# **Electronic Supplementary Information**

# **PPH dendrimers grafted on silica nanoparticles: surface chemistry, characterization, silver colloids hosting and antibacterial activity.**

Aurélien Hameau,<sup>*a,b*</sup> Vincent Collière,<sup>*a,b*</sup> Julien Grimoud,<sup>*c*</sup> Pierre Fau,<sup>*a,b*</sup> Christine Roques,<sup>*c*</sup> Anne-Marie Caminade<sup>*a,b*</sup> and Cédric-Olivier Turrin<sup>\**a,b*</sup>

<sup>a</sup> Laboratoire de Chimie de Coordination du CNRS, BP 44099, 205 route de Narbonne, 31077 Toulouse cedex 4, France. Fax: 33 5615 5003; E-mail: turrin@lcc-toulouse.fr

<sup>b</sup> Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France

<sup>c</sup> Laboratoire de Génie Chimique, UMR 5503, UPS, Faculté de Pharmacie, 35 chemin des Maraîchers, 31062 Toulouse cedex 9.

#### **CONTENT:**

| Compounds 3                                                   |   |
|---------------------------------------------------------------|---|
| 2a, Mass Spectrometry 4                                       |   |
| 2b, <sup>1</sup> H NMR                                        |   |
| 2b, <sup>13</sup> C NMR                                       |   |
| 2b, Mass Spectrometry                                         |   |
| 2c, <sup>1</sup> H NMR                                        | Ì |
| 2c, <sup>13</sup> C NMR                                       |   |
| 2c, Mass Spectrometry 7                                       |   |
| 2d, <sup>1</sup> H NMR                                        |   |
| 2d, <sup>13</sup> C NMR                                       |   |
| 2d, Mass Spectrometry                                         |   |
| Dendrimer 1-G1: <sup>13</sup> C- { <sup>1</sup> H} CP-MAS NMR | I |
| Dendrimer 1-G1: <sup>31</sup> P- { <sup>1</sup> H} CP-MAS NMR | 1 |
| Dendrimer 1-G1: FT-IR 10                                      |   |
| Si-1, <sup>29</sup> Si CP-MAS NMR                             |   |
| Si-2, <sup>13</sup> C CP-MAS NMR                              |   |
| Si-2, <sup>29</sup> Si CP-MAS NMR                             |   |
| Si-1, FT-IR                                                   |   |
| Si-2, FT-IR                                                   |   |
| Si-3, <sup>1</sup> H CP-MAS NMR                               |   |
| Si-3, <sup>31</sup> P CP-MAS NMR                              |   |
| Si-3, <sup>13</sup> C CP-MAS NMR                              |   |
| Si-3, <sup>29</sup> Si CP-MAS NMR                             |   |
| Si-3, FT-IR                                                   |   |
| Adsorption of 1-G <sub>1</sub> on Si-1                        |   |
| Si-4, <sup>1</sup> H CP-MAS NMR                               | ļ |

| Si-4, <sup>31</sup> P CP-MAS NMR                                                                          | 19 |
|-----------------------------------------------------------------------------------------------------------|----|
| Si-4, <sup>13</sup> C CP-MAS NMR                                                                          | 20 |
| Si-4, <sup>29</sup> Si CP-MAS NMR                                                                         | 20 |
| Si-4, FT-IR                                                                                               | 21 |
| Si-5, <sup>1</sup> H CP-MAS NMR                                                                           | 22 |
| Si-5, <sup>31</sup> P CP-MAS NMR                                                                          | 22 |
| Si-5, <sup>13</sup> C CP-MAS NMR                                                                          | 23 |
| Si-5, <sup>29</sup> Si CP-MAS NMR                                                                         | 24 |
| Si-5, FT-IR                                                                                               | 24 |
| HRTEM imaging and EDX spectroscopy of modified silicas                                                    | 25 |
| TEM imaging of silver NPs grown on Si-2 modified silica in the absence of reducing agent (14days)         | 26 |
| HRTEM imaging of silver NPs grown on Si-3 modified silica in the absence of reducing agent (14days)       | 27 |
| HRTEM imaging of silver NPs grown on Si-5 modified silica in the absence of reducing agent (14days)       | 29 |
| EDX spectroscopy of silver NPs grown on Si-3 modified silica in the absence of reducing agent             | 31 |
| EDX spectroscopy of silver NPs grown on Si-5 modified silica in the absence of reducing agent             | 34 |
| HRTEM imaging of silver NPs grown on Si-2 modified silica in the presence of NaBH <sub>4</sub> (18 hours) | 37 |
| HRTEM imaging of silver NPs grown on Si-5 modified silica in the presence of NaBH <sub>4</sub> (1 hour)   | 39 |
| HRTEM imaging of silver NPs grown on Si-5 modified silica in the presence of NaBH <sub>4</sub> (18 hours) | 41 |
| EDX spectroscopy of silver NPs grown on Si-2 modified silica in the presence of NaBH4                     | 43 |
| EDX spectroscopy of silver NPs grown on Si-5 modified silica in the presence of NaBH4                     | 46 |
| Cristallographic analysis                                                                                 | 49 |
| XRD patterns                                                                                              | 53 |
| MIC picture for E. coli                                                                                   | 65 |
| MBC picture for E. coli                                                                                   | 65 |

