Supplementary Information

Recognition Between V- and Dumbbell-Shaped Molecules

Wing-Yan Wong,^a Siu-Fung Lee,^a Hoi-Shan Chan,^a Thomas C. W. Mak,^a Chi-Hin Wong,^b Lau-Shan Huang,^b J. Fraser Stoddart,^{*c} Ken Cham-Fai Leung,^{*b,d}

- a. Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- b. Department of Chemistry and Institute of Creativity, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China
- c. Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
- d. Institute of Molecular Functional Materials, University Grants Committee, Hong Kong SAR, P. R. China

E-mails: stoddart@northwestern.edu; cfleung@hkbu.edu.hk

Table of Contents

Section A. NMR Characterisation	S 3
1) 2-D NOESY spectra	
2) Stacked ¹ H NMR spectra	
3) Full ¹ H and ¹³ C NMR spectra	
4) Summary of data	
Section B. Determination of Binding Constant	S15
1) Job plot	
2) Calculation of binding constant	
Section C. X-Ray Crystal Data	S19
1) Crystal data and structure refinement	
2) Atomic coordinates and equivalent isotropic displacement parameters	5
3) Bond lengths and angles	
4) Anisotropic displacement parameters	
5) Hydrogen coordinates and isotropic displacement parameters	

Section A. NMR Characterisation

1) 2-D NOESY spectra

Figure S1. 2D-NOESY spectrum of equilibrating mixture of the V-shaped compound **3** and dumbbell **2**-H·PF₆ in 1:1 ratio.

Figure S2. 2D-NOESY spectrum of equilibrating mixture of the V-shaped compound **3** and dumbbell 1-H·PF₆ in 1:1 ratio.

2) Stacked ¹H NMR spectra

Figure S3. Stacked partial ¹H NMR spectra of the dumbbell 1-H·PF₆, the V-shaped compound 3 and their equimolar mixture in CD_2Cl_2 . Asterisk denotes the solvent residual signal.

Figure S4. Stacked partial ¹H NMR spectra of (A) the ammonium dumbbell 1-H·PF₆; (B) complex 4·1-H·PF₆ with acid; (C) complex 4·1-H·PF₆ with water; and (D) complex 4·1-H·PF₆ in CD₂Cl₂/CD₃CN (9:1). Asterisk denotes the solvent residual signal.

Figure S5. Stacked partial ¹H NMR spectra of (A) the amine dumbbell **1** in CDCl₃; (B) the complex **4**·1-H·PF₆ treated with base; and (C) the complex **4**·1-H·PF₆ in CD_2Cl_2/CD_3CN (9:1). Asterisk denotes the solvent residual signal.

Figure S6. Stacked partial ¹H NMR spectra of (A) the ammonium dumbbell 2-H·PF₆; (B) the complex 4·2-H·PF₆ treated with acid; (C) the complex 4·2-H·PF₆ treated with water; and (D) the complex 4·2-H·PF₆ in CD₂Cl₂/CD₃CN (9:1). Asterisk denotes the solvent residual signal.

Figure S7. Stacked partial ¹H NMR spectra of (A) the amine dumbbell **2** in CDCl₃; (B) the complex **4**·**2**-H·PF₆ treated with base in CD₂Cl₂; and (C) the complex **4**·**2**-H·PF₆ in CD₂Cl₂/CD₃CN (9:1). Asterisk denotes the solvent residual signal.

3) Full ¹H and ¹³C NMR Spectra

$^1\mathrm{H}$ NMR Spectrum of 4 recorded in $\mathrm{CD}_2\mathrm{Cl}_2$

4) Summary of Data

Table S1. Summary of K_a (M⁻¹) and δ_c (ppm) for complexes formed between the V-shaped compounds **3–6** and **8** and the dumbbells **1**-H·PF₆ and **2**-H·PF₆ at 295 K in CD₂Cl₂ (error = ± 1 %; n.a. = not available due to fast exchange complexation).

		1- H·PF ₆		2 -H·PF ₆
V-shaped molecule	binding constant $K_{\rm a} ({ m M}^{-1})$	chemical shift of complexed dumbbell δ_{c}	binding constant K (M^{-1})	chemical shift of complexed dumbbell $\delta_{\rm c}$
3	n.a.	n.a.	240	5.04
4	400	4.13	180	5.04
5	360	4.10	n.a.	n.a.
6	130	4.19	n.a.	n.a.
8	90	4.13	n.a.	n.a.

Table S2. Summary of the mass-to-charge (m/z) ratios for the complexes formed between the V-shaped compounds **3–9** and the dumbbells **1**-H·PF₆ and **2**-H·PF₆ in ESI-MS.

molecular ion	calculated	found
[3·1- H] ⁺	663.3177	663.3184
[4·1- H]⁺	687.3905	687.3922
[5·1- H] ⁺	631.3279	631.3286
[6·1- H] ⁺	603.2966	603.2961
$[7 \cdot 1 - \mathrm{H}]^+$	671.2186	671.2185
[8·1- H]⁺	639.2777	639.2771
[9·1- H] ⁺	739.2714	739.2713
[3·2- H] ⁺	703.3279	703.3294
[4·2- H]⁺	727.4007	727.3995
[5·2- H] ⁺	671.3381	671.3376
[6·2- H] ⁺	643.3068	643.3067
[7·2- H] ⁺	711.2288	711.2312
[8·2- H] ⁺	679.2879	679.2886
[9·2- H] ⁺	779.2815	779.2826

Section B. Determination of Binding Constant

Figure S8. Job plot for complexation between V-shaped compound **5** and the dumbbell 1-H·PF₆ (total conc = 20 mM) based on NMR spectroscopic data (\blacklozenge : observed; --: calcd).

2) Calculation of Binding Constant

With regard to the ¹H NMR spectroscopic method, the binding constant determination is classified into two categories—slow and fast exchanges, depending on the rate of equilibrium relative to NMR timescale. For slow-exchange equilibria, free and complexed hosts give separate signals. The stoichiometry, concentration of complex [C] and binding constant K can be calculated from peak integrations. For a rapidly exchanging system, free and complexed hosts appear as a weighted average. The stoichiometry can be determined from Job plot. A titration experiment and regression (Rose-Drago method) are required to evaluate [C]. Then, K can be calculated by curve-fitting.

For a host-guest complexation:

 $a \cdot H + b \cdot G \equiv C$ where H = Host, G = Guest, C = complex

$$K = \frac{[C]}{[H]^a \cdot [G]^b} \dots (1)$$

$$[H]_0 = [H] + a \cdot [C] \qquad \dots (2)$$

$$[G]_0 = [G] + b \cdot [C] \qquad ...(3)$$

K: Binding constant

a, *b*: Stoichiometry

- [H]₀: Initial (total) concentration of host molecule
- [G]₀: Initial (total) concentration of guest molecule

[H], [G], [C]: equilibrium concentrations of host, guest, and complex, respectively

Electronic Submark (1997) This journal (1997) (1990 The stort his store on the store of the stor Interpret where [H], θ (is much by its planeted density there watched on the set of t Rose-Distribution in the applied autistic complexation in order $(a \pm b = 1)$. Rose-Distribution is applied autistic complexation (model $(a \pm b = 1)$). Rose-Distribution of (a picture) at the applied autistic complexation model (a = b = 1). Rose-Daugestitution both to approximate a 1:1 complexation model (a = b = 1). Substitution of (G) into (A) gives Substitution of (G) gives Su From HENDVIR Ht NIVER tixpetion experimentinite prudificient accombinations and [G]0, a From Honor province and the second se matrix of { δ_{obs} , [H]_{0n}, [G]_{0n} } with $\frac{73}{-74}$ elements was obtained in which δ_{obs} = observed chemical shift

 $[H]_{0n}$ = initial concentration of host molecule for *n*-th measurement

 $[G]_{0n}$ = initial concentration of guest molecule for *n*-th measurement

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013 matrix of { ∂_{obs} , [H]_{0n}, [G]_{0n} } with 3 elements was **Chapter 4** in Experimental Procedures

= observed chemical shift δ_{obs} . matrix of { Solar, III 00, [G10,] with 3 clements was obtained in which in the state of the sta

