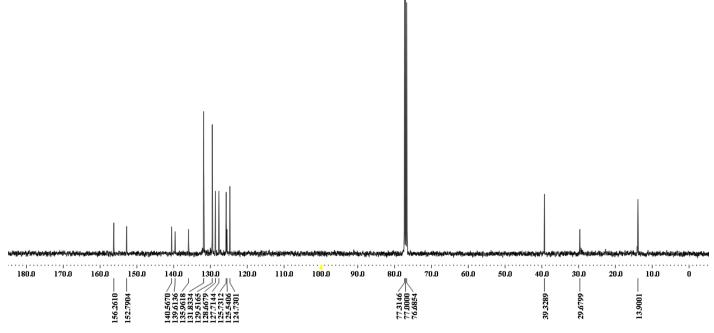


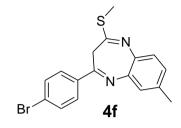



¹H NMR

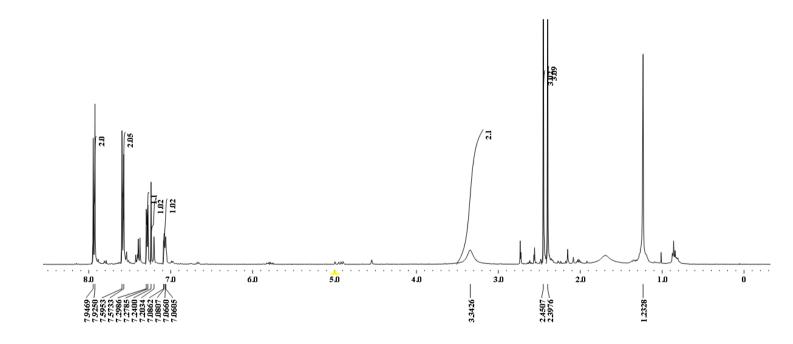


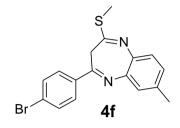

¹³C NMR

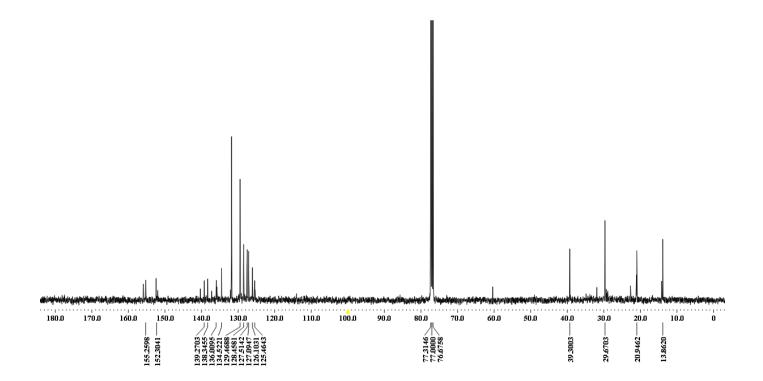


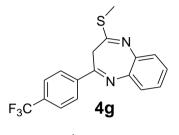


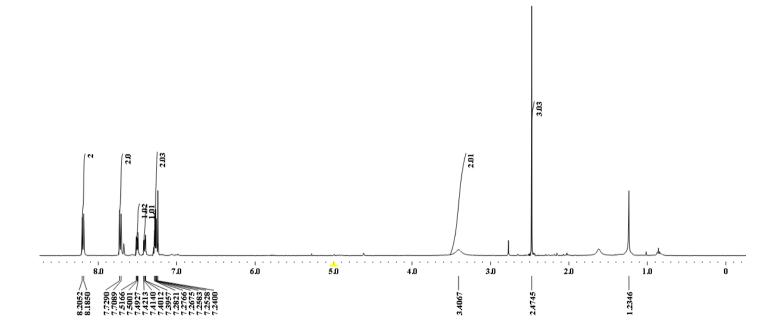
¹H NMR

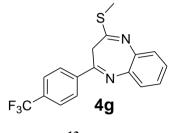


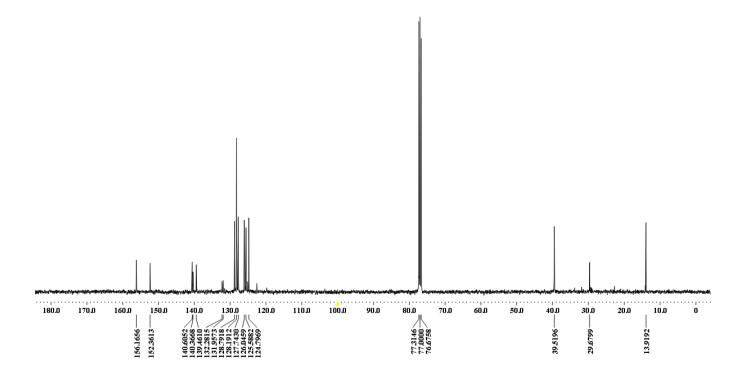


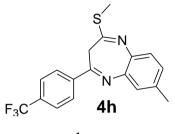


