SUPPORTING INFORMATION

Hetero Diels-Alder Reaction of Olefin with o-Quinone Methides Generated Using

(\pm) -Binolphosphoric Acid for the Stereoselective Synthesis of

2,4 Diarylbenzopyrans: Application to the Formal Synthesis of Myristinin B/C

General experimental:

Melting points are recorded using Sigma melting point apparatus in capillary tubes and are uncorrected. IR spectra were recorded on JASCO FT-IR 4100 and Nicolet 6700 spectrophotometer. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were recorded on Bruker Avance 400 spectrometer. The chemical shifts (δ ppm) and coupling constants (Hz) are reported in the standard fashion with reference to either internal tetramethylsilane or residual CHCl₃ (7.26 ppm for 1 H) or the central line (77.16 ppm) of $CDCl_3$ (for ¹³C). In the ¹³C NMR spectra, the nature of the carbons (C, CH, CH₂ or CH₃) was determined by recording the DEPT-135 experiment, and is given in parentheses. ¹H-¹H NOESY spectrum was recorded in Bruker Avance 500 spectrometer. High resolution mass measurements were carried out using Micromass Q-ToF instrument using direct inlet mode. CHN analysis was carried out using Elemental analyzer VSM-VT. X-ray diffraction studies were carried out using Bruker Single Crystal Kappa Apex II. Analytical thin-layer chromatographies (TLC) were performed on glass plates (7.5×2.5) and 9×5.0 cm) coated with Merck or Acme's silica gel G containing 13% calcium sulfate as binder or on pre-coated 0.2 mm thick Merck 60 F₂₄₅ silica plates and various combinations of ethyl acetate and hexanes were used as eluent. Visualization of spots was accomplished by either exposure to iodine vapour or KMnO₄ stain. Acme's silica gel (100-200 mesh) was used for column chromatography (approximately 15-20 g per 1 g of the crude product).

All small-scale dry reactions were carried out using standard syringe septum technique. Low temperature reactions were conducted in a bath made of acetone and liquid nitrogen. Dry THF and dry ether were obtained by distillation over sodium-benzophenone ketyl. Dry dichloromethane and dry DMF were prepared by distilling over calcium hydride. Dry pyridine and triethylamine were obtained by distillation over KOH and stored over KOH. NaH dispersion in oil was obtained from Aldrich. $BF_3 \cdot OEt_2$ was obtained from E. Merck. Requisite styrene derivatives were either obtained commercially or were readily prepared from their respective aldehydes by Wittig olefination reaction. All the commercial reagents were used as such without further purification.

Note: In the cases wherein diastereomeric mixtures of products were obtained, the data for the major isomer have been mentioned.

General Procedure for the synthesis of alcohol 9:

To a cold (-78 °C), magnetically stirred solution of respective organic halides (2.2 equiv.) in dry THF was added *n*-BuLi (2.1 equiv.) and stirred for 20 min. The aldehyde **11** (1 equiv.) was added slowly; the resulting mixture was slowly warmed to rt and stirred for 2h. Upon completion (TLC control), the reaction was carefully quenched with saturated aq. NH₄Cl (10 mL). The aqueous layer was extracted with ethyl acetate (3 x 10 mL); combined organic layer was washed with brine and dried (*anhyd*. Na₂SO₄). Evaporation of the solvent followed by purification of the residue on a silica gel column, doped with Et₃N, using ethyl acetate-hexanes as the eluent afforded their respective alcohols **9**.