# **Compounds**







/n

2d

О



Si-2

Si-3



⊙\_<sub>Ms</sub>









#### 2a, Mass Spectrometry

#### <u>2b, <sup>1</sup>H NMR</u>





#### **2b, Mass Spectrometry**



### <u>2c, <sup>1</sup>H NMR</u>



#### **2c, 13C NMR**



### **<u>2c. Mass Spectrometry</u>**



2d, <sup>1</sup>H NMR



### <u>2d, <sup>13</sup>C NMR</u>



#### 2d, Mass Spectrometry





### Dendrimer 1-G1: <sup>13</sup>C- {<sup>1</sup>H} CP-MAS NMR

#### Dendrimer 1-G1: <sup>31</sup>P- {<sup>1</sup>H} CP-MAS NMR











#### Si-2, <sup>29</sup>Si CP-MAS NMR





```
Normalized (reference at 1046 cm<sup>-1</sup>)
```



Normalized (reference at 1046 cm<sup>-1</sup>)







# Adsorption of 1-G<sub>1</sub> on Si-1



AH323: Dendrimer Gc'1 (**1-G**<sub>1</sub>) is solubilized in a suspension of Si-1 in a mixture MeOH/THF (7:3, V/V). The suspension is heated at 55°C overnight. After cooling, the silica is separated by filtration on a sintered glass filter, washed with THF (4x50 mL) and dichloromethane (4x25 mL) and dried under vacuum at 100°C. The resulting powder is AH323 (no trace of adsorbed dendrimer on the FTIR spectrum).

The washings are gathered, concentrated under reduced pressure and analyzed by proton and phosphorus NMR (see hereunder). The dendrimer  $1-G_1$  is recovered without any trace of degradation.





#### Si-4, <sup>31</sup>P CP-MAS NMR









#### Si-5, <sup>31</sup>P CP-MAS NMR







# HRTEM imaging and EDX spectroscopy of modified silicas.



Scal bar is 50 nm



# TEM imaging of silver NPs grown on Si-2 modified silica in the absence of reducing agent (14days).



# HRTEM imaging of silver NPs grown on Si-3 modified silica in the absence of reducing agent (14days).



HRTEM imaging of silver NPs grown on Si-3 modified silica in the absence of reducing agent (14days).



# HRTEM imaging of silver NPs grown on Si-5 modified silica in the absence of reducing agent (14days).



HRTEM imaging of silver NPs grown on Si-5 modified silica in the absence of reducing **agent** (14 days, 2/2).



# EDX spectroscopy of silver NPs grown on Si-3 modified silica in the absence of reducing agent.

At t= 18 hours







# EDX spectroscopy of silver NPs grown on Si-5 modified silica in the absence of reducing agent.

At t= 18 hours











# HRTEM imaging of silver NPs grown on Si-2 modified silica in the presence of NaBH<sub>4</sub> (18 hours)

(picture shot at T = 18 hours)



#### HRTEM imaging of silver NPs grown on Si-2 modified silica in the presence of NaBH4.

(picture shot at T = 18 hours)



# HRTEM imaging of silver NPs grown on Si-5 modified silica in the presence of NaBH<sub>4</sub> (1 hour)



#### HRTEM imaging of silver NPs grown on Si-5 modified silica in the presence of NaBH4.

(picture shot at T = 1 hour)



# HRTEM imaging of silver NPs grown on Si-5 modified silica in the presence of NaBH<sub>4</sub> (18 hours)

(picture shot à T = 18 hours)



#### HRTEM imaging of silver NPs grown on Si-5 modified silica in the presence of NaBH4.

(picture shot à T = 18 hours)



## EDX spectroscopy of silver NPs grown on Si-2 modified silica in the presence of NaBH<sub>4</sub>

#### At t= 18 hours











# EDX spectroscopy of silver NPs grown on Si-5 modified silica in the presence of NaBH<sub>4</sub>

#### At t= 18 hours











# **Cristallographic analysis**

#### Cristallographic data

# Ag Cubic

| h | k | I | d [A] | 2Theta  | [deg] I [%] |       |
|---|---|---|-------|---------|-------------|-------|
| 1 | 1 | 1 | 1     | 2,35040 | 38,262      | 100,0 |
| 2 | 2 | 0 | 0     | 2,03550 | 44,473      | 45,1  |
| 3 | 2 | 2 | 0     | 1,43930 | 64,714      | 22,3  |
| 4 | 3 | 1 | 1     | 1,22740 | 77,745      | 22,1  |
| 5 | 2 | 2 | 2     | 1,17520 | 81,910      | 6,1   |
| 6 | 4 | 0 | 0     | 1,01780 | 98,371      | 2,6   |
| 7 | 3 | 3 | 1     | 0,93400 | 111,123     | 7,9   |