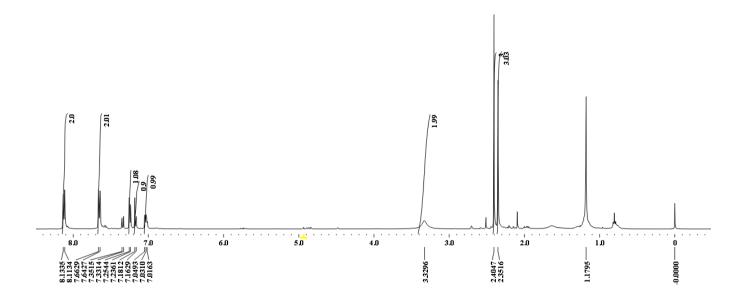

¹H NMR

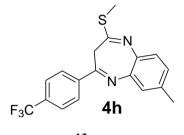


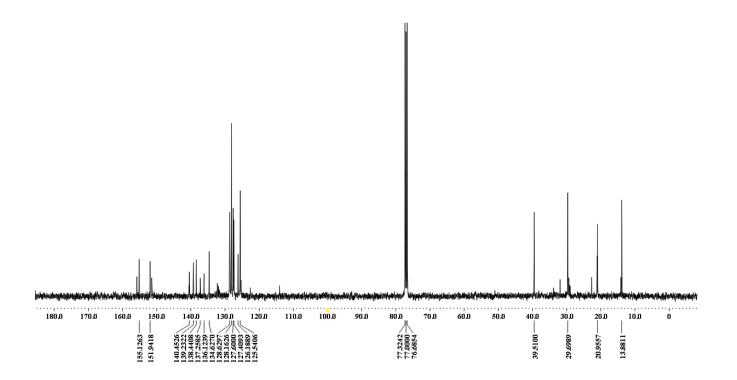


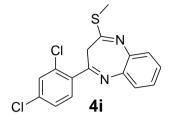


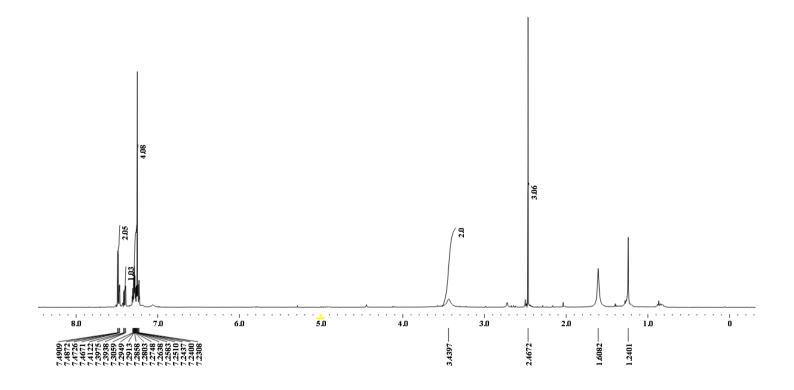


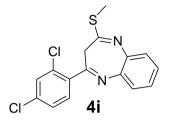


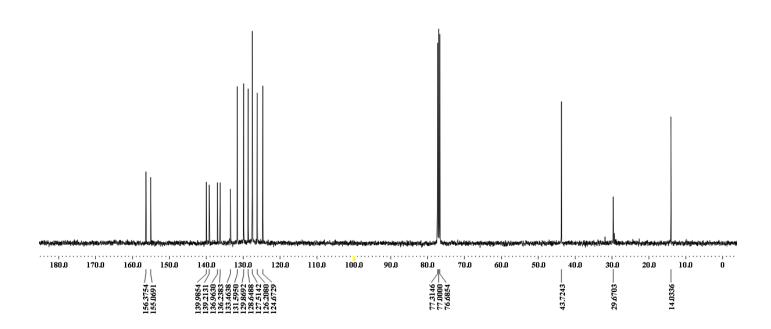

¹³C NMR

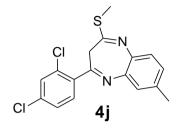


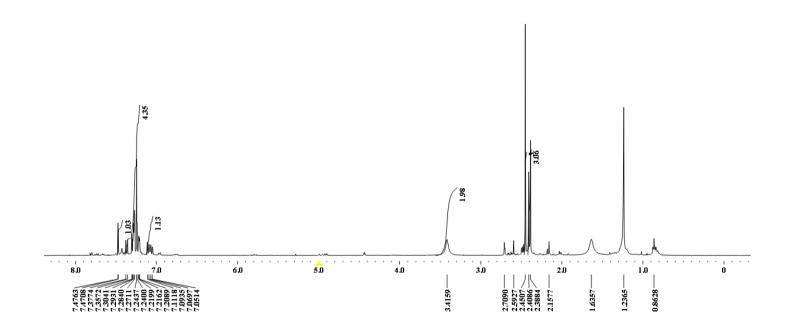

¹H NMR

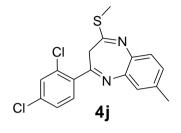