 $\mathcal{O}_{obs}^{[G]} =$ **observed chemical shift** guest molecule for *n*-th measurement $\mathcal{O}_{obs}^{[G]} =$ observed chemical shift $\begin{array}{l} \textbf{[H]} & \textbf{hg} \pm \textbf{initial} basing education of the structure for$ *m*-th measurement to structure the total of total ofUsing the following definitions:

 $\begin{array}{c} X = (\delta_{obs} - \delta_h) \\ \mathbf{Y} = (\delta_{obs} - \delta_h) \\ \mathcal{Y}_{d_n} = \mathbf{Y} \mathbf{H} \mathbf{H}_{0n} \cdot (\delta_{obs n} - \delta_h) \end{array}$ 1 Den Comment-Sp

 $\frac{1}{2} \frac{1}{2} \frac{1}$

(7) is then expressed as $X = C_m^{\text{matrix}} C_m^{\text{f}} X$. The maximum numbers of (7) is then expressed as

A contribution sof characteristics & manine of an soiers if X, X Pr. This attention on others to the

obtainable satisfies $(\alpha x, \gamma n)$ is a Capain story mean himitians of concentration conditions. The binding constant K and chemical shift of complexed host δ_c can then about bianse the structure of the second three structures at a shift of complexed host the constant X and chemical shift of complexed host ∂_c can then be obtained. Values differed by more than 2.5 standard deviations from the mean are beläthininted. Walues divisioned this more thing 2.5 Than the division of the same finite of have known and the second se etiminated and a new mean is determined. The calculated K and \mathcal{F}_{c} are futted back into the Job plot for optimization.

-75-

S 18

S12

Section C. X-Ray Crystal Data

Crystal Data of the ammonium dumbbell 2-H·PF₆

Table 1. Crystal data and structure refinement for p.

CCDC code	784761
Identification code	wy207
Empirical formula	$C_{48}H_{48}ClF_6N_2O_4P$
Formula weight	897.30
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system, space group	Triclinic, <i>P</i> ī
Unit cell dimensions	$a = 12.0530(4)$ Å $\alpha = 95.8310(10)$ °
	$b = 12.8073(4)$ Å $\beta = 99.9830(10)$ °
	$c = 16.0081(9)$ Å $\gamma = 114.1490(10)$ °
Volume	2179.41(16) Å ³
Z, Calculated density	2, 1.367 Mg/m ³
Absorption coefficient	0.197 mm^{-1}
<i>F</i> (000)	936
Crystal size	0.50 x 0.40 x 0.30 mm
Theta range for data collection	1.32 to 25.25 °
Limiting indices	$-14 \le h \le 14, -15 \le k \le 15, -19 \le l \le 19$
Reflections collected / unique	$25221 / 7855 [R_{int} = 0.0434]$
Completeness to $\theta = 25.25$	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6068
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	7855 / 0 / 562
Goodness-of-fit on F^2	1.011
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0420, \ _w R_2 = 0.1117$
<i>R</i> indices (all data)	$R_1 = 0.0524, \ _w R_2 = 0.1235$
Largest diff. peak and hole	0.424 and -0.327 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($A^2 \ x \ 10^3$) for p.

U	(ea)	is	defined	as	one third	l of	the	trace	of the	e orthog	onalized	Uii	tensor.
\sim	297	10	aernea	ab					01 011	0 010102	,oman20a	~ 1	compon.

	Х	y z	U(eq)	
N(1')	1202(1)	2060(1)	3018(1)	37(1)
N(1)	-1444(1)	869(1)	-508(1)	37(1)
O(1')	5916(1)	5342(1)	4176(1)	61(1)
O(2')	4352(2)	4790(1)	1159(1)	64(1)
C(1)	-971(2)	1418(2)	-1239(1)	43(1)
C(2)	-1986(2)	971(2)	-2061(1)	39(1)
C(3)	-2374(2)	1735(2)	-2444(1)	46(1)
C(4)	-3283(2)	1305(2)	-3209(1)	50(1)
C(5)	-3826(2)	131(2)	-3598(1)	45(1)
C(6)	-3433(2)	-609(2)	-3210(1)	41(1)
C(7)	-2519(2)	-193(2)	-2439(1)	42(1)
C(8)	-3163(4)	3183(3)	-3341(2)	116(1)
C(9)	-4867(2)	-2273(2)	-4293(2)	65(1)
C(10)	-2498(2)	1118(2)	-319(1)	39(1)
C(11)	-3074(2)	516(2)	363(1)	38(1)
C(12)	-3942(2)	-670(2)	130(1)	42(1)
C(13)	-4230(2)	-1354(2)	-709(2)	52(1)
C(14)	-5087(2)	-2485(2)	-914(2)	69(1)
C(15)	-5719(2)	-3020(2)	-301(2)	78(1)
C(16)	-5475(2)	-2423(2)	503(2)	67(1)
C(17)	-4586(2)	-1223(2)	752(2)	49(1)
C(18)	-4371(2)	-573(2)	1559(1)	53(1)
C(19)	-3530(2)	599(2)	1796(1)	47(1)
C(20)	-3346(2)	1281(2)	2617(1)	62(1)
C(21)	-2531(2)	2408(3)	2848(2)	69(1)
C(22)	-1830(2)	2953(2)	2270(2)	63(1)
C(23)	-1972(2)	2358(2)	1474(1)	52(1)
C(24)	-2840(2)	1158(2)	1194(1)	41(1)
C(1')	1452(2)	3314(2)	3048(1)	45(1)
C(2')	2733(2)	3985(2)	2902(1)	40(1)
C(3')	3758(2)	4415(2)	3596(1)	42(1)
C(4')	4955(2)	4957(2)	3458(1)	44(1)
C(5')	511/(2)	50/8(2)	2636(1)	48(1)
C(6')	4085(2)	4646(2)	1943(1)	46(1)
C(7)	2884(2)	4103(2)	20/0(1)	44(1)
C(8)	7114(2)	5535(3)	4042(2)	/4(1) 70(1)
C(9')	3360(2)	4169(2)	415(2)	$\frac{1}{10}$
$C(10^{\circ})$	91(2)	1330(2)	3331(1)	40(1) 42(1)
C(11)	109(2)	255(2)	3330(1)	43(1)
C(12)	-333(2)	-844(2)	2979(1)	43(1)
C(13)	-1409(2) -2126(2)	-1019(2) -2090(2)	2213(2) 1680(2)	33(1) 62(1)
C(14)	-2130(2) -1021(2)	-2080(2) -2047(2)	1009(2) 1974(2)	03(1) 67(1)
C(15)	-1931(2) -1092(2)	-304/(2) -2025(2)	10/4(2)	0/(1)
U(10)	-1083(2)	-2933(2)	2383(2)	OU(1)

C(17')	-383(2)	-1851(2)	3170(1)		48(1)	
C(18')	473(2)	-1743(2)	3914(1)	52(1)		
C(19')	1175(2) -	692(2) 4	488(1)		49(1)	
C(20')	2055(2)	-593(2)	5251(2)		63(1)	
C(21')	2749(3)	435(3)	5796(2)		73(1)	
C(22')	2610(2)	1440(2)	5625(2)		69(1)	
C(23')	1787(2)	1388(2)	4914(1)		56(1)	
C(24')	1028(2)	323(2)	4305(1)		46(1)	
O(1)	-3733(2)	1958(2)	-3656(1)		84(1)	
O(2)	-3854(2)	-1768(1)	-3543(1)		59(1)	
P(1')	0	5000	5000		50(1)	
P(1)	0	5000	0		68(1)	
F(1')	1400(1)	5794(2)	4984(1)		86(1)	
F(1)	-565(3)	5182(2)	766(2)		167(1)	
F(2')	133(2)	3864(1)	4635(1)		83(1)	
F(2)	1338(2)	5874(2)	512(2)		152(1)	
F(3')	-472(2)	5134(1)	4045(1)		80(1)	
F(3)	185(2)	3934(2)	318(2)		109(1)	
Cl(1)	689(1)	1239(1)	1054(1)		53(1)	