Table 1 Synthesis of o-hydroxy benzylic alcohols 9

R ¹ OH	dry THF	R1 ОН
11а-с	0 °C - rt	9

Entry A	Aldehy	yde	Organolithium	Alcohol	Yield
	Aldehyde	R ¹	\mathbf{R}^2		(%)
1	11a	Н	PhMgBr	9a	83
2	11a	Н	4-(MeO)-C ₆ H ₄ -Li	9b	34
3	11a	Н	2,4,6-(MeO) ₃ -C ₆ H ₂ -Li	9c	69
4	11b	-OMe	2,4,6-(MeO) ₃ -C ₆ H ₂ -Li	9d	75
5	11b	-OMe	3-I-2,4,6-(MeO) ₃ -C ₆ H-Li	9e	82
6	11a	Н	<i>n</i> -BuLi	9f	82

Procedure for the synthesis of 2,4-diarylbenzopyran 8:

(±)-(2*S**,4*R**)-2-(4-(benzyloxy)phenyl)-4-phenylchroman (8a):

Using (±)-binolphosphoric acid:

To a magnetically stirred solution of the alcohol **9a** (30 mg, 0.15 mmol) and olefin **10a** (35 mg, 0.16 mmol) in CH₂Cl₂ (4 mL) was added (\pm)-binolphosphoric acid [(\pm)-BPA] (16 mg, 0.05 mmol). The reaction mixture was stirred at rt for 20h (TLC control) and quenched by adding saturated NaHCO₃. The reaction mixture was extracted with CH₂Cl₂ (3 x 5 mL), washed with brine and dried (*anhyd*. Na₂SO₄). Evaporation of the solvent followed by purification of the residue on a silica gel column using ethyl acetate-hexanes (1:19) as eluent furnished the chroman **8a** (53 mg, 90%) as a white solid.

Physical Appearance: white solid

m.p.:124-126 °C

R_f: 0.5 (1:9, EtOAc:Hexanes)

IR (neat): 3027, 2919, 1611, 1580, 1515, 1485, 1467, 1454, 1384, 1346, 1300, 1272, 1218, 1177, 1115, 1078, 1042, 1012, 939, 916, 897, 862, 845, 834 cm⁻¹.

¹**H NMR** (**400 MHz, CDCl**₃): δ 7.40-7.20 (m, 9H), 7.20-7.10 (m, 4H), 7.10-7.00 (m, 1H), 6.95-6.90 (m, 2H), 6.90-6.85 (m, 1H), 6.75-6.65 (m, 2H), 5.09 (dd, *J* = 11.3, 1.8 Hz, 1H), 5.01 (s, 2H), 4.27 (dd, *J* = 12.0, 6.0, Hz, 1H), 2.31 (ddd, *J* = 13.6, 6.0, 2.0 Hz, 1H), 2.21 (ddd, *J* = 13.6, 12.0, 2.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 158.83 (C), 155.76 (C), 144.75 (C), 137.12 (C), 133.75 (C), 129.94 (CH), 128.80 (CH x 2), 128.73 (CH x 4), 128.11 (CH), 127.87 (CH), 127.67 (CH x 2), 127.59 (CH x 2), 126.90 (CH), 125.81 (C), 120.66 (CH), 117.13 (CH), 115.09 (CH x 2), 77.94 (CH), 70.21 (CH₂), 43.70 (CH), 40.56 (CH₂).

HRMS (ESI, M+Na): m/z calcd. for C₂₈H₂₄O₂Na 415.1674, found 415.1650.

Elemental analysis: Calcd. for C₂₈H₂₄O₂ C 85.68%, H 6.16%, O 8.15%, found C 85.30%, H 6.59%, O 7.95%.

By Thermolysis:

Reaction of the alcohol **9a** (168 mg, 0.84 mmol) and olefin **10a** (952 mg, 4.52 mmol) in toluene (1 mL) at 110 $^{\circ}$ C in a sealed tube for 24h (TLC control) followed by purification of the residue on a silica gel column using ethyl acetate-hexanes (1:49 to 1:19) as the eluent furnished the requisite chroman **8a** (32 mg, 53%) as a white solid.

Using BF₃·OEt₂:

Reaction of alcohol **9a** (30 mg, 0.15 mmol), olefin **10a** (35 mg, 0.16 mmol) and BF₃·OEt₂ (5 μ L, 0.04 mmol) in CH₂Cl₂ (2 mL) at rt for 1h (TLC control), as described for the chroman **8a** using (±)-BPA, followed by purification on a silica gel column using ethyl acetate-hexanes (1:19) as the eluent furnished the requisite chroman **8a** (35 mg, 59%) as a white solid.