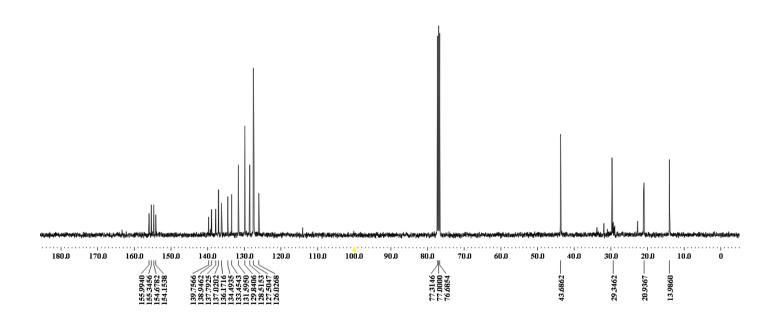




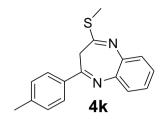

¹H NMR

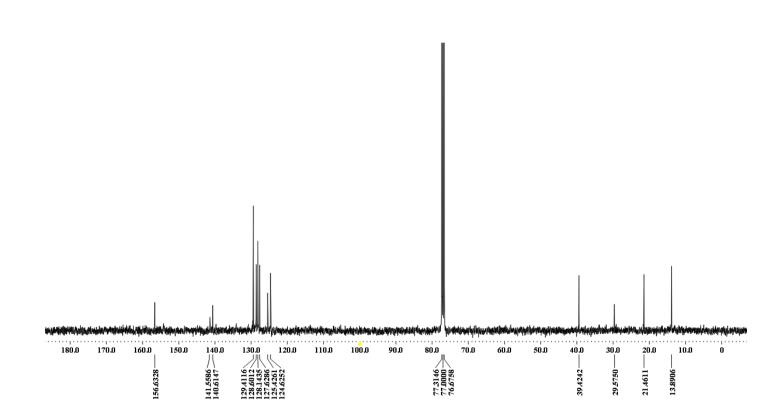


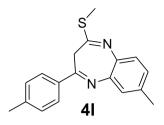




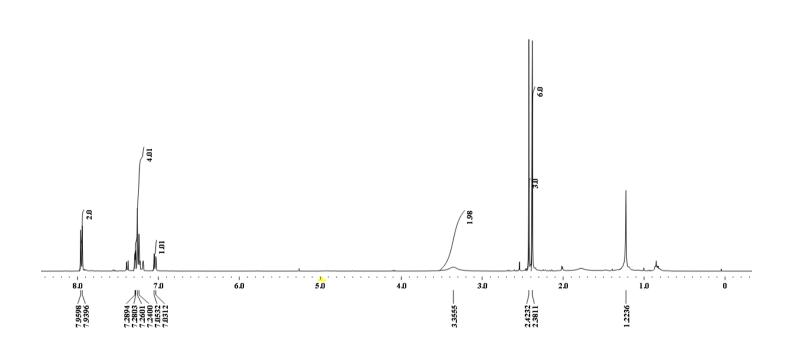
¹H NMR

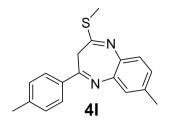


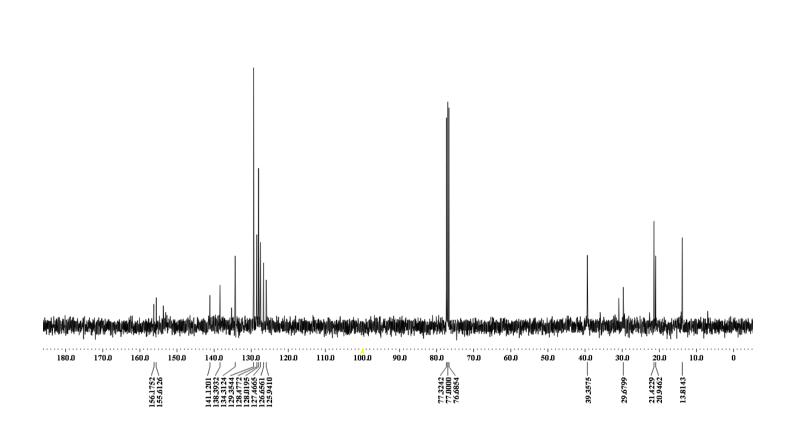

¹³C NMR

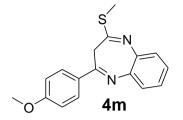


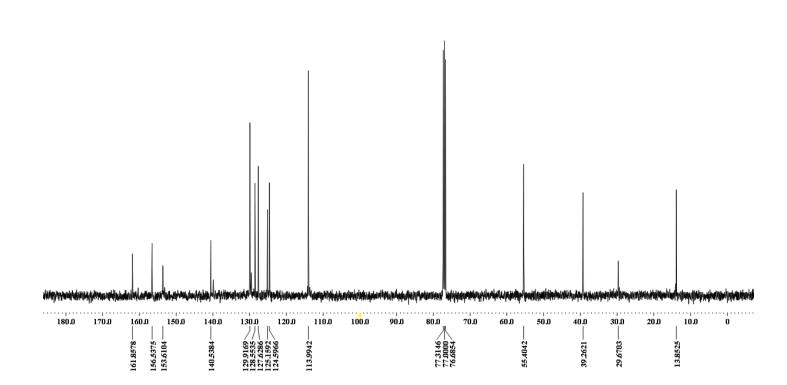
Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