N(1')-C(1')	1.502(2)
N(1')-C(10')	1.506(2)
N(1)-C(10)	1.501(2)
N(1)-C(1)	1.502(2)
O(1')-C(4')	1.364(2)
O(1')-C(8')	1.420(3)
O(2')-C(6')	1.361(2)
O(2')-C(9')	1.420(3)
C(1)-C(2)	1.508(3)
C(2)-C(7)	1.378(3)
C(2)-C(3)	1.396(3)
C(3)-C(4)	1.381(3)
C(4)-O(1)	1.365(2)
C(4)-C(5)	1.393(3)
C(5)-C(6)	1.376(3)
C(6)-O(2)	1.370(2)
C(6)-C(7)	1.391(3)
C(8)-O(1)	1.423(3)
C(9)-O(2)	1.427(3)
C(10)-C(11)	1.504(2)
C(11)-C(24)	1.409(3)
C(11)-C(12)	1.410(3)
C(12)-C(13)	1.430(3)
C(12)-C(17)	1.434(3)
C(13)-C(14)	1.354(3)
C(14)-C(15) C(15) $C(16)$	1.40/(4) 1.247(4)
C(15)-C(16)	1.34/(4) 1.421(2)
C(10)-C(17) C(17) $C(18)$	1.431(3) 1.295(2)
C(17)-C(18) C(18) $C(10)$	1.383(3) 1.280(3)
C(10) - C(19) C(10) - C(20)	1.309(3) 1.431(3)
C(19) - C(20) C(10) C(24)	1.431(3) 1.437(3)
C(19)-C(24) C(20)-C(21)	1.437(3) 1.338(4)
C(20)-C(21) C(21)-C(22)	1.338(4) 1.405(4)
C(22) - C(23)	1.403(4) 1.362(3)
C(23)-C(24)	1.302(3) 1 427(3)
C(1')-C(2')	1.127(3) 1.503(3)
C(2')-C(3')	1.382(3)
C(2')-C(7')	1 390(3)
C(3')-C(4')	1.391(3)
C(4')-C(5')	1.378(3)
C(5')-C(6')	1.386(3)
C(6')-C(7')	1.388(3)
C(10')-C(11')	1.512(3)
C(11')-C(12')	1.410(3)
C(11')-C(24')	1.411(3)
C(12')-C(13')	1.427(3)
C(12')-C(17')	1.441(3)

Table 3. Bond lengths [Å	and angles	0	for p).
-------------------------	---	------------	---	-------	----

O(121) $O(141)$	1.25((2))
C(13)-C(14)	1.356(3)
C(14')-C(15')	1.408(4)
C(15')-C(16')	1.342(4)
C(16')-C(17')	1.422(3)
C(17')-C(18')	1.387(3)
C(18')-C(19')	1.386(3)
C(19')-C(20')	1 430(3)
C(19') - C(24')	1433(3)
C(20') - C(21')	1.133(3) 1.344(4)
C(21) - C(21)	1.3++(+) 1.411(4)
C(21) - C(22)	1.411(4) 1.250(2)
C(22) - C(23)	1.330(3)
C(23)-C(24)	1.430(3)
P(1')-F(1')#1	1.5801(15)
P(1')-F(1')	1.5802(15)
P(1')-F(3')#1	1.5886(14)
P(1')-F(3')	1.5886(14)
P(1')-F(2')#1	1.5924(13)
P(1')-F(2')	1.5924(13)
P(1)-F(1)	1.543(2)
P(1)-F(1)#2	1.543(2)
P(1)-F(2)	1 5505(19)
P(1)-F(2)#2	1.5505(19)
P(1)-F(3)#2	1.5882(17)
P(1)-F(3)	1.5882(17)
C(1') - N(1') - C(10')	11538(14)
C(10) N(1) C(1)	113.30(14) 111.70(14)
C(10) - N(1) - C(1)	111.79(14) 116.07(17)
C(4) - O(1) - C(8)	110.97(17) 117.20(17)
V(1) C(1) C(2)	11/.20(1/) 111.54(14)
N(1)-C(1)-C(2)	111.34(14) 120.10(19)
C(7) - C(2) - C(3)	120.10(18)
C(7)-C(2)-C(1)	119./4(1/)
C(3)-C(2)-C(1)	120.15(17)
C(4)-C(3)-C(2)	118.83(18)
O(1)-C(4)-C(3)	124.79(19)
O(1)-C(4)-C(5)	113.64(19)
C(3)-C(4)-C(5)	121.57(18)
C(6)-C(5)-C(4)	118.76(18)
O(2)-C(6)-C(5)	124.49(18)
O(2)-C(6)-C(7)	114.94(16)
C(5)-C(6)-C(7)	120.54(17)
C(2)-C(7)-C(6)	120.19(17)
N(1)-C(10)-C(11)	114.14(14)
C(24)-C(11)-C(12)	120.76(17)
C(24)-C(11)-C(10)	120.15(16)
C(12)-C(11)-C(10)	118 80(16)
C(12) = C(12) = C(13)	$122 \ 94(18)$
C(11)-C(12)-C(13)	122.74(10) 110 22(18)
C(12) C(12) C(17)	119.55(10)
U(13) - U(12) - U(17)	117 72(10)
C(14) C(12) C(12)	117.73(18)
C(14)-C(13)-C(12)	117.73(18) 121.3(2) 120.(2)

C(16)-C(15)-C(14)	120.8(2)
C(15)-C(16)-C(17)	120.9(2)
C(18)-C(17)-C(16)	122.0(2)
C(18)-C(17)-C(12)	119.27(18)
C(16)-C(17)-C(12)	118.7(2)
C(17)-C(18)-C(19)	122.17(18)
C(18)-C(19)-C(20)	122.1(2)
C(18)-C(19)-C(24)	119.39(18)
C(20)-C(19)-C(24)	118.5(2)
C(21)-C(20)-C(19)	122.1(2)
C(20)-C(21)-C(22)	119.6(2)
C(23)-C(22)-C(21)	121.2(2)
C(22)-C(23)-C(24)	121.3(2)
C(11)-C(24)-C(23)	123.80(17)
C(11)-C(24)-C(19)	119.01(18)
C(23)-C(24)-C(19)	117.16(18)
N(1')-C(1')-C(2')	109.31(14)
C(3')-C(2')-C(7')	120.73(17)
C(3')-C(2')-C(1')	119.04(17)
C(7')-C(2')-C(1')	120.10(17)
C(2')-C(3')-C(4')	119.51(18)
O(1')-C(4')-C(5')	123.86(18)
O(1')-C(4')-C(3')	115.83(17)
C(5')-C(4')-C(3')	120.31(18)
C(4')-C(5')-C(6')	119.89(18)
O(2')-C(6')-C(5')	115.05(17)
O(2')-C(6')-C(7')	124.44(18)
C(5')-C(6')-C(7')	120.51(18)
C(6')-C(7')-C(2')	119.05(18)
N(1')-C(10')-C(11')	110.11(14)
C(12')-C(11')-C(24')	120.54(18)
C(12')-C(11')-C(10')	121.15(18)
C(24')-C(11')-C(10')	118.25(18)
C(11')-C(12')-C(13')	124.29(18)
C(11')-C(12')-C(17')	118.90(18)
C(13')-C(12')-C(17')	116.81(18)
C(14')-C(13')-C(12')	121.6(2)
C(13')-C(14')-C(15')	120.8(2)
C(16')-C(15')-C(14')	120.3(2)
C(15)-C(16)-C(17)	121.3(2)
C(18) - C(17) - C(16)	121.2(2)
C(18) - C(17) - C(12)	119.55(19)
C(10) - C(17) - C(12)	119.2(2)
C(19) - C(18) - C(17)	122.13(19) 121.5(2)
C(18) - C(19) - C(20)	121.5(2)
C(18) - C(19) - C(24)	119.22(19) 110.2(2)
C(20) - C(19) - C(24)	119.3(2) 121.1(2)
C(20) = C(20) + C(20)	121.1(2) 120.2(2)
C(20) - C(21) - C(22)	120.2(2) 120.8(2)
U(23) - U(22) - U(21)	120.8(2)