Using Bi(OTf)₃:

Reaction of alcohol **9a** (30 mg, 0.15 mmol), olefin **10a** (35 mg, 0.16 mmol) and Bi(OTf)₃ (30 mg, 0.04 mmol) in CH₂Cl₂ (2 mL) at rt for 4h (TLC control), as described for the chroman **8a** using (\pm)-BPA, followed by purification on a silica gel column using ethyl acetate-hexanes (1:19) as the eluent furnished the requisite chroman **8a** (51 mg, 86%) as a white solid.

Using *p*-TSA:

Reaction of alcohol **9a** (30.0 mg, 0.15 mmol), olefin **10a** (35.0 mg, 0.16 mmol) and *p*-TSA (9.0 mg, 0.05 mmol) in CH_2Cl_2 (2 mL) at rt for 2.5 h (TLC control), as described for the chroman **8a** using (±)-BPA, followed by purification on a silica gel column using ethyl acetate-hexanes (1:19) as the eluent furnished the requisite chroman **8a** (35.5 mg, 60%) as a white solid.

Using HClO₄:

Reaction of alcohol **9a** (30 mg, 0.15 mmol), olefin **10a** (36 mg, 0.16 mmol) and HClO₄ (10 μ L, 0.05 mmol) in CH₂Cl₂ (2 mL) at rt for 3h (TLC control), as described for the chroman **8a** using (±)-BPA, followed by purification on a silica gel column using ethyl acetate-hexanes (1:19) as the eluent did not furnish the requisite chroman **8a**.

Using TFA:

Reaction of alcohol **9a** (30 mg, 0.15 mmol), olefin **10a** (35 mg, 0.16 mmol) and TFA (5 μ L, 0.05 mmol) in CH₂Cl₂ (2 mL) at rt for 4h (TLC control), as described for the chroman **8a** using (±)-BPA, followed by purification on a silica gel column using ethyl acetate-hexanes (1:19) as the eluent furnished the requisite chroman **8a** (36 mg, 60%) as a white solid.

Using H₃PO₄:

Reaction of alcohol **9a** (30 mg, 0.15 mmol), olefin **10a** (36 mg, 0.16 mmol) and H_3PO_4 (10 µL, 0.05 mmol) in CH₂Cl₂ (2 mL) at rt for 3h (TLC control), as described for the chroman **8a** using (±)-BPA, followed by purification on a silica gel column using ethyl acetate-hexanes (1:19) as the eluent did not furnish the requisite chroman **8a**.

(±)-(2*S**,4*R**)-2,4-diphenylchroman (8b):

Reaction of alcohol **9a** (100 mg, 0.50 mmol), styrene (**10b**) (1 mL, 8.73 mmol) and (\pm)-BPA (52 mg, 0.15 mmol) in CH₂Cl₂ (4 mL) at rt for 24h (TLC control), as described for the chroman **8a**, followed by purification on a silica gel column using ethyl acetate-hexanes (1:49) as the eluent furnished the requisite chroman **8b** (86 mg, 60%) as a white solid.

Physical Appearance: white solid

m.p.:116-118 °C

R_f: 0.6 (1:9, EtOAc:Hexanes)

IR (neat): 3061, 3030, 2952, 2923, 2853, 1605, 1582, 1487, 1453, 1309, 1272, 1235, 1113, 1066, 1025, 918, 902, 754, 700 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.45-7.40 (m, 2H), 7.35-7.20 (m, 5H), 7.20-7.10 (m, 3H), 71.0-7.00 (m, 1H), 6.90-6.85 (m, 1H), 6.75-6.65 (m, 2H), 5.14 (dd, *J* = 11.6, 2.0 Hz, 1H), 4.29 (dd, *J* = 12.4, 6.0 Hz, 1H), 2.34 (ddd, *J* = 13.6, 7.6, 2.0 Hz, 1H), 2.25-2.10 (m, 1H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 155.65 (C), 144.65 (C), 141.35 (C), 129.93 (CH), 128.80 (CH x 2), 128.71 (CH x 3), 128.60 (CH), 128.91 (CH), 127.91 (CH), 126.92 (CH), 126.22 (CH x 2), 125.84 (C), 120.72 (CH), 117.14 (CH), 78.24 (CH), 43.65 (CH), 40.78 (CH₂).