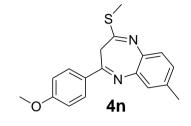


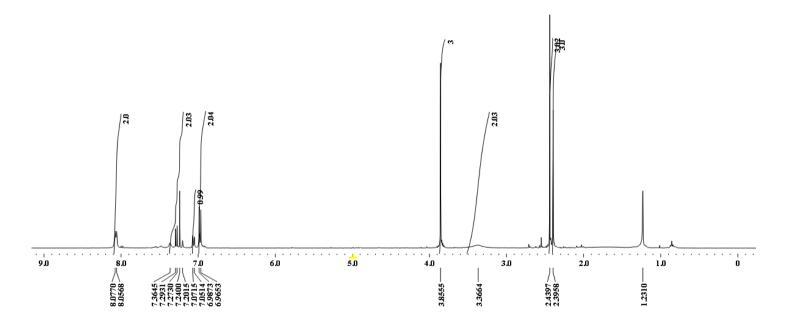


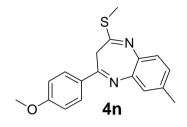


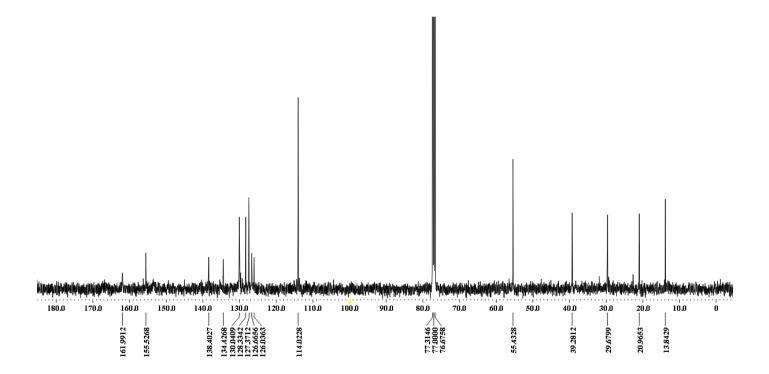

¹H NMR

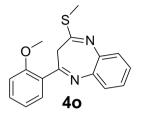


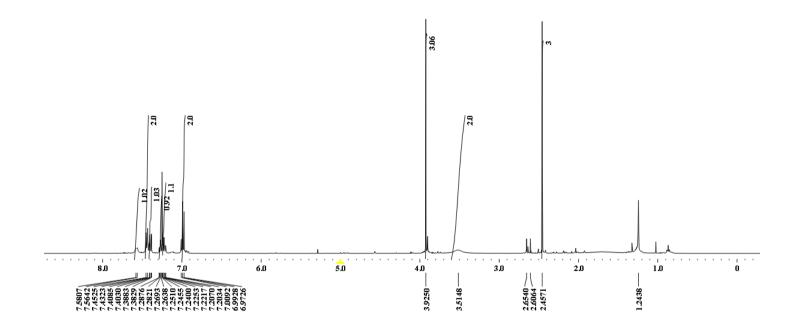

¹³C NMR

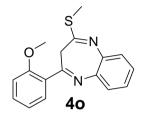


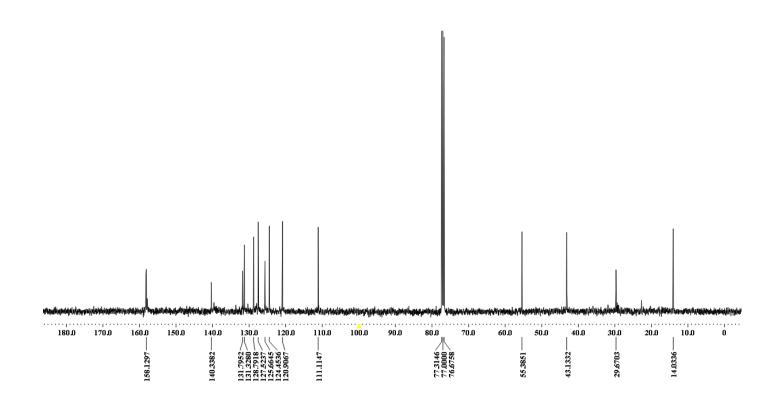

¹³C NMR

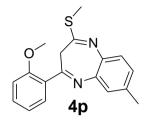


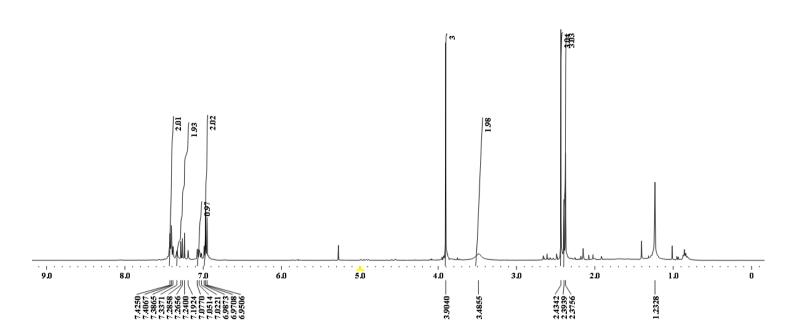

¹H NMR

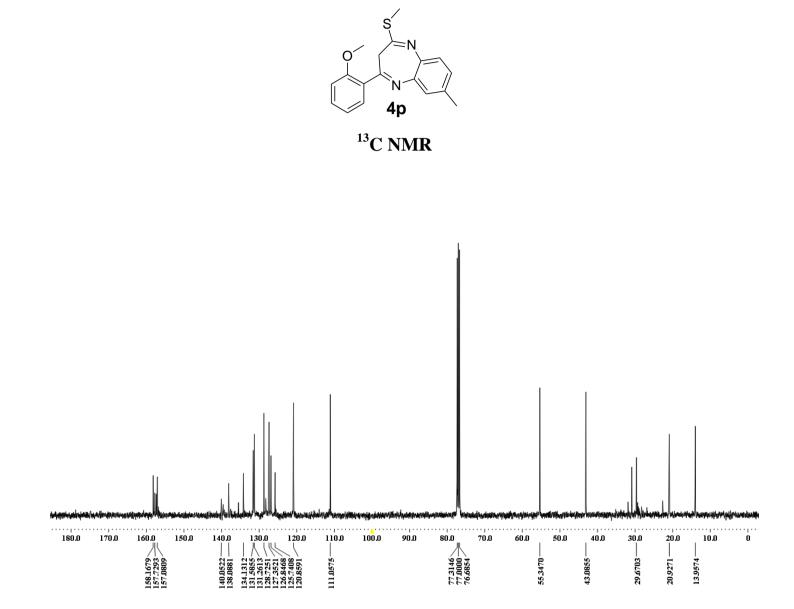