C(22')-C(23')-C(24')	121.8(2)
C(11')-C(24')-C(23')	123.49(19)
C(11')-C(24')-C(19')	119.64(18)
C(23')-C(24')-C(19')	116.9(2)
C(4)-O(1)-C(8)	117.5(2)
C(6)-O(2)-C(9)	117.73(16)
F(1')#1-P(1')-F(1')	180.000(1)
F(1')#1-P(1')-F(3')#1	90.56(9)
F(1')-P(1')-F(3')#1	89.44(9)
F(1')#1-P(1')-F(3')	89.44(9)
F(1')-P(1')-F(3')	90.56(9)
F(3')#1-P(1')-F(3')	180.00(12)
F(1')#1-P(1')-F(2')#1	90.62(9)
F(1')-P(1')-F(2')#1	89.38(9)
F(3')#1-P(1')-F(2')#1	90.66(8)
F(3')-P(1')-F(2')#1	89.34(8)
F(1')#1-P(1')-F(2')	89.38(9)
F(1')-P(1')-F(2')	90.62(9)
F(3')#1-P(1')-F(2')	89.34(8)
F(3')-P(1')-F(2')	90.66(8)
F(2')#1-P(1')-F(2')	180.000(1)
F(1)-P(1)-F(1)#2	180.0
F(1)-P(1)-F(2)	91.91(18)
F(1)#2-P(1)-F(2)	88.09(18)
F(1)-P(1)-F(2)#2	88.09(18)
F(1)#2-P(1)-F(2)#2	91.91(18)
F(2)-P(1)-F(2)#2	179.999(1)
F(1)-P(1)-F(3)#2	88.23(13)
F(1)#2-P(1)-F(3)#2	91.77(13)
F(2)-P(1)-F(3)#2	88.33(11)
F(2)#2-P(1)-F(3)#2	91.67(11)
F(1)-P(1)-F(3)	91.77(13)
F(1)#2-P(1)-F(3)	88.23(13)
F(2)-P(1)-F(3)	91.67(11)
F(2)#2-P(1)-F(3)	88.33(11)
F(3)#2-P(1)-F(3)	180.0

Symmetry transformations used to generate equivalent atoms:

#1 -x, -y+1, -z+1 #2 -x, -y+1, -z

Table 4. Anisotropic displacement parameters $(A^2 \times 10^3)$ for p.

	U11	U22	U33	U23	U13	U12
N(1')	37(1)	35(1)	39(1)	7(1)	11(1)	16(1)
N(1)	31(1)	46(1)	35(1)	5(1)	5(1)	18(1)
O(1')	44(1)	78(1)	52(1)	8(1)	2(1)	23(1)
O(2')	64(1)	70(1)	46(1)	16(1)	17(1)	16(1)
C(1)	37(1)	50(1)	43(1)	9(1)	16(1)	17(1)
C(2)	40(1)	48(1)	36(1)	11(1)	18(1)	22(1)
C(3)	55(1)	39(1)	50(1)	12(1)	20(1)	22(1)
C(4)	60(1)	48(1)	53(1)	18(1)	15(1)	33(1)
C(5)	51(1)	49(1)	40(1)	11(1)	9(1)	26(1)
C(6)	51(1)	42(1)	38(1)	10(1)	15(1)	25(1)
C(7)	54(1)	49(1)	39(1)	13(1)	15(1)	33(1)
C(8)	170(4)	59(2)	119(3)	17(2)	-12(2	68(2)
C(9)	72(2)	53(1)	58(1)	-1(1)	1(1)	24(1)
C(10)	38(1)	46(1)	41(1)	11(1)	14(1)	23(1)
C(11)	33(1)	46(1)	41(1)	13(1)	11(1)	22(1)
C(12)	34(1)	46(1)	52(1)	13(1)	9(1)	23(1)
C(13)	43(1)	52(1)	61(1)	4(1)	8(1)	23(1)
C(14)	60(1)	53(1)	86(2)	-3(1)	2(1)	28(1)
C(15)	62(2)	40(1)	121(3)	14(1)	10(2)	16(1)
C(16)	56(1)	51(1)	101(2)	34(1)	23(1)	24(1)
C(17)	39(1)	49(1)	68(1)	26(1)	16(1)	24(1)
C(18)	47(1)	70(1)	61(1)	36(1)	26(1)	33(1)
C(19)	41(1)	66(1)	45(1)	20(1)	15(1)	31(1)
C(20)	63(1)	96(2)	43(1)	21(1)	22(1)	47(1)
C(21)	68(2)	98(2)	45(1)	-2(1)	8(1)	44(2)
C(22)	53(1)	68(2)	60(1)	-7(1)	4(1)	26(1)
C(23)	43(1)	57(1)	52(1)	7(1)	12(1)	19(1)
C(24)	35(1)	53(1)	42(1)	13(1)	10(1)	24(1)
C(1')	43(1)	37(1)	60(1)	11(1)	17(1)	20(1)
C(2')	40(1)	30(1)	51(1)	9(1)	12(1)	17(1)
C(3')	48(1)	38(1)	44(1)	12(1)	14(1)	21(1)
C(4')	41(1)	40(1)	47(1)	5(1)	5(1)	17(1)
C(5')	40(1)	45(1)	55(1)	11(1)	14(1)	13(1)
C(6')	51(1)	40(1)	45(1)	12(1)	14(1)	17(1)
C(7')	44(1)	38(1)	46(1)	9(1)	6(1)	15(1)
C(8')	48(1)	93(2)	(75(2)	0(1)	0(1)	35(1)
C(9')	76(2)	86(2)	45(1)	19(1)	$\frac{11(1)}{22(1)}$	32(1)
$C(10^{\circ})$	42(1)	42(1)	60(1)	14(1)	22(1)	18(1)
C(11')	39(1)	43(1)	54(1)	16(1)	23(1)	18(1)
C(12')	$\frac{3}{(1)}$	43(1)	56(1)	15(1)	24(1)	$\Gamma/(1)$
$C(13^{\circ})$	46(1)	58(1)	66(1)	14(1)	$\Gamma/(1)$	26(1)
C(14')	48(1)	66(2)	68(2)	$\frac{3(1)}{1(1)}$	8(1)	22(1)
C(15')	63(1)	51(1)	74(2)	I(1)	18(1)	13(1)

The anisotropic displacement factor exponent takes the form: $-2 \pi^2 [h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12]$

C(16')	66(1)	44(1)	72(2)	14(1)	28(1)	21(1)
C(17')	46(1)	44(1)	60(1)	17(1)	28(1)	18(1)
C(18')	57(1)	49(1)	65(1)	26(1)	29(1)	29(1)
C(19')	50(1)	54(1)	53(1)	23(1)	26(1)	24(1)
C(20')	68(2)	76(2)	60(1)	30(1)	24(1)	39(1)
C(21')	71(2)	92(2)	56(1)	21(1)	9(1)	34(2)
C(22')	71(2)	71(2)	52(1)	7(1)	14(1)	20(1)
C(23')	64(1)	52(1)	53(1)	13(1)	21(1)	21(1)
C(24')	45(1)	48(1)	49(1)	17(1)	24(1)	18(1)
O(1)	114(2)	56(1)	85(1)	16(1)	-11(1)	52(1)
O(2)	83(1)	44(1)	48(1)	3(1)	0(1)	33(1)
P(1')	52(1)	56(1)	45(1)	4(1)	9(1)	30(1)
P(1)	56(1)	38(1)	106(1)	11(1)	30(1)	11(1)
F(1')	58(1)	97(1)	99(1)	23(1)	22(1)	27(1)
F(1)	243(3)	150(2)	179(3)	57(2)	142(2)) 112(2)
F(2')	98(1)	76(1)	83(1)	-5(1)	13(1)	55(1)
F(2)	82(1)	72(1)	247(3)	8(2)	-18(2)	8(1)
F(3')	97(1)	94(1)	51(1)	13(1)	5(1)	48(1)
F(3)	98(1)	65(1)	168(2)	40(1)	34(1)	34(1)
Cl(1)	62(1)	54(1)	41(1)	1(1)	-6(1)	32(1)