# Ag Hexagonal

| <u>.</u> h | n k | C I | ( | :[A] 2The | ta[deg] I [ | %]    |
|------------|-----|-----|---|-----------|-------------|-------|
| 1          | 1   | 0   | 0 | 2,53740   | 35,345      | 25,1  |
| 2          | 0   | 0   | 2 | 2,39500   | 37,523      | 27,8  |
| 3          | 1   | 0   | 1 | 2,24230   | 40,184      | 100,0 |
| 4          | 1   | 0   | 2 | 1,74170   | 52,497      | 13,0  |
| 5          | 1   | 1   | 0 | 1,46500   | 63,445      | 12,5  |
| 6          | 1   | 0   | 3 | 1,35140   | 69,501      | 13,3  |
| 7          | 2   | 0   | 0 | 1,26870   | 74,768      | 1,7   |
| 8          | 1   | 1   | 2 | 1,24970   | 76,106      | 12,5  |
| 9          | 2   | 0   | 1 | 1,22640   | 77,820      | 8,6   |
| 10         | 0   | 0   | 4 | 1,19750   | 80,070      | 1,7   |
| 11         | 2   | 0   | 2 | 1,12110   | 86,801      | 1,9   |
| 12         | 1   | 0   | 4 | 1,08300   | 90,676      | 1,7   |
| 13         | 2   | 0   | 3 | 0,99330   | 101,700     | 3,7   |
| 14         | 2   | 1   | 0 | 0,95910   | 106,864     | 1,1   |

| AgO | Cu | <u>bic</u> |   |         |           |         |
|-----|----|------------|---|---------|-----------|---------|
| No. | h  | k          |   | d [A] 2 | Theta[deg | ]   [%] |
| 1   | 1  | 1          | 1 | 2,78050 | 32,167    | 100,0   |
| 2   | 2  | 0          | 0 | 2,40800 | 37,313    | 33,5    |
| 3   | 2  | 2          | 0 | 1,70270 | 53,795    | 32,4    |
| 4   | 3  | 1          | 1 | 1,45210 | 64,075    | 26,5    |
| 5   | 2  | 2          | 2 | 1,39030 | 67,291    | 5,6     |
| 6   | 4  | 0          | 0 | 1,20400 | 79,551    | 3,5     |
| 7   | 3  | 3          | 1 | 1,10490 | 88,400    | 7,9     |
| 8   | 4  | 2          | 0 | 1,07690 | 91,335    | 5,7     |
| 9   | 4  | 2          | 2 | 0,98310 | 103,172   | 6,2     |

# AgO tétragonal

| No. | h | k |   | d [A] 2 | Theta[deg | ]   [%] |
|-----|---|---|---|---------|-----------|---------|
| 1   | 1 | 0 | 1 | 5,46880 | 16,194    | 0,5     |
| 2   | 2 | 0 | 0 | 3,41650 | 26,060    | 0,2     |
| 3   | 1 | 1 | 2 | 3,31670 | 26,859    | 0,1     |
| 4   | 1 | 2 | 1 | 2,89760 | 30,834    | 1,2     |
| 5   | 1 | 0 | 3 | 2,77800 | 32,197    | 0,7     |
| 6   | 2 | 0 | 2 | 2,73440 | 32,724    | 100,0   |
| 7   | 2 | 2 | 0 | 2,41580 | 37,188    | 48,8    |
| 8   | 0 | 0 | 4 | 2,28050 | 39,483    | 20,3    |
| 9   | 3 | 0 | 1 | 2,20980 | 40,801    | 0,1     |
| 10  | 2 | 1 | 3 | 2,15540 | 41,879    | 0,5     |
| 11  | 2 | 2 | 2 | 2,13480 | 42,302    | 0,1     |
| 12  | 1 | 1 | 4 | 2,06230 | 43,865    | 0,1     |
| 13  | 1 | 3 | 2 | 1,95270 | 46,467    | 0,2     |
| 14  | 2 | 0 | 4 | 1,89680 | 47,921    | 0,1     |
| 15  | 2 | 3 | 1 | 1,85550 | 49,057    | 0,2     |
|     |   |   |   |         |           |         |