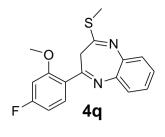

¹³C NMR

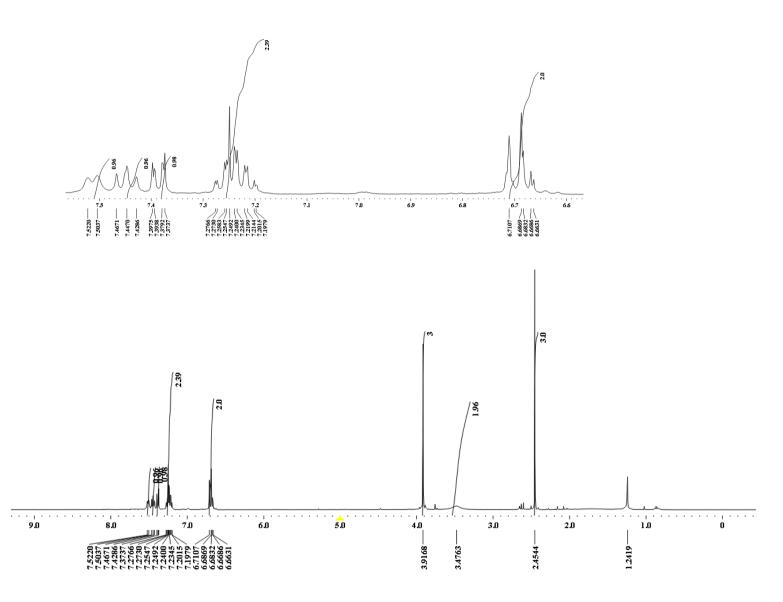


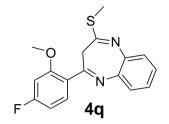

¹H NMR

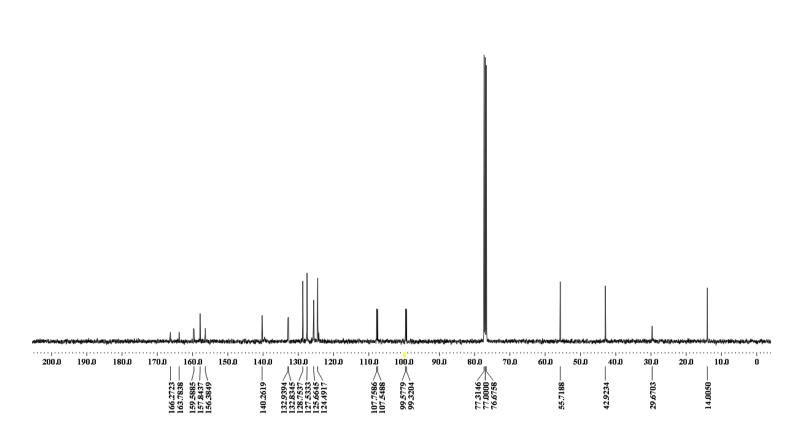


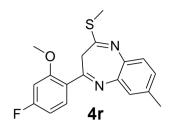

¹³C NMR



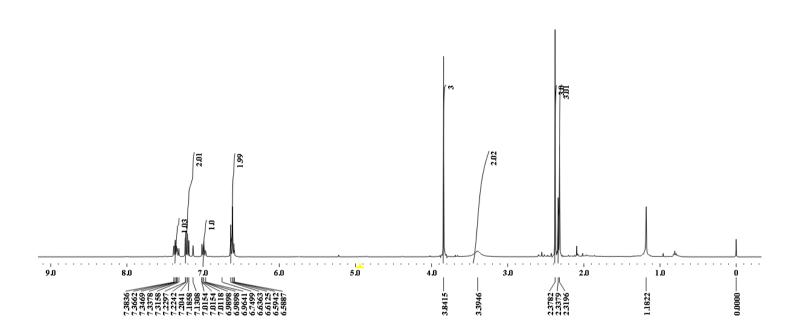

¹H NMR



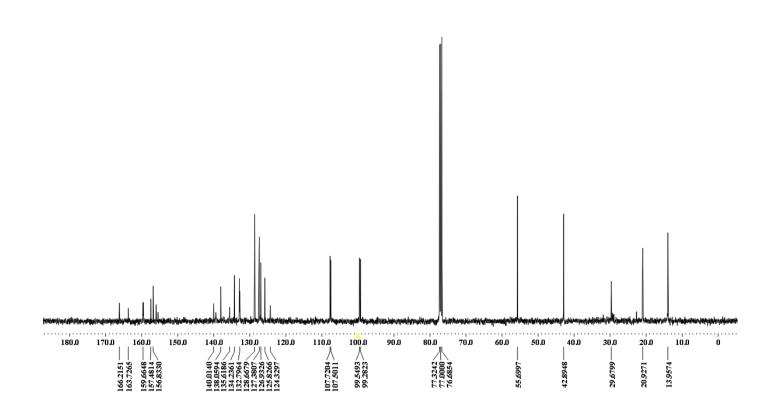

¹H NMR

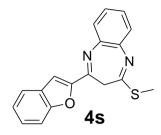


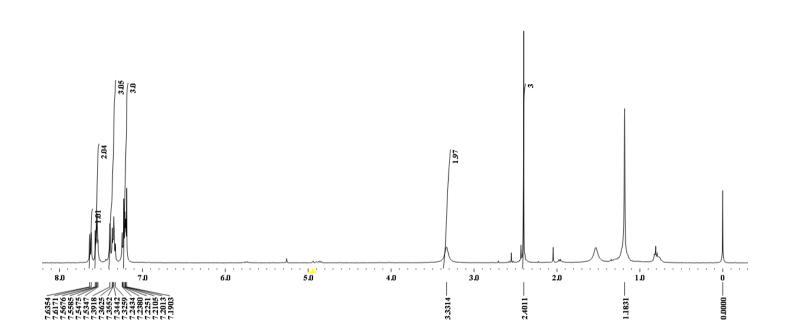
Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