	Х	у	z U((eq)
H(1'A)	1887	2037	3330	44
H(1'D)	1087	1729	2468	44
H(1A)	-1709	93	-645	45
H(1D)	-813	1145	-31	45
H(1B)	-282	1250	-1335	52
H(1C)	-656	2258	-1083	52
H(3A)	-2026	2519	-2189	55
H(5A)	-4442	-147	-4110	54
H(7A)	-2268	-702	-2178	51
H(8A)	-3564	3541	-3707	174
H(8B)	-2291	3500	-3342	174
H(8C)	-3251	3336	-2763	174
H(9A)	-5074	-3085	-4458	98
H(9B)	-4627	-1881	-4757	98
H(9C)	-5582	-2193	-4167	98
$H(10\Lambda)$	-3144	21)J 878	-8/18	17 17
H(10R)	-2100	1052	-134	47 17
H(10D) H(12A)		_1952 _1016	_134 _1122	47 62
H(13A)	_5250	_2012	-1464	82
H(14A) H(15A)	-6211	2912	-452	02
$\Pi(13A)$	-0311	-3/93	-435	93
H(10A)	-5891	-2/95	903	80
H(18A)	-4804	-933	1956	64
H(20A)	-3807	930	3003	/4
H(21A)	-2430	2829	3387	83
H(22A)	-1258	3734	2435	76
H(23A)	-1494	2740	1106	62
H(1'B)	1402	3642	3606	54
H(1'C)	827	3367	2606	54
H(3'A)	3649	4343	4152	51
H(5'A)	5919	5450	2547	58
H(7'A)	2191	3822	1605	53
H(8'A)	7712	5806	4590	111
H(8'B)	7363	6112	3687	111
H(8'C)	7078	4820	3761	111
H(9'A)	3659	4348	-95	105
H(9'B)	2693	4392	434	105
H(9'C)	3056	3347	404	105
H(10C)	-675	1135	2921	56
H(10D)	71	1783	3870	56
H(13B)	-1611	-390	2074	66
H(14R)	-2735	-2169	1201	76
H(15B)	-7384	-3766	1503	, 0 80
H(16R)	_057	_3580	7606	50 70
U(10D)	<i>732</i> 570	_ <u>_</u> 7207	2090	62
11(10D)	317	-2371	4031	05

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (A² $x \ 10^3$) for p.

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

H(20B)	2150	-1251	5372	76
H(21B)	3322	485	6287	88
H(22B)	3090	2147	6007	83
H(23B)	1713	2062	4816	68

Crystal Data of the V-shaped compound 3 (R = OMe)

Table 1. Crystal data and structure refinement for p.

CCDC code	784762
Identification code	WY206
Empirical formula	$C_{21}H_{19}N_3O_2$
Formula weight	345.39
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system, space group	Orthorhombic, Aba2
Unit cell dimensions	$a = 7.1660(6) \text{ Å} \alpha = 90 \circ$
	$b = 40.204(3) \text{ Å} \ \beta = 90 \circ$
	$c = 6.3427(5) \text{ Å} \gamma = 90 ^{\circ}$
Volume	1827.4(3) Å ³
Z, Calculated density	4, 1.255 Mg/m ³
Absorption coefficient	0.083 mm^{-1}
<i>F</i> (000)	728
Crystal size	0.40 x 0.30 x 0.20 mm
Theta range for data collection	1.01 to 27.95 °
Limiting indices	$-7 \le h \le 9, -52 \le k \le 52, -8 \le l \le 6$
Reflections collected / unique	$6680 / 2019 [R_{int} = 0.0504]$
Completeness to $\theta = 27.95$	99.5 %
Absorption correction	multi-scan
Max. and min. transmission	0.7456 and 0.6521
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2019 / 1 / 119
Goodness-of-fit on F^2	1.000
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0439, \ _w R_2 = 0.0920$
<i>R</i> indices (all data)	$R_1 = 0.0926, \ _w R_2 = 0.1147$
Absolute structure parameter	1(2)
Largest diff. peak and hole	0.123 and $-0.230 \text{ e.}\text{\AA}^{-3}$

	х у	Z	U(eq)	
O(1)	-94(2)	2110(1)	4471(3)	53(1)
C(1)	-30(4)	285(1)	154(4)	48(1)
C(2)	-43(4)	293(1)	-2011(5)	60(1)
C(3)	0	0 -31	10(7) 70	(1)
C(4)	-85(4)	593(1)	1405(5)	55(1)
C(5)	-68(3)	1173(1)	1698(4)	41(1)
C(6)	-872(3)	1449(1)	739(4)	44(1)
C(7)	-881(3)	1754(1)	1708(4)	42(1)
C(8)	-28(3)	1795(1)	3653(4)	41(1)
C(9)	821(3)	1526(1)	4624(4)	47(1)
C(10)	769(3)	1218(1)	3649(4)	47(1)
C(11)	842(5)	2173(1)	6407(5)	70(1)
N(1)	0	0 125	55(5) 52((1)
N(2)	-84(3)	874(1)	531(4)	46(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($A^2 \ x \ 10^3$) for p.

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

O(1)-C(8)	1.371(2)
O(1)-C(11)	1.422(3)
C(1)-N(1)	1.343(3)
C(1)-C(2)	1.374(4)
C(1)-C(4)	1.469(3)
C(2)-C(3)	1.369(3)
C(3)-C(2)#1	1.369(3)
C(4)-N(2)	1.258(3)
C(5)-C(10)	1.387(4)
C(5)-C(6)	1.391(3)
C(5)-N(2)	1.413(3)
C(6)-C(7)	1.371(3)
C(7)-C(8)	1.387(4)
C(8)-C(9)	1.383(3)
C(9)-C(10)	1.385(3)
N(1)-C(1)#1	1.343(3)
C(8)-O(1)-C(11)	118.31(18)
N(1)-C(1)-C(2)	122.6(2)
N(1)-C(1)-C(4)	116.0(2)
C(2)-C(1)-C(4)	121.4(2)
C(3)-C(2)-C(1)	119.3(3)
C(2)#1- $C(3)$ - $C(2)$	118.8(4)
N(2)-C(4)-C(1)	121.2(2)
C(10)-C(5)-C(6)	117.7(2)
C(10)-C(5)-N(2)	125.6(2)
C(6)-C(5)-N(2)	116.6(2)
C(7)-C(6)-C(5)	121.3(2)
C(6)-C(7)-C(8)	120.1(2)
O(1)-C(8)-C(9)	124.7(2)
O(1)-C(8)-C(7)	115.5(2)
C(9)-C(8)-C(7)	119.9(2)
C(8)-C(9)-C(10)	119.2(2)
C(9)-C(10)-C(5)	121.8(2)
C(1)#1-N(1)-C(1)	117.3(3)
C(4)-N(2)-C(5)	122.3(2)
$\mathbf{C}_{\mathbf{r}}$	

Table 3. Bond lengths [Å] and angles [°] for p.

Symmetry transformations used to generate equivalent atoms: #1 -x, -y, z

56(1)

N(2)

27	n u Ol		2 11 K u	5 012]			
	U11	U22	U33	U23	U13	U	12
O(1)	71(1)	36(1)	53(1)	-1(1)	-6(1)	4(1)
C(1)	67(2)	36(2)	41(2)	0(1)	1(1)	$-2(\hat{1}$)
C(2)	97(2)	40(1)	44(2)	7(1)	-4(2)	0(1)
C(3)	123(4)	55(2)	33(2)	0	0 -	-1(2)	
C(4)	82(2)	40(1)	42(2)	1(1)	5(2)	-4(1)
C(5)	47(1)	34(1)	41(2)	2(1)	-1(2)	-2(1)
C(6)	50(2)	43(1)	37(1)	4(1)	-5(1)	1(1)
C(7)	48(1)	34(1)	44(2)	8(1)	-3(2)	3(1)
C(8)	44(1)	32(1)	46(2)	3(1)	6(1)	1(1))
C(9)	56(1)	42(1)	42(1)	3(1)	-6(1)	0(1)
C(10)	55(2)	35(1)	51(2)	7(1)	-7(2)	3(1)
C(11)	98(2)	48(2)	63(2)	-14(2)	-16(2	2) (0(2)
N(1)	80(2)	36(2)	40(2)	0	0 -	-5(1)	

Table 4. Anisotropic displacement parameters $(A^2 \times 10^3)$ for p. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U11 + + 2 h k a^{*} b^{*} U12]

47(1)

37(1)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters ($A^2 x$ 10^{3}) for p.