| Ag2 | ос | ubi | с |         |           |         |
|-----|----|-----|---|---------|-----------|---------|
| No. | h  | k   |   | d [A] 2 | Theta[deg | ]   [%] |
| 1   | 1  | 1   | 0 | 3.34200 | 26.652    | 2.0     |
| 2   | 1  | 1   | 1 | 2.72900 | 32.791    | 100.0   |
| 3   | 2  | 0   | 0 | 2.36200 | 38.067    | 28.0    |
| 4   | 2  | 1   | 1 | 1.92910 | 47.070    | 1.0     |
| 5   | 2  | 2   | 0 | 1.67090 | 54.904    | 13.0    |
| 6   | 3  | 1   | 1 | 1.42500 | 65.444    | 8.0     |
| 7   | 2  | 2   | 2 | 1.36420 | 68.756    | 2.0     |
| 8   | 4  | 0   | 0 | 1.18150 | 81.380    | 1.0     |
| 9   | 3  | 3   | 1 | 1.08430 | 90.537    | 1.0     |
| 10  | 4  | 2   | 0 | 1.05680 | 93.588    | 1.0     |
| 11  | 4  | 2   | 2 | 0.96460 | 105.987   | 1.0     |
| 12  | 5  | 1   | 1 | 0.90950 | 115.763   | 1.0     |
|     |    |     |   |         |           |         |

| Ag2 | Ag2O2 monoclinic |   |   |         |           |         |
|-----|------------------|---|---|---------|-----------|---------|
| No. | h                | k |   | d [A] 2 | Theta[deg | ]   [%] |
| 1   | 1                | 0 | 0 | 5.58160 | 15.865    | 1.0     |
| 2   | 1                | 1 | 0 | 2.95440 | 30.227    | 2.0     |
| 3   | 0                | 1 | 1 | 2.90120 | 30.795    | 1.0     |
| 4   | 2                | 0 | 0 | 2.79050 | 32.048    | 58.0    |
| 5   | -1               | 1 | 1 | 2.76900 | 32.304    | 100.0   |
| 6   | -1               | 0 | 2 | 2.70710 | 33.064    | 2.0     |
| 7   | 0                | 0 | 2 | 2.62080 | 34.185    | 35.0    |
| 8   | 1                | 1 | 1 | 2.41480 | 37.204    | 90.0    |
| 9   | -2               | 0 | 2 | 2.28380 | 39.424    | 31.0    |
| 10  | 2                | 1 | 0 | 2.17800 | 41.424    | 1.0     |
| 11  | -1               | 1 | 2 | 2.13680 | 42.261    | 1.0     |
| 12  | 0                | 1 | 2 | 2.09360 | 43.176    | 1.0     |
| 13  | -2               | 1 | 2 | 1.91050 | 47.556    | 1.0     |
| 14  | 3                | 0 | 0 | 1.86110 | 48.899    | 1.0     |
| 15  | 1                | 1 | 2 | 1.82230 | 50.011    | 1.0     |
| 16  | -3               | 0 | 2 | 1.79340 | 50.874    | 1.0     |
| 17  | 0                | 2 | 0 | 1.74140 | 52.507    | 7.0     |
| 18  | -3               | 1 | 1 | 1.70030 | 53.877    | 20.0    |
| 19  | 2                | 0 | 2 | 1.67570 | 54.734    | 10.0    |
| 20  | 0                | 2 | 1 | 1.65240 | 55.572    | 1.0     |
| 21  | 3                | 1 | 0 | 1.64120 | 55.984    | 1.0     |
| 22  | -1               | 1 | 3 | 1.62140 | 56.730    | 17.0    |
| 23  | -2               | 2 | 1 | 1.48530 | 62.479    | 1.0     |
| 24  | 2                | 2 | 0 | 1.47760 | 62.841    | 10.0    |
| 25  | 3                | 1 | 1 | 1.45990 | 63.692    | 9.0     |
| 26  | 0                | 2 | 2 | 1.45050 | 64.154    | 8.0     |
| 27  | -4               | 0 | 2 | 1.42230 | 65.584    | 3.0     |
| 28  | 1                | 1 | 3 | 1.40900 | 66.282    | 5.0     |
| 29  | 4                | 0 | 0 | 1.39550 | 67.007    | 11.0    |
| 30  | -2               | 2 | 2 | 1.38490 | 67.589    | 6.0     |
| 31  | -2               | 0 | 4 | 1.35320 | 69.395    | 3.0     |
| 32  | 1                | 2 | 2 | 1.35010 | 69.577    | 1.0     |
| 33  | 0                | 0 | 4 | 1.31050 | 72.001    | 3.0     |
| 34  | -1               | 2 | 3 | 1.26190 | 75.241    | 5.0     |
| 35  | 2                | 2 | 2 | 1.20740 | 79.283    | 3.0     |
| 36  | -4               | 0 | 4 | 1.14210 | 84.824    | 1.0     |
| 37  | -1               | 3 | 1 | 1.12510 | 86.416    | 2.0     |
| 38  | -5               | 1 | 1 | 1.10560 | 88.330    | 3.0     |
| 39  | -4               | 2 | 2 | 1.10170 | 88.724    | 3.0     |