HRMS (ESI, M+Na): m/z calcd. for C₂₁H₁₈ONa 309.1255, found 309.1251.

(±)-(2*S**,4*R**)-4-phenyl-2-p-tolylchroman (8c):

Reaction of alcohol **9a** (50 mg, 0.25 mmol), olefin **10c** (32 mg, 0.27 mmol) and (\pm)-BPA (26 mg, 0.08 mmol) in CH₂Cl₂ (2 mL) at rt for 22h (TLC control), as described for the chroman **8a**, followed by purification on a silica gel column using ethyl acetate-hexanes (1:19) as the eluent furnished the requisite chroman **8c** (46 mg, 61%) as a sticky solid.

Physical Appearance: sticky solid

R_f: 0.4 (1:49, EtOAc:Hexanes)

IR (neat): 3057, 3032, 2924, 2867, 1581, 1487, 1452, 1266, 1232, 1111, 1071, 1017, 909, 810, 749 cm⁻¹.

¹**H NMR** (**400 MHz, CDCl₃**): δ 7.30-7.00 (m, 9H), 6.95-6.75 (m, 2H), 6.75-6.65 (m, 2H), 5.10 (d, *J* = 11.2 Hz, 1H), 4.27 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.45-2.10 (m, 5H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 155.73 (C), 144.72 (C), 138.33 (C), 137.93 (C), 130.90 (C), 129.91 (CH), 129.36 (CH x 2), 128.78 (CH x 2), 128.72 (CH x 2), 127.85 (CH), 126.88 (CH), 126.24 (CH x 2), 120.62 (CH), 117.13 (CH), 78.14 (CH), 43.67 (CH), 40.58 (CH₂), 21.37 (CH₃).

HRMS (ESI, M+H): m/z calcd. for C₂₂H₂₁O 301.1592, found 301.1594.

(±)-(2*S**,4*R**)-2-(benzo[*d*][1,3]dioxol-5-yl)-4-phenylchroman (8d):

Reaction of alcohol **9a** (100 mg, 0.50 mmol), olefin **10d** (81 mg, 0.55 mmol) and (\pm)-BPA (52 mg, 0.15 mmol) in CH₂Cl₂ (4 mL) at rt for 22h (TLC control), as described for the chroman **8a**, followed by purification on a silica gel column using ethyl acetate-hexanes (1:19) as the eluent furnished the requisite chroman **8d** (134 mg, 79%) as a white solid.

Physical Appearance: white solid

m.p.:138-140 °C

R_f: 0.5 (1:9, EtOAc:Hexanes)

IR (neat): 3061, 3027, 2953, 2922, 2887, 2876, 2777, 1606, 1580, 1504, 1487, 1444, 1391, 1331, 1314, 1294, 1273, 1246, 1234, 1201, 1112, 1100, 1067, 1038, 1014, 934, 916, 883, 862, 822, 808, 795, 758, 751, 742, 717, 701 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.35-7.20 (m, 4H), 7.14 (td, J = 8.4, 2.0 Hz, 1H), 7.01 (d, J = 2.0 Hz, 1H), 6.94 (d, J = 8.4 Hz, 2H), 6.85-6.70 (m, 3H), 5.97 (s, 2H), 5.13 (dd, J = 11.2, 2.0 Hz, 1H), 4.34 (dd, J = 12.0, 6.0 Hz, 1H), 2.37 (ddd, J = 13.6, 6.0, 2.0 Hz, 1H), 2.35-2.20 (m, 1H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 155.58 (C), 148.00 (C), 147.51 (C), 144.61 (C), 135.24 (C), 129.92 (CH), 128.80 (CH x 2), 128.71 (CH x 2), 127.90 (CH), 126.92 (CH), 125.74 (C), 120.73 (CH), 119.91 (CH), 117.09 (CH), 108.37 (CH), 106.94 (CH), 101.24 (CH₂), 78.11 (CH), 43.60 (CH), 40.66 (CH₂).