-1(1) -3(1) -2(1)

	X	y z	U(eq))		
H(2A)	-81	495	-2723	72		
H(3)	0	0	4577	84		
H(4A)	-121	579	2868	66		
H(6A)	-1415	1427	-585	52		
H(7A)	-1460	1934	1059	51		
H(9A)	1418	1553	5915	56		
H(10A)	1310	1037	4322	56		
H(11A)	669	2402	6801	104		
H(11B)	2150	2128	6242	104		
H(11C)	339	2032	7486	104		

Crystal Data of the V-shaped compound 5 (R = Me)

Table 1. Crystal data and structure refinement for p.

CCDC code	784763
Identification code	wy201
Empirical formula	$C_{21}H_{19}N_3$
Formula weight	313.39
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, $P2/c$
Unit cell dimensions	$a = 4.7249(7)$ Å $\alpha = 90^{\circ}$
	$b = 6.2811(9) \text{ Å } \beta = 94.639(3)^{\circ}$
	$c = 28.965(4) \text{ Å} \gamma = 90 \circ$
Volume	856.8(2) Å ³
Z, Calculated density	2, 1.215 Mg/m ³
Absorption coefficient	0.073 mm^{-1}
F(000)	332
Crystal size	0.50 x 0.40 x 0.30 mm
Theta range for data collection	1.41 to 25.25 °
Limiting indices	$-5 \le h \le 5, -7 \le k \le 7, -34 \le l \le 34$
Reflections collected / unique	$11557 / 1566 [R_{int} = 0.0405]$
Completeness to $\theta = 25.25$	99.7 %
Absorption correction	multi-scan
Max. and min. transmission	0.7456 and 0.5906
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	1566 / 0 / 111
Goodness-of-fit on F^2	3.356
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.1742, \ _wR_2 = 0.6124$
R indices (all data)	$R_1 = 0.1810, \ _wR_2 = 0.6184$
Extinction coefficient	0.31(18)
Largest diff. peak and hole	$0.544 \text{ and } -0.451 \text{ e.}\text{\AA}^{-3}$

	х у	Z	U(eq)	
N(1)	0	6305(10)	2500 4	18(2)
N(2)	5501(10)	6935(8)	3400(2)	53(2)
C(1)	0 1	10724(13)	2500	60(3)
C(2)	1842(12)	9622(10)	2801(2)	56(2)
C(3)	1797(11)	7400(9)	2795(2)	45(2)
C(4)	3709(12)	6109(9)	3107(2)	50(2)
C(5)	7361(12)	5638(9)	3683(2)	48(2)
C(6)	8606(15)	6494(11)	4085(2)	63(2)
C(7)	10497(14)) 5365(12)	4369(2)) 68(2)
C(8)	11291(13)) 3287(12)	4268(2)) 61(2)
C(9)	10077(14)) 2446(11)	3848(2)) 64(2)
C(10)	8197(14)) 3556(10)	3563(2)) 59(2)
C(11)	13379(17	2040(15)) 4572(3	6) 86(3)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($A^2 \ x \ 10^3$) for p.