| Ag2O3 orthorhombic |   |   |   |         |           |          |
|--------------------|---|---|---|---------|-----------|----------|
| No.                | h | k |   | d [A] 2 | Theta[deg | []   [%] |
| 1                  | 2 | 2 | 0 | 4.06810 | 21.830    | 5.0      |
| 2                  | 1 | 1 | 1 | 3.34200 | 26.652    | 100.0    |
| 3                  | 4 | 0 | 0 | 3.21890 | 27.691    | 10.0     |
| 4                  | 4 | 2 | 0 | 2.74150 | 32.637    | 90.0     |
| 5                  | 3 | 1 | 1 | 2.69410 | 33.228    | 30.0     |
| 6                  | 0 | 4 | 0 | 2.62330 | 34.152    | 30.0     |
| 7                  | 1 | 3 | 1 | 2.48160 | 36.167    | 60.0     |
| 8                  | 3 | 3 | 1 | 2.17830 | 41.418    | 50.0     |
| 9                  | 5 | 1 | 1 | 2.06530 | 43.798    | 30.0     |
| 10                 | 4 | 4 | 0 | 2.03270 | 44.538    | 10.0     |
| 11                 | 6 | 2 | 0 | 1.98580 | 45.648    | 5.0      |
| 12                 | 5 | 3 | 1 | 1.80420 | 50.548    | 20.0     |
| 13                 | 2 | 0 | 2 | 1.76120 | 51.873    | 20.0     |
| 14                 | 3 | 5 | 1 | 1.67570 | 54.734    | 25.0     |
| 15                 | 2 | 2 | 2 | 1.67020 | 54.929    | 20.0     |
| 16                 | 7 | 1 | 1 | 1.62340 | 56.653    | 15.0     |
| 17                 | 8 | 0 | 0 | 1.60860 | 57.222    | 10.0     |
| 18                 | 8 | 2 | 0 | 1.53670 | 60.168    | 30.0     |
| 19                 | 7 | 3 | 1 | 1.48620 | 62.437    | 25.0     |
| 20                 | 2 | 4 | 2 | 1.46260 | 63.561    | 30.0     |
| 21                 | 1 | 7 | 1 | 1.37920 | 67.906    | 10.0     |
| 22                 | 8 | 4 | 0 | 1.37120 | 68.357    | 5.0      |
| 23                 | 6 | 2 | 2 | 1.34630 | 69.802    | 30.0     |
| 24                 | 9 | 1 | 1 | 1.32090 | 71.347    | 10.0     |
| 25                 | 0 | 8 | 0 | 1.31100 | 71.969    | 5.0      |
| 26                 | 7 | 5 | 1 | 1.29390 | 73.073    | 5.0      |

| Ag2O | Hexagonal |
|------|-----------|
|      |           |

| No. | h  | k  | ĭ | d [A] 21 | Theta[deg | ]   [%] |  |
|-----|----|----|---|----------|-----------|---------|--|
| 1   | 0  | 0  | 1 | 4.95100  | 17.901    | 2.8     |  |
| 2   | 1  | 0  | 0 | 4.60550  | 19.257    | 1.8     |  |
| 3   | 1  | 0  | 1 | 3.37210  | 26.410    | 0.6     |  |
| 4   | 1  | 1  | 0 | 2.65900  | 33.679    | 20.4    |  |
| 5   | 0  | 0  | 2 | 2.47550  | 36.259    | 22.9    |  |
| 6   | -1 | -1 | 1 | 2.34250  | 38.396    | 100.0   |  |
| 7   | 2  | 0  | 0 | 2.30280  | 39.085    | 2.3     |  |
| 8   | 1  | 0  | 2 | 2.18050  | 41.375    | 1.2     |  |
| 9   | 2  | 0  | 1 | 2.08800  | 43.298    | 0.1     |  |
| 10  | -1 | -1 | 2 | 1.81180  | 50.321    | 18.5    |  |
| 11  | 2  | 1  | 0 | 1.74070  | 52.530    | 0.3     |  |
| 12  | 2  | 0  | 2 | 1.68610  | 54.368    | 0.6     |  |
| 13  | 0  | 0  | 3 | 1.65030  | 55.649    | 1.9     |  |
| 14  | -2 | -1 | 1 | 1.64220  | 55.947    | 3.4     |  |
| 15  | 3  | 0  | 0 | 1.53520  | 60.233    | 12.9    |  |
| 16  | 3  | 0  | 1 | 1.46630  | 63.382    | 0.4     |  |
| 17  | -2 | -1 | 2 | 1.42390  | 65.501    | 0.2     |  |
| 18  | -1 | -1 | 3 | 1.40220  | 66.645    | 11.2    |  |
| 19  | 2  | 0  | 3 | 1.34140  | 70.094    | 0.1     |  |
| 20  | 2  | 2  | 0 | 1.32950  | 70.815    | 1.3     |  |
| 21  | 3  | 0  | 2 | 1.30470  | 72.371    | 9.6     |  |
| 22  | -2 | -2 | 1 | 1.28400  | 73.729    | 7.6     |  |
| 23  | 3  | 1  | 0 | 1.27730  | 74.180    | 0.5     |  |
| 24  | -3 | -1 | 1 | 1.23780  | 76.971    | 1.4     |  |
| 25  | -2 | -1 | 3 | 1.19760  | 80.062    | 0.8     |  |
| 26  | 1  | 0  | 4 | 1.19530  | 80.248    | 0.4     |  |
| 27  | -2 | -2 | 2 | 1.17130  | 82.241    | 2.5     |  |
| 28  | 4  | 0  | 0 | 1.15140  | 83.982    | 0.4     |  |
| 29  | -3 | -1 | 2 | 1.13510  | 85.472    | 0.6     |  |
| 30  | 3  | 0  | 3 | 1.12400  | 86.522    | 2.0     |  |
| 31  | -1 | -1 | 4 | 1.12210  | 86.704    | 3.3     |  |
| 32  | 2  | 0  | 4 | 1.09020  | 89.913    | 0.1     |  |
| 33  | 3  | 2  | 0 | 1.05660  | 93.611    | 0.4     |  |
| 34  | 4  | 0  | 2 | 1.04400  | 95.095    | 0.7     |  |
| 35  | -2 | -2 | 3 | 1.03530  | 96.153    | 2.6     |  |
| 36  | -3 | -2 | 1 | 1.03330  | 96.400    | 1.6     |  |
| 37  | -3 | -1 | 3 | 1.01010  | 99.387    | 0.2     |  |