HRMS (ESI, M+Na): m/z calcd. for C₂₂H₁₈O₃Na 353.1154, found 353.1148.

Elemental analysis: Calcd. for $C_{22}H_{18}O_3$ C 79.98%, H 5.49%, O 14.53%, found C 80.25%, H 5.35%, O 14.28%.

(±)-(2*S**,4*R**)-2-(4-(benzyloxy)phenyl)-4-(4-methoxyphenyl)chroman (8e):

Reaction of alcohol **9b** (26 mg, 0.11 mmol), olefin **10a** (26 mg, 0.12 mmol) and (\pm)-BPA (12 mg, 0.03 mmol) in CH₂Cl₂ (4 mL) at rt for 23h (TLC control), as described for the chroman **8a**, followed by purification on a silica gel column using ethyl acetate-hexanes (1:19) as the eluent furnished the requisite chroman **8e** (45 mg, 94%) as a white solid.

Physical Appearance: white solid

m.p.:126-128 °C

R_f: 0.3 (1:9, EtOAc:Hexanes)

IR (neat): 3062, 3033, 2951, 2922, 2867, 2838, 1610, 1582, 1512, 1485,

1455, 1379, 1338, 1303, 1249, 1175, 1112, 1070, 1034, 1013, 937, 907, 830, 757, 738 cm⁻¹.

¹**H NMR** (**500 MHz**, **CDCl**₃): δ 7.50-7.35 (m, 6H), 7.35-7.30 (m, 1H), 7.16 (d, *J* = 6.8 Hz, 2H), 7.02 (d, *J* = 6.8 Hz, 2H), 7.00-6.90 (m, 2H), 6.88 (d, *J* = 6.4 Hz, 2H), 6.85-6.75 (m, 2H), 5.20-5.15 (m, 1H), 5.10 (s, 2H), 4.31 (dd, *J* = 9.6, 4.4 Hz, 1H), 3.82 (s, 3H), 2.37 (ddd, *J* = 10.8, 4.8, 1.6 Hz, 1H), 2.35-2.20 (m, 1H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 158.76 (C), 158.52 (C), 155.68 (C), 137.09 (C), 136.70 (C), 133.79 (C), 129.86 (CH), 129.62 (CH x 2), 128.72 (CH x 2), 128.09 (CH), 127.64 (CH x 2), 127.57 (CH x 3), 126.16 (C), 120.59 (CH), 117.05 (CH), 115.05 (CH x 2), 114.16 (CH x 2), 77.99 (CH), 70.18 (CH₂), 55.39 (CH₃), 42.83 (CH), 40.58 (CH₂).

HRMS (ESI, M+Na): m/z calcd. for C₂₉H₂₆O₃Na 445.1780, found 445.1780.

(±)-(2*S**,4*S**)-2-(4-methoxyphenyl)-4-(2,4,6-trimethoxyphenyl)chroman (8f):

Reaction of alcohol **9c** (44 mg, 0.15 mmol), olefin **10e** (40 mg, 0.30 mmol) and (\pm)-BPA (18 mg, 0.05 mmol) in CH₂Cl₂ (4 mL) at rt for 24h (TLC control), as described for the chroman **8a**, followed by purification on a silica gel column using ethyl acetate-hexanes (1:19) as the eluent furnished the requisite chroman **8f** (55 mg, 90%) as a white solid.