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

N(1)-C(3)#1 $1.344(6)$ $N(2)-C(4)$ $1.260(6)$ $N(2)-C(5)$ $1.411(7)$ $C(1)-C(2)#1$ $1.369(7)$ $C(2)-C(3)$ $1.396(9)$ $C(3)-C(4)$ $1.470(7)$ $C(5)-C(6)$ $1.372(8)$ $C(5)-C(10)$ $1.417(9)$ $C(6)-C(7)$ $1.363(8)$ $C(7)-C(8)$ $1.396(11)$ $C(8)-C(9)$ $1.404(9)$ $C(8)-C(11)$ $1.491(8)$ $C(9)-C(10)$ $1.356(8)$ $C(3)-N(1)-C(3)#1$ $118.4(6)$ $C(4)-N(2)-C(5)$ $120.4(5)$ $C(2)-C(1)-C(2)#1$ $119.3(7)$ $C(1)-C(2)-C(3)$ $119.2(5)$ $N(1)-C(3)-C(4)$ $115.7(5)$ $C(2)-C(4)-C(3)$ $122.2(5)$ $N(1)-C(3)-C(4)$ $117.4(5)$ $N(2)-C(4)-C(3)$ $122.3(5)$ $N(2)-C(5)-C(10)$ $117.4(5)$ $N(2)-C(5)-C(10)$ $124.3(5)$ $C(7)-C(8)-C(11)$ $122.9(6)$ $C(7)-C(8)-C(11)$ $122.9(6)$ $C(7)-C(8)-C(11)$ $122.9(6)$ $C(9)-C(8)-C(11)$ $122.4(6)$ $C(9)-C(0)-C(5)$ $120.5(6)$	N(1)-C(3)	1.344(6)
N(2)-C(4)1.260(6) $N(2)-C(5)$ 1.411(7) $C(1)-C(2)$ 1.369(7) $C(1)-C(2)#1$ 1.369(7) $C(2)-C(3)$ 1.396(9) $C(3)-C(4)$ 1.470(7) $C(5)-C(6)$ 1.372(8) $C(5)-C(10)$ 1.417(9) $C(6)-C(7)$ 1.363(8) $C(7)-C(8)$ 1.396(11) $C(8)-C(9)$ 1.404(9) $C(8)-C(10)$ 1.356(8) $C(7)-C(10)$ 1.356(8) $C(3)-N(1)-C(3)#1$ 118.4(6) $C(4)-N(2)-C(5)$ 120.4(5) $C(2)-C(1)-C(2)#1$ 119.3(7) $C(1)-C(2)-C(3)$ 119.2(5) $N(1)-C(3)-C(4)$ 122.3(5) $N(1)-C(3)-C(4)$ 122.3(5) $N(2)-C(4)-C(3)$ 122.2(5) $C(6)-C(5)-N(2)$ 118.1(5) $C(6)-C(5)-C(10)$ 117.4(5) $N(2)-C(5)-C(10)$ 124.3(5) $C(7)-C(6)-C(5)$ 121.5(6) $C(7)-C(6)-C(1)$ 122.3(6) $C(7)-C(8)-C(11)$ 122.9(6) $C(7)-C(8)-C(11)$ 122.3(7) $C(10)-C(9)-C(8)$ 122.4(6) $C(9)-C(10)-C(5)$ 120.5(6)	N(1)-C(3)#1	1.344(6)
N(2)-C(5) $1.411(7)$ $C(1)-C(2)$ $1.369(7)$ $C(1)-C(2)#1$ $1.369(7)$ $C(2)-C(3)$ $1.396(9)$ $C(3)-C(4)$ $1.470(7)$ $C(5)-C(10)$ $1.472(8)$ $C(5)-C(10)$ $1.417(9)$ $C(6)-C(7)$ $1.363(8)$ $C(7)-C(8)$ $1.396(11)$ $C(8)-C(9)$ $1.404(9)$ $C(8)-C(11)$ $1.491(8)$ $C(9)-C(10)$ $1.356(8)$ $C(3)-N(1)-C(3)#1$ $118.4(6)$ $C(4)-N(2)-C(5)$ $120.4(5)$ $C(2)-C(1)-C(2)#1$ $119.3(7)$ $C(1)-C(2)-C(3)$ $119.2(5)$ $N(1)-C(3)-C(2)$ $121.9(5)$ $N(1)-C(3)-C(4)$ $122.3(5)$ $N(1)-C(3)-C(4)$ $122.3(5)$ $N(2)-C(4)-C(3)$ $122.2(5)$ $C(6)-C(5)-N(2)$ $118.1(5)$ $C(6)-C(5)-C(10)$ $117.4(5)$ $N(2)-C(4)-C(3)$ $122.3(6)$ $C(7)-C(6)-C(5)$ $121.5(6)$ $C(7)-C(8)-C(11)$ $122.9(6)$ $C(7)-C(8)-C(11)$ $122.9(6)$ $C(9)-C(10)-C(5)$ $122.4(6)$ $C(9)-C(10)-C(5)$ $120.5(6)$	N(2)-C(4)	1.260(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2)-C(5)	1.411(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(1)-C(2)	1.369(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(1)-C(2)#1	1.369(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(2)-C(3)	1.396(9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(3)-C(4)	1.470(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(5)-C(6)	1.372(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(5)-C(10)	1.417(9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(6)-C(7)	1.363(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(7)-C(8)	1.396(11)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(8)-C(9)	1.404(9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(8)-C(11)	1.491(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(9)-C(10)	1.356(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(3)-N(1)-C(3)#1	118.4(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(4)-N(2)-C(5)	120.4(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(2)-C(1)-C(2)#1	119.3(7)
N(1)-C(3)-C(2) $121.9(5)$ $N(1)-C(3)-C(4)$ $115.7(5)$ $C(2)-C(3)-C(4)$ $122.3(5)$ $N(2)-C(4)-C(3)$ $122.2(5)$ $C(6)-C(5)-N(2)$ $118.1(5)$ $C(6)-C(5)-C(10)$ $117.4(5)$ $N(2)-C(5)-C(10)$ $124.3(5)$ $C(7)-C(6)-C(5)$ $121.5(6)$ $C(7)-C(6)-C(5)$ $122.3(6)$ $C(7)-C(8)-C(9)$ $115.8(6)$ $C(7)-C(8)-C(11)$ $122.9(6)$ $C(9)-C(8)-C(11)$ $121.3(7)$ $C(10)-C(9)-C(8)$ $122.4(6)$ $C(9)-C(10)-C(5)$ $120.5(6)$	C(1)-C(2)-C(3)	119.2(5)
N(1)-C(3)-C(4) $115.7(5)$ $C(2)-C(3)-C(4)$ $122.3(5)$ $N(2)-C(4)-C(3)$ $122.2(5)$ $C(6)-C(5)-N(2)$ $118.1(5)$ $C(6)-C(5)-C(10)$ $117.4(5)$ $N(2)-C(5)-C(10)$ $124.3(5)$ $C(7)-C(6)-C(5)$ $121.5(6)$ $C(7)-C(6)-C(5)$ $122.3(6)$ $C(7)-C(8)-C(9)$ $115.8(6)$ $C(7)-C(8)-C(11)$ $122.9(6)$ $C(9)-C(8)-C(11)$ $121.3(7)$ $C(10)-C(9)-C(8)$ $122.4(6)$ $C(9)-C(10)-C(5)$ $120.5(6)$	N(1)-C(3)-C(2)	121.9(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(1)-C(3)-C(4)	115.7(5)
N(2)-C(4)-C(3) $122.2(5)$ $C(6)-C(5)-N(2)$ $118.1(5)$ $C(6)-C(5)-C(10)$ $117.4(5)$ $N(2)-C(5)-C(10)$ $124.3(5)$ $C(7)-C(6)-C(5)$ $121.5(6)$ $C(6)-C(7)-C(8)$ $122.3(6)$ $C(7)-C(8)-C(9)$ $115.8(6)$ $C(7)-C(8)-C(11)$ $122.9(6)$ $C(9)-C(8)-C(11)$ $121.3(7)$ $C(10)-C(9)-C(8)$ $122.4(6)$ $C(9)-C(10)-C(5)$ $120.5(6)$	C(2)-C(3)-C(4)	122.3(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(2)-C(4)-C(3)	122.2(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(6)-C(5)-N(2)	118.1(5)
N(2)-C(5)-C(10) $124.3(5)$ C(7)-C(6)-C(5) $121.5(6)$ C(6)-C(7)-C(8) $122.3(6)$ C(7)-C(8)-C(9) $115.8(6)$ C(7)-C(8)-C(11) $122.9(6)$ C(9)-C(8)-C(11) $121.3(7)$ C(10)-C(9)-C(8) $122.4(6)$ C(9)-C(10)-C(5) $120.5(6)$	C(6)-C(5)-C(10)	117.4(5)
$\begin{array}{cccc} C(7)-C(6)-C(5) & 121.5(6) \\ C(6)-C(7)-C(8) & 122.3(6) \\ C(7)-C(8)-C(9) & 115.8(6) \\ C(7)-C(8)-C(11) & 122.9(6) \\ C(9)-C(8)-C(11) & 121.3(7) \\ C(10)-C(9)-C(8) & 122.4(6) \\ \underline{C(9)-C(10)-C(5)} & 120.5(6) \end{array}$	N(2)-C(5)-C(10)	124.3(5)
$\begin{array}{cccc} C(6)-C(7)-C(8) & 122.3(6) \\ C(7)-C(8)-C(9) & 115.8(6) \\ C(7)-C(8)-C(11) & 122.9(6) \\ C(9)-C(8)-C(11) & 121.3(7) \\ C(10)-C(9)-C(8) & 122.4(6) \\ \underline{C(9)-C(10)-C(5)} & 120.5(6) \end{array}$	C(7)-C(6)-C(5)	121.5(6)
$\begin{array}{cccc} C(7)-C(8)-C(9) & 115.8(6) \\ C(7)-C(8)-C(11) & 122.9(6) \\ C(9)-C(8)-C(11) & 121.3(7) \\ C(10)-C(9)-C(8) & 122.4(6) \\ \underline{C(9)-C(10)-C(5)} & 120.5(6) \end{array}$	C(6)-C(7)-C(8)	122.3(6)
$\begin{array}{cccc} C(7)-C(8)-C(11) & 122.9(6) \\ C(9)-C(8)-C(11) & 121.3(7) \\ C(10)-C(9)-C(8) & 122.4(6) \\ \underline{C(9)-C(10)-C(5)} & 120.5(6) \end{array}$	C(7)-C(8)-C(9)	115.8(6)
C(9)-C(8)-C(11)121.3(7)C(10)-C(9)-C(8)122.4(6)C(9)-C(10)-C(5)120.5(6)	C(7)-C(8)-C(11)	122.9(6)
C(10)-C(9)-C(8) 122.4(6) C(9)-C(10)-C(5) 120.5(6)	C(9)-C(8)-C(11)	121.3(7)
C(9)-C(10)-C(5) 120.5(6)	C(10)-C(9)-C(8)	122.4(6)
	<u>C(9)-C(10)-C(5)</u>	120.5(6)

Table 3. Bond lengths [Å] and angles [°] for p.

Symmetry transformations used to generate equivalent atoms: #1 - x, y, -z + 1/2

Table 4. Anisotropic displacement parameters (A² x 10³) for p. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U11 + ... + 2 h k a* b* U12]

	U11	U22	U33 U	U23 U	U13 U	12
N(1)	49(4)	39(3)	52(4)	0	-12(3)	0
N(2)	61(3)	48(3)	49(3)	-3(2)	-6(2)	-4(2)
C(1)	70(6)	38(4)	71(6)	0	-3(4)	0
C(2)	64(4)	46(4)	57(4)	-5(2)	2(3)	-4(2)
C(3)	52(4)	41(3)	43(3)	-2(2)	3(2)	-10(2)
C(4)	53(4)	44(3)	51(4)	4(2)	-7(3)	-9(2)
C(5)	47(3)	49(3)	48(3)	4(2)	-1(2)	-4(2)
C(6)	75(4)	56(4)	55(4)	2(3)	-4(3)	1(3)
C(7)	65(4)	80(5)	54(4)	1(3)	-17(3)	-4(3)
C(8)	49(4)	74(4)	59(4)	14(3)	-2(3)	-1(3)
C(9)	65(4)	59(4)	67(4)	5(3)	-1(3)	7(3)
C(10)) 62(4)	62(4)) 51(3)	-7(3)	-6(3)	-1(3)
C(11)) 86(5)	98(6)) 71(5)	23(4)	-12(4)	24(4)

	Х	y z	U(eq)	
H(1)	0	12205	2500	72
H(2B)	3109	10346	3008	67
H(4A)	3592	4633	3088	60
H(6A)	8150	7878	4166	75
H(7A)	11286	6001	4639	81
H(9A)	10580	1079	3763	77
H(10A)	7450	2947	3287	71
H(11A)	13978	2867	4841	129
H(11B)	14996	1703	4405	129
H(11C)	12506	747	4666	129

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (A² x 10³) for p.