#### Ag3O4 Monoclinic

| No.hkl    | d [A] 2Theta  | [deg]   [%] |
|-----------|---------------|-------------|
| 1011      | 4.68860 18.93 | 12 2.0      |
| 2020      | 4.60080 19.22 | 77 10.0     |
| 3021      | 3.51800 25.29 | 96 10.0     |
| 4 1 0 0   | 3.43660 25.90 | 05 5.0      |
| 5110      | 3.21850 27.69 | 95 60.0     |
| 611-1     | 3.15570 28.2  | 57 25.0     |
| 7120      | 2.75430 32.48 | 81 10.0     |
| 8002      | 2.72750 32.80 | 09 40.0     |
| 912-1     | 2.71540 32.9  | 60 40.0     |
| 10 0 3 1  | 2.67550 33.4  | 66 100.0    |
| 11 0 1 2  | 2.61450 34.2  | 70 5.0      |
| 12 1 1 1  | 2.50390 35.8  | 34 60.0     |
| 13 1 1 -2 | 2.41530 37.1  | 96 30.0     |
| 14 0 2 2  | 2.34690 38.3  | 22 5.0      |
| 15 0 4 0  | 2.30410 39.0  | 62 5.0      |
| 16 1 3 0  | 2.29000 39.3  | 12 10.0     |
| 17 1 3 -1 | 2.26450 39.7  | 74 50.0     |
| 18 1 2 -2 | 2.19790 41.0  | 32 20.0     |
| 19 0 4 1  | 2.12010 42.6  | 10 5.0      |
| 20 0 3 2  | 2.03850 44.4  | 04 2.0      |
| 21 1 3 -2 | 1.93900 46.8  | 315 5.0     |
| 22 1 4 0  | 1.91280 47.4  | 95 10.0     |
| 23 1 4 -1 | 1.89900 47.8  | 362 5.0     |
| 24 1 1 2  | 1.85630 49.0  | 34 5.0      |
| 25 2 1 -1 | 1.75530 52.0  | 60 20.0     |
| 26 1 2 2  | 1.75260 52.1  | 46 10.0     |
| 27 0 5 1  | 1.74480 52.3  | 97 10.0     |
| 28 1 4 1  | 1.72360 53.0  | 92 1.0      |
| 29 1 2 -3 | 1.70150 53.8  | 36 10.0     |
| 30 0 2 3  | 1.69060 54.2  | 12 10.0     |
| 31 2 0 -2 | 1.67970 54.5  | 93 4.0      |
| 32 1 5 0  | 1.62320 56.6  | 61 15.0     |
| 33 1 5 -1 | 1.61410 57.0  | 010 4.0     |
| 34 1 3 2  | 1.61260 57.0  | 67 2.0      |
| 35 2 2 0  | 1.61000 57.1  | .68 5.0     |
| 36 2 2 -2 | 1.57840 58.4  | 22 5.0      |
| 37 1 3 -3 | 1.57240 58.6  | 66 20.0     |
| 38 0 3 3  | 1.56380 59.0  | 21 20.0     |
| 39 0 6 0  | 1.53500 60.2  | 42 10.0     |
| 40 0 5 2  | 1.52600 60.6  | 34 5.0      |
| 41 1 5 1  | 1.50300 61.6  | 62 15.0     |
| 42 1 5 -2 | 1.48300 62.5  | 87 10.0     |
| 43 1 4 2  | 1.46330 63.5  | 27 15.0     |
| 44 2 1 -3 | 1.45100 64.1  | 29 10.0     |
| 45 2 2 1  | 1.44560 64.3  | 98 5.0      |
| 46 1 1 3  | 1.43160 65.1  | 05 10.0     |
| 47 1 0 -4 | 1.40890 66.2  | 287 10.0    |
| 48 1 6 -1 | 1.39620 66.9  | 69 10.0     |
| 49 2 4 0  | 1.37730 68.0  | 12 20.0     |
| 50 0 0 4  | 1.36350 68.7  | 97 5.0      |