Physical Appearance: white solid

m.p.: 140-142 °C

R_f: 0.3 (1:9, EtOAc:Hexanes)

IR (neat): 2924, 2848, 1597, 1501, 1455, 1233, 1116, 1036, 819, 756 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.43 (d, *J* = 8.6, 2H), 7.05-7.00 (m, 1H), 6.92 (d, *J* = 8.6 Hz, 2H), 6.87 (d, *J* = 4.2 Hz, 1H), 6.71 (d, *J* = 4.2 Hz, 2H), 6.21 (d, *J* = 2.2 Hz, 1H), 6.10 (d, *J* = 2.2 Hz, 1H), 5.12 (d, *J* = 10.3 Hz, 1H), 4.93 (dd, *J* = 12.0, 6.0 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 6H), 3.44 (s, 3H), 2.68 (q, *J* = 12.0 Hz, 1H), 2.06 (ddd, *J* = 12.0, 6.0, 1.7 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 160.08 (C), 159.89 (C), 159.40 (C x 2), 155.46 (C), 134.25 (C), 127.75 (CH x 2), 127.56 (CH), 127.48 (C), 126.36 (CH), 120.20 (CH), 116.53 (CH), 113.97 (CH x 2), 112.96 (C), 92.46 (CH), 90.34 (CH), 78.63 (CH), 56.27 (CH₃), 55.98 (CH₃), 55.71 (CH₃), 55.43 (CH₃), 34.94 (CH₂), 32.25 (CH).

HRMS (ESI, M+Na): m/z calcd. for C₂₅H₂₆O₅Na 429.1678, found 429.1670.

(±)-(2*S**,4*S**)-7-methoxy-2-(4-methoxyphenyl)-4-(2,4,6-trimethoxyphenyl)chroman (8g):

Reaction of alcohol **9d** (430 mg, 1.34 mmol), olefin **10e** (200 mg, 1.49 mmol) and (\pm)-BPA (140 mg, 0.40 mmol) in CH₂Cl₂ (4 mL) at rt for 22h (TLC control), as described for the chroman **8a**, followed by purification on a silica gel column using ethyl acetate-hexanes (1:19) as the eluent furnished the requisite chroman **8g** (486 mg, 83%) as a white solid.

Physical Appearance: white solid

m.p.: 72-74 °C

R_f: 0.3 (1:9, EtOAc:Hexanes)

IR (neat): 2942, 1597, 1504, 1456, 1314, 1250, 1207, 1155, 1115, 1037, 953, 824 cm⁻¹. ¹**H** NMR (400 MHz, CDCl₃): δ 7.45 (d, J = 8.6 Hz, 2H), 6.94 (d, J = 8.6 Hz, 2H), 6.63 (d, J = 8.4 Hz, 1H), 6.49 (d, J = 2.6 Hz, 1H), 6.35 (dd, J = 8.4, 2.6 Hz, 1H), 6.23, (d, J = 2.1 Hz, 1H), 6.13 (d, J = 2.1 Hz, 1H), 5.14 (d, J = Hz, 1H), 4.90 (dd, J = 11.8, 5.8 Hz, 1H), 3.86 (s, 3H), 3.83 (s, 6H), 3.76 (s, 3H), 3.49 (s, 2H), 2.71 (q, J = 11.9 Hz, 1H), 2.07 (ddd, J = 13.4, 5.8, 1.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 159.94 (C), 159.90 (C), 159.36 (C), 159.29 (C), 158.32 (C), 156.02 (C), 134.06 (C), 128.06 (CH), 127.77 (CH x 2), 119.58 (C), 113.93 (CH x 2), 112.79 (C), 107.16 (CH), 101.20 (CH), 92.30 (CH), 90.69 (CH), 78.95 (CH),

56.21 (CH₃), 55.78 (CH₃), 55.43 (CH₃), 55.39 (CH₃), 55.35 (CH₃), 34.81 (CH₂), 31.60 (CH).

HRMS (ESI, M+H⁺): m/z calcd. for $C_{26}H_{29}O_6$ 437.1964, found 437.1957.