Crystal Data of the V-shaped compound $\mathbf{8}$ (R = F)

Table 1. Crystal data and structure refinement for p.

CCDC code	798464
Identification code	wy209
Empirical formula	$C_{19}H_{13}F_2N_3$
Formula weight	321.32
Temperature	296(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, C2/c
Unit cell dimensions	$a = 35.041(6) \text{ Å} alpha = 90 \circ$
	b = 6.2652(11) Å beta = 92.850(3) °
	$c = 7.1363(12) \text{ Å} \text{ gamma} = 90 ^{\circ}$
Volume	1564.7(5) A^3
Z, Calculated density	4, 1.364 Mg/m^3
Absorption coefficient	0.099 mm^{-1}
F(000)	664
Crystal size	0.50 x 0.40 x 0.30 mm
Theta range for data collection	3.30 to 25.24 °
Limiting indices	-41<=h<=42, -3<=k<=7, -8<=l<=6
Reflections collected / unique	5197 / 1407 [R(int) = 0.0395]
Completeness to theta $= 25.24$	98.5 %
Absorption correction	multi-scan
Max. and min. transmission	0.7457 and 0.6233
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1407 / 0 / 110
Goodness-of-fit on F ²	1.054
Final R indices [I>2sigma(I)]	R1 = 0.0471, $wR2 = 0.1245$
R indices (all data)	R1 = 0.0607, WR2 = 0.1442
Largest diff. peak and hole	0.216 and -0.200 Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($A^2 \ x \ 10^3$) for p. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		X	y z	U(eq)	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	F(1)	2222(1)	5066(3)	638(2)	88(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1)	0	454(3)	2500	41(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	664(1)	652(3)	1960(3)	44(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)	320(1)	-655(3)	2210(2)	39(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	330(1)	-2877(3)	2179(3)	49(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(3)	0	-3993(4)	2500	55(1)
$\begin{array}{ccccccc} C(5) & 1293(1) & 1252(3) & 1259(2) & 40(1) \\ C(6) & 1655(1) & 507(3) & 1777(3) & 48(1) \\ C(7) & 1972(1) & 1792(4) & 1593(3) & 58(1) \\ C(8) & 1920(1) & 3802(4) & 826(3) & 56(1) \\ C(9) & 1569(1) & 4573(3) & 257(3) & 52(1) \\ C(10) & 1254(1) & 3296(3) & 465(3) & 45(1) \end{array}$	N(2)	978(1)	-131(2)	1490(2)	43(1)
$\begin{array}{ccccccc} C(6) & 1655(1) & 507(3) & 1777(3) & 48(1) \\ C(7) & 1972(1) & 1792(4) & 1593(3) & 58(1) \\ C(8) & 1920(1) & 3802(4) & 826(3) & 56(1) \\ C(9) & 1569(1) & 4573(3) & 257(3) & 52(1) \\ C(10) & 1254(1) & 3296(3) & 465(3) & 45(1) \end{array}$	C(5)	1293(1)	1252(3)	1259(2)	40(1)
$\begin{array}{cccccc} C(7) & 1972(1) & 1792(4) & 1593(3) & 58(1) \\ C(8) & 1920(1) & 3802(4) & 826(3) & 56(1) \\ C(9) & 1569(1) & 4573(3) & 257(3) & 52(1) \\ C(10) & 1254(1) & 3296(3) & 465(3) & 45(1) \end{array}$	C(6)	1655(1)	507(3)	1777(3)	48(1)
$\begin{array}{ccccc} C(8) & 1920(1) & 3802(4) & 826(3) & 56(1) \\ C(9) & 1569(1) & 4573(3) & 257(3) & 52(1) \\ C(10) & 1254(1) & 3296(3) & 465(3) & 45(1) \end{array}$	C(7)	1972(1)	1792(4)	1593(3)	58(1)
$\begin{array}{cccc} C(9) & 1569(1) & 4573(3) & 257(3) & 52(1) \\ C(10) & 1254(1) & 3296(3) & 465(3) & 45(1) \end{array}$	C(8)	1920(1)	3802(4)	826(3)	56(1)
C(10) 1254(1) 3296(3) 465(3) 45(1)	C(9)	1569(1)	4573(3)	257(3)	52(1)
	C(10)	1254(1)	3296(3)	465(3)	45(1)

F(1)-C(8)	1.363(2)
N(1)-C(1)	1.3453(19)
N(1)-C(1)#1	1.3454(19)
C(4)-N(2)	1.264(2)
C(4)-C(1)	1.473(2)
C(1)-C(2)	1.393(3)
C(2)-C(3)	1.379(2)
C(3)-C(2)#1	1.379(2)
N(2)-C(5)	1.419(2)
C(5)-C(6)	1.386(2)
C(5)-C(10)	1.404(3)
C(6)-C(7)	1.384(3)
C(7)-C(8)	1.381(3)
C(8)-C(9)	1.365(3)
C(9)-C(10)	1.377(3)
C(1)-N(1)-C(1)#1	117.8(2)
N(2)-C(4)-C(1)	122.87(17)
N(1)-C(1)-C(2)	122.61(17)
N(1)-C(1)-C(4)	115.13(16)
C(2)-C(1)-C(4)	122.26(16)
C(3)-C(2)-C(1)	118.96(18)
C(2)-C(3)-C(2)#1	119.0(2)
C(4)-N(2)-C(5)	119.05(15)
C(6)-C(5)-C(10)	118.91(17)
C(6)-C(5)-N(2)	118.09(16)
C(10)-C(5)-N(2)	122.95(15)
C(7)-C(6)-C(5)	120.54(19)
C(8)-C(7)-C(6)	118.47(18)
F(1)-C(8)-C(9)	118.8(2)
F(1)-C(8)-C(7)	118.51(19)
C(9)-C(8)-C(7)	122.71(18)
C(8)-C(9)-C(10)	118.53(19)
C(9)-C(10)-C(5)	120.78(17)

Table 3. Bond lengths [Å] and angles [°] for p.

Symmetry transformations used to generate equivalent atoms: #1 - x, y, -z + 1/2

Table 4. Anisotropic displacement parameters ($A^2 \times 10^3$) for p. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12$]

	U11	U22	U33	U23	U13	U12
F(1)	62(1)	102(1)	99(1)	7(1)	5(1)	-36(1)
N(1)	41(1)	32(1)	48(1)	0	4(1)	0
C(4) C(1)	45(1) 41(1)	34(1) 34(1) 24(1)	52(1) 42(1)	-1(1) -1(1)	3(1) 1(1)	0(1) 2(1)
C(2)	46(1)	34(1)	6/(1)	-2(1)	1(1)	
C(3)	57(2)	29(1)	79(2)	0	0(1)	
N(2)	41(1)	40(1)	47(1)	0(1)	2(1)	
C(5)	41(1)	42(1)	39(1)	-4(1)	4(1)	0(1)
C(6)	44(1)	51(1)	51(1)	1(1)	3(1)	7(1)
C(7)	39(1)	78(2)	5/(1)	-2(1)	0(1)	4(1)
C(8)	47(1)	70(2)	53(1)	-4(1)	6(1)	-17(1)
C(9)	60(1)	50(1)	48(1)	2(1)	6(1)	-8(1)
C(10) $42(1)$	47(1)	47(1)	1(1)	2(1)	2(1)

	X	y z	U(ec	1)
H(4A)	649	2116	2157	52
H(2B)	554	-3596	1945	58
H(3)	0	-5478	2500	66
H(6A)	1685	-868	2253	58
H(7A)	2215	1314	1976	70
H(9A)	1543	5932	-259	63
H(10A)	1013	3793	75	54

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (A² $x \ 10^3$) for p.