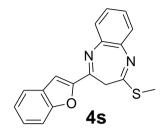


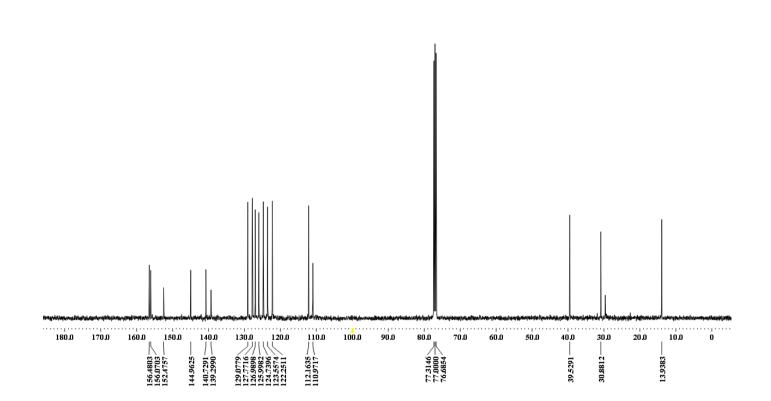

¹³C NMR

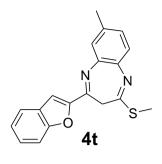


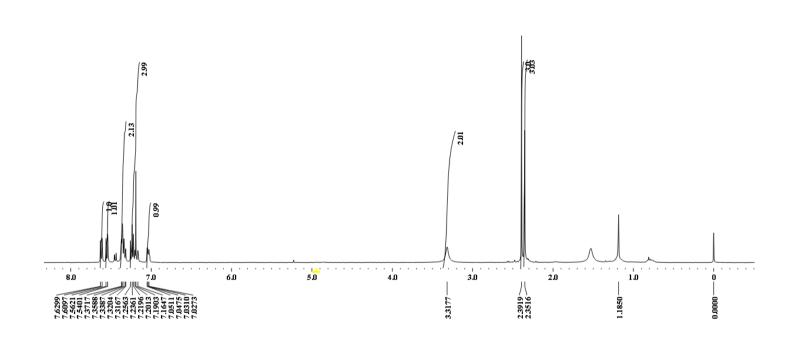

¹H NMR

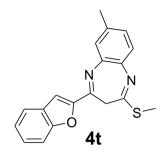


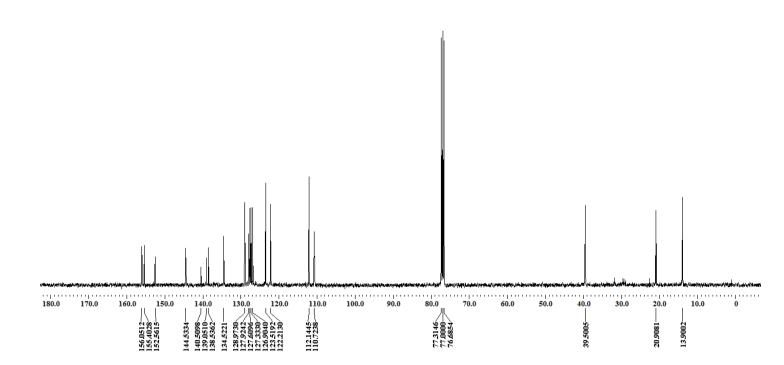

¹³C NMR

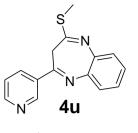


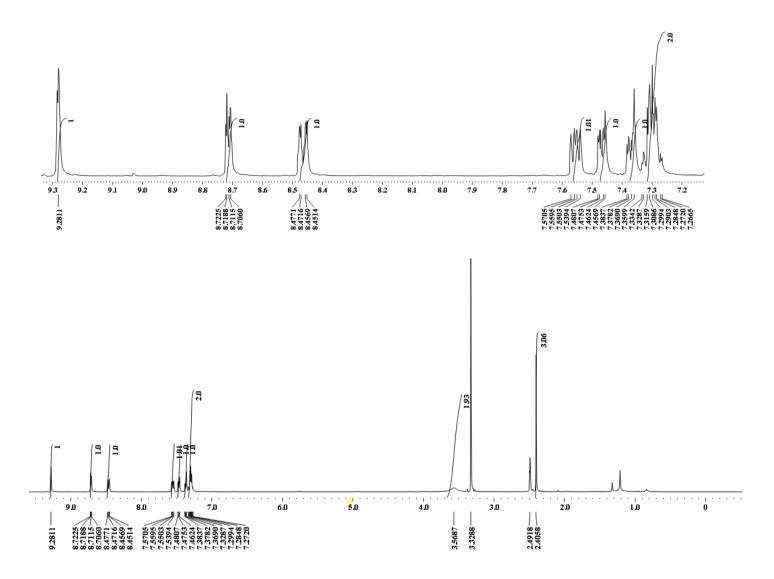