(±)-(2S*,4S*)-4-(3-iodo-2,4,6-trimethoxyphenyl)-7-methoxy-2-(4-

methoxyphenyl)chroman (8h):

Reaction of alcohol **9e** (966 mg, 2.16 mmol), olefin **10e** (580 mg, 4.32 mmol) and (\pm)-BPA (376 mg, 1.08 mmol) in CH₂Cl₂ (15 mL) at rt for 2 h (TLC control), as described for the chroman **8a**, followed by purification on a silica gel column using ethyl acetatehexanes (1:49 to 1:19) as the eluent furnished the requisite chroman **8h** (810 mg, 67%) as a sticky solid.

Physical Appearance: sticky solid

R_f: 0.3 (1:9, EtOAc:Hexanes)

¹**H NMR** (400 MHz, CDCl₃): δ 7.42 (d, J = 8.4 Hz, 2H), 6.93 (d, J = 8.4 Hz, 2H), 6.62 (dd, J = 8.4, 1.2 Hz, 1H), 6.49 (d, J = 2.4 Hz, 1H), 6.34 (dd, J = 8.4, 2.4 Hz, 1H), 6.27 (s, 1H), 5.14 (dd, J = 12.0, 2.0 Hz, 1H), 4.78 (dd, J = 11.2, 6.0 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.82 (s, 3H), 3.75 (s, 3H), 3.51 (s, 3H), 2.69 (q, J = 12.0 Hz, 1H), 2.08 (ddd, J = 13.2, 6.0, 2.0 Hz, 1H)

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 160.58 (C), 159.81 (C), 159.52 (C), 158.68 (C), 156.05 (C), 133.74 (C), 129.30 (C), 127.83 (CH), 127.70 (CH x 2), 119.46 (C), 118.84 (C), 114.04 (CH x 2), 107.33 (CH), 101.48 (CH), 94.20 (CH), 78.67 (CH), 73.40 (C), 62.16 (CH₃), 56.63 (CH₃), 56.05 (CH₃), 55.46 (CH₃), 55.37 (CH₃), 35.33 (CH₂), 34.35 (CH).

HRMS (ESI, M+H⁺): m/z calcd. for C₂₆H₂₈O₆I 563.0931, found 563.0938.

(±)-(2*S**,4*S**)-2-(4-(benzyloxy)phenyl)-4-butylchroman (8i):

Reaction of alcohol **9f** (50 mg, 0.28 mmol), olefin **10a** (58 mg, 0.28 mmol) and (\pm)-BPA (29 mg, 0.08 mmol) in CH₂Cl₂ (4 mL) at rt for 22h (TLC control), as described for the chroman **8a**, followed by purification on a silica gel column using ethyl acetate-hexanes (1:19) as the eluent furnished the requisite chroman **8i** (76 mg, 74%) as a sticky solid.

Physical Appearance: sticky solid

R_f: 0.5 (1:9, EtOAc:Hexanes)

IR (neat): 3034, 2927, 2863, 1610, 1515, 1458, 1377, 1301, 1232, 1172, 1116, 1017, 902, 826, 748 cm⁻¹.

¹**H NMR** (**400 MHz, CDCl₃**): δ 7.50-7.25 (m, 8H), 7.20-7.10 (m, 1H), 7.10-7.00 (m, 2H), 7.00-6.85 (m, 2H), 5.10 (s, 2H), 4.98 (dd, *J* = 11.6, 1.6 Hz, 1H), 3.15-3.05 (m, 1H), 2.26 (ddd, *J* = 13.6, 6.0, 2.0 Hz, 1H), 2.15-2.00 (m, 2H), 1.81 (q, *J* = 11.6 Hz, 1H), 1.55-1.25 (m, 4H), 1.00-0.90 (m, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 158.68 (C), 155.51 (C), 137.11 (C), 134.43 (C), 128.73 (CH x 2), 128.10 (CH), 127.65 (CH x 2), 127.61 (CH x 2), 127.32 (CH), 127.26 (CH), 126.38 (C), 120.64 (CH), 117.23 (CH), 115.02 (CH x 2), 77.83 (CH), 70.17 (CH₂), 36.89 (CH₂), 34.87 (CH), 34.49 (CH₂), 28.64 (CH₂), 23.09 (CH₂), 14.23 (CH₃).