# XRD patterns

#### Ag(0)Si2











# Ag(0)Si2

#### AH332-18h-x500000-020



# Ag(0)Si3

### AH355-x800000-021





# Ag(0)Si3 AH355-x600000-07



# Ag(0)Si3 AH355-x800000-15



| 13:507   | 12             | 100 | 15  | 交流的        | 331825     | 02.2     | 2023      | 0.000     | 1982 H H  | 2.34    |
|----------|----------------|-----|-----|------------|------------|----------|-----------|-----------|-----------|---------|
| 12764    | 14             |     | 13  | 100.00     | 204.63     | 16.79    | ALC: NO   | 242.93    | 1000      | 103     |
| 252      | 554            | 38  | 68  |            | 11.84      | 5. K.B   | の別は       | 927 Au    | 93-33)    | 165     |
| 202      | 59             | 84  | 24  | 2045       | 12.54      | 10.00    | 22.19     |           | eran      | 97.F.M. |
|          | 50             | 58  | 28  | 19533      | 5. P. S    | 1920     | 1.0       | 100 C     | SANCE     | 1.00    |
| 120      | 58             | 21  | 58  | 16.05      | 6236       | 1.275    | 1996      | 2675.5    | 26157     | 5.C.C.  |
| 1205     | 23             | 26  | 86  |            | No. La     | -2.68    | S. Collin | 18:00     | 1.5.1.1   | 109     |
| 4336     | <del>5</del> 7 | E.) | 93  | RANG       | S. 1623    | 2022     | 831       | 100100    | 1053      | 8633    |
| 214      | 83             | 112 | 23  | 0.001-24   | 14-4-21    | 1992     | 10.02     | 96646     | 91.00 m   | 200     |
| 212      | 30             | 92  | æ   |            |            | 99-80 B  | 2.2.2     | Sicola Si | 8,676     | 22      |
| 5.8.8    | 96             | 67  | 36  | 11110      | 0.066      | 19632    | 823       | 100.2     | 30,803    | 200     |
| 220      | 58             | 88  | 25  | 6.866      | 1.12.8     | 110      |           | 建筑的       | HANK.     | 100     |
| 1622     | 52             | 17  | 538 | 2.4.63Y    | (Colors    | 1235     | 2016      | HE SHEET  | S150-     | 20.00   |
| 58. F.S. | 1-G            | 62  | 60  | 1.000      | 1 (24)     |          | 1.00      | 1.10      | 28.92     | 1953    |
| 206      | 87             | 25  | 83  | 1-6%       | 0.000      | the same | 1.00      | 化化物       | 5 O. J.   | 00.75   |
| Tari-    | 3              | 993 |     | Sec. 18-58 | 28435      | destro   | 10.00     | 1000      | 12.10     | 252     |
| 2085     | 83             | 23  | 82  | 1.2.4.12   | 11.35%     | 200      | 10.0      | 0,2382.0  | m         | 21.1    |
| 1000     | $\dot{e}2$     | 54  | 12  | the to     | 0          | ,2518,0  |           |           | March     | 18 M    |
| 1983 B   | 93             | 23  | 22  | 20,253     | 15.000     |          |           | - 1965 A  | 1         | 8.33    |
| 2.35     | 30             | 22  | 86  | 1          | S. 16.4    | 1996     | 5. SV 68  | 97 B 880  | 1.0110    | 1000    |
|          | 32             | 22  | 53  | 9 a        | 10.00      | 161      | 絵の名言      | 10.00     | ALC: N    | 1.54    |
| 1000     | 22             | 80  | 99  |            | 0,2274     | ill -    | 10.00     | 200 C -   | 202.00    | 97.92   |
| 10.00    | 5R             | 98  | 53  | 10.44      | 100 100    | 985.5    |           |           |           | 2016    |
| 110      | -16            |     | λį, | 11.42      | 10.00      | 140      |           | 1000      |           | 1       |
| 13.64    | 63             | 94. | 83  | 10.55-74   |            | 1.8      |           | A stays   | 18.75     | A       |
| 6966     | 25             | 82  | 22  | 135356     |            | 1223     |           | 17.192    | 1.157     | 1000    |
| 2892     | 20             | 22  | 28) | 5,5916     | 0.15%      | 6.98     |           | 100.24    | E         | 100     |
| Ag       | Не             | age | nal | 2.2.3      | 14.24      | 107      | 17 mail   |           |           | 233     |
| 1510-0   | h l            | k 1 |     | d [A] 2The | eta[deg] t | [%]      | 51. E. A  |           | AC 73     | 361     |
| 1        | 1              | 0   | 0   | 2,53740    | 35,345     | 25,1     | 0.002     | 200412    | 25628     | 289     |
| 2        | Ō              | 0   | 2   | 2,39500    | 37,523     | 27,8     | 200       |           | an in the | 2.5     |
| 3        | 1              | 0   | 1   | 2,24230    | 40,184     | 100,0    | 6.5.83    |           | 1.2.6     | 1832    |
| 4        | 1              | ō   | 2   | 1,74170    | 52,497     | 13,0     | 1.0       | 1.1.1.1.1 | 62.63     | 199     |
| 5        | 1              | 1   | 0   | 1,46500    | 63,445     | 12,5     | 四世之       | Stars     | 6-35      | 690     |
| 6        | 1              | 0   | 3   | 1,35140    | 69,501     | 13,3     | 2.1.1     | 意识时       | 同気用な      | 800     |
| 7        | 2              | 0   | 0   | 1,26870    | 74,768     | 1,7      | Sec.      | S125786   | S-1223    | 189     |
| 8        | 1              | 1   | 2   | 1,24970    | 76,106     | 12,5     | 2111      |           | 25.5.6.4  | 7617    |
| 9        | 2              | 0   | 1   | 1,22640    | 77,820     | 8,6      | では高い      | 知道会       |           |         |
| 10       | 0              | . 0 | 4   | 1,19750    | 80,070     | 1,7      | 125.8     |           | 242571    | 100     |
| 11       | 2              | 0   | 2   | 1,12110    | 86,801     | 1,9      | C10215    | Street,   | NUMPER NO | 0.04.7  |
| 12       | 1              | 0   | 4   | 1,08300    | 90,676     | 1,7      |           |           |           |         |
| 13       | 2              | 0   | 3   | 0,99330    | 101,700    | 3,7      |           |           |           |         |
| 14       | 2              | 1   | 0   | 0,95910    | 106,864    | 1,1      |           |           |           |         |