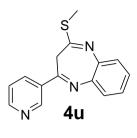

¹³C NMR

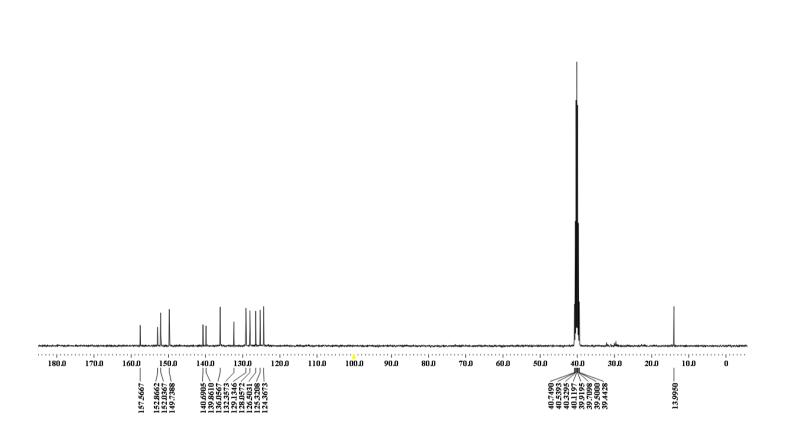


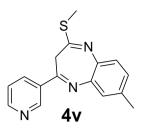

¹H NMR

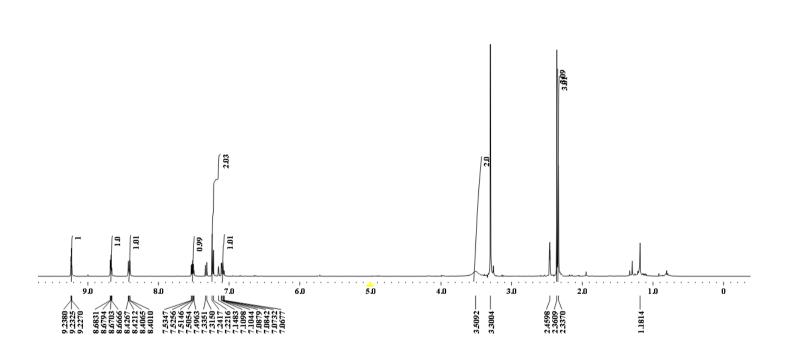


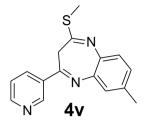
¹³C NMR



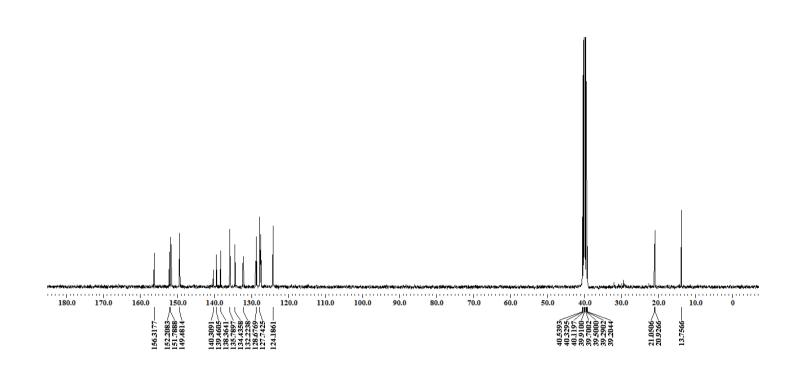

¹H NMR

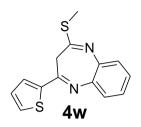

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

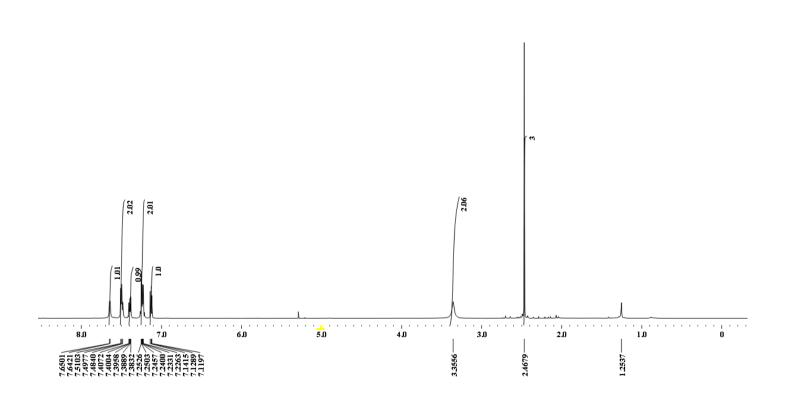

¹³C NMR

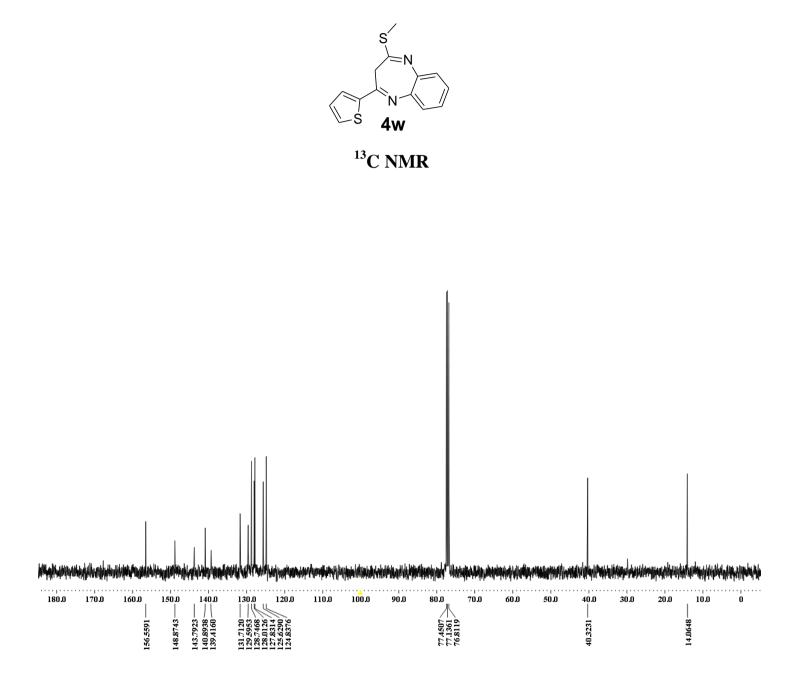


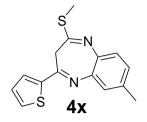
Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

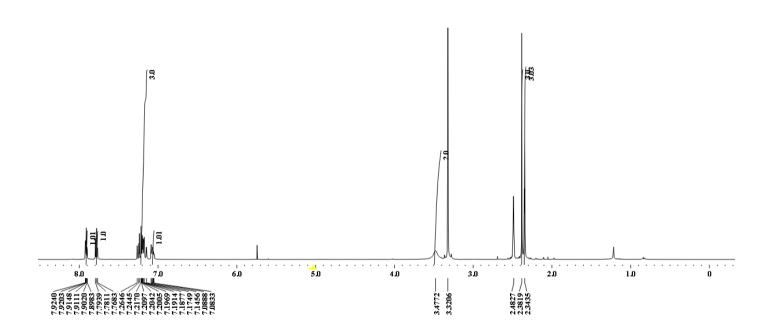


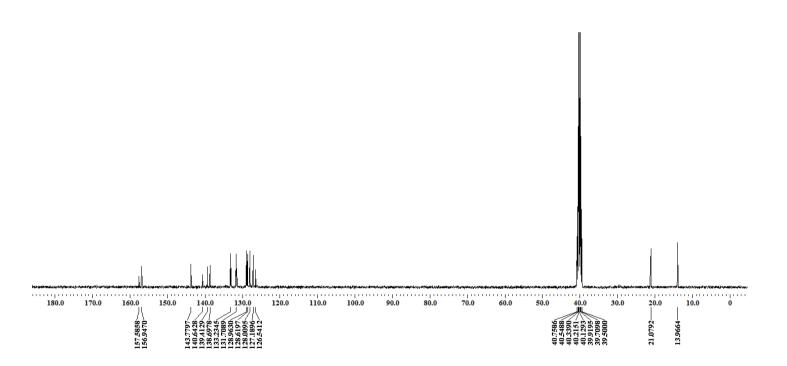

¹H NMR




¹³C NMR






¹H NMR

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

¹³C NMR