# Ag(0)Si3 AH355-x600000-17













Ag(0)Si5 AH333-x600000-0012





# Ag(II)Si2 AH326B-1j-x800000-11

# Ag(II)Si2

#### AH326-14j-x800000-0017





Ag Cubic

| h | k | 1 | d [4 | A] 2Theta | a[deg]   [% | 5]    |
|---|---|---|------|-----------|-------------|-------|
| 1 | 1 | 1 | 1    | 2,35040   | 38,262      | 100,0 |
| 2 | 2 | 0 | 0    | 2,03550   | 44,473      | 45,1  |
| 3 | 2 | 2 | 0    | 1,43930   | 64,714      | 22,3  |
| 4 | 3 | 1 | 1    | 1,22740   | 77,745      | 22,1  |
| 5 | 2 | 2 | 2    | 1,17520   | 81,910      | 6,1   |
| 6 | 4 | 0 | 0    | 1,01780   | 98,371      | 2,6   |
| 7 | 3 | 3 | 1    | 0,93400   | 111,123     | 7,9   |

Ag(II)Si2

# AH326-14j-x600000-0014





| - | - |    |      |           |             |       |
|---|---|----|------|-----------|-------------|-------|
| h | k | Ĩ. | d [/ | A] 2Theta | a[deg]   [% | 1     |
| 1 | 1 | 1  | 1    | 2,35040   | 38,262      | 100,0 |
| 2 | 2 | 0  | 0    | 2,03550   | 44,473      | 45,1  |
| 3 | 2 | 2  | 0    | 1,43930   | 64,714      | 22,3  |
| 4 | 3 | 1  | 1    | 1,22740   | 77,745      | 22,1  |
| 5 | 2 | 2  | 2    | 1,17520   | 81,910      | 6,1   |
| 6 | 4 | 0  | 0    | 1,01780   | 98,371      | 2,6   |
| 7 | 3 | 3  | 1    | 0,93400   | 111,123     | 7,9   |

#### Ag(II)Si2

#### AH326-14j-x600000-0015



AH324-14j-x500000-0015







# Ag(II)Si5

# AH324-14j-x500000-0015



### MIC picture for E. coli



Si-1 Si-2 Si-5 Si-2 Ag (0) Si-3 Ag (II) Si-5 Ag (0) Si-5 Ag (0) Dilutions 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024 1/2048 1/4096

CMB Escherichia coli O157:H7

# <u>MBC picture for E. coli</u>

CMI Escherichia coli O157:H7