HRMS (ESI, M+Na): m/z calcd. for C₂₆H₂₈O₂Na 395.1987, found 395.1985.

(±)-(4-methoxyphenyl)((2*R**,3*R**,4*R**)-4-phenyl-2-(2,4,6-

trimethoxyphenyl)chroman-3-yl)methanone (8j):

Reaction of alcohol **9a** (150 mg, 0.75 mmol), enone **10f** (250 mg, 0.75 mmol) and (\pm)-BPA (79 mg, 0.22 mmol) in CH₂Cl₂ (4 mL) at rt for 10h (TLC control), as described for the chroman **8a**, followed by purification on a silica gel column using ethyl acetate-hexanes (1:4) as the eluent furnished the requisite chroman **8j** (345 mg, 90%) as a yellow solid.

Physical Appearance: yellow solid

m.p.:198-200 °C

R_f: 0.3 (1:4, EtOAc:Hexanes)

IR (neat): 3060, 3008, 2964, 2939, 2840, 1674, 1600, 1484, 1456, 1421, 1366, 1313, 1262, 1231, 1207, 1169, 1155, 1124, 1034, 842, 815, 756 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃): δ 7.89 (d, J = 8.4 Hz, 2H), 7.20-7.05 (m, 5H), 7.00-6.95 (m, 3H), 6.85-6.80 (m, 3H), 6.13 (d, J = 10.8 Hz, 1H), 6.04 (s, 2H), 5.40 (dd, J = 10.8, 5.2 Hz, 1H), 4.60 (d, J = 5.2 Hz, 1H), 3.89 (s, 3H), 3.73 (s, 6H), 3.68 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 197.14 (C), 163.37 (C), 161.30 (C), 160.35 (C x 2), 155.95 (C), 141.77 (C), 130.80 (C), 130.50 (CH x 2), 129.89 (CH x 2), 129.19 (CH), 128.58 (CH), 127.86 (CH x 2), 126.84 (CH), 124.26 (C), 120.18 (CH), 117.35 (CH),

114.03 (CH), 108.02 (C), 91.62 (CH x 2), 67.51 (CH), 56.21 (CH₃), 55.60 (CH₃), 55.29 (CH₃ x 2), 47.81 (CH), 46.32 (CH).

HRMS (ESI, M+Na): m/z calcd. for C₃₂H₃₀O₆Na 533.1940, found 533.1942.

Elemental analysis: Calcd. for C₃₂H₃₀O₆ C 75.28%, H 5.92%, O 18.80%, found C 75.08%, H 5.84%, O 18.7%.

(±)-(2*S**,3*S**,4*R**)-methyl 2-methoxy-4-phenylchroman-3-carboxylate (8k):

Reaction of alcohol **9a** (40 mg, 0.20 mmol), acrylate **10g** (25 μ L, 0.23 mmol) and (±)-BPA (21 mg, 0.06 mmol) in CH₂Cl₂ (2 mL) at rt for 12h (TLC control), as described for the chroman **8a**, followed by purification on a silica gel column using ethyl acetatehexanes (1:19) as the eluent furnished the requisite acetal **8k** (43 mg, 74%) as a viscous liquid.

Physical Appearance: viscous liquid

R_f: 0.5 (1:9, EtOAc:Hexanes)

IR (neat): 3023, 2949, 2846, 1736, 1590, 1488, 1447, 1365, 1216, 1003, 930, 761, cm⁻¹. ¹**H** NMR (400 MHz, CDCl₃): δ 7.40-7.25 (m, 4H), 7.25-7.15 (m, 2H), 7.05-6.95 (m, 1H), 6.84 (t, *J* = 7.6 Hz, 1H), 6.73 (d, *J* = 7.6 Hz, 1H), 5.24 (d, *J* = 8.0 Hz, 1H), 4.50 (d, *J* = 10.8 Hz, 1H), 3.66 (s, 3H), 3.57 (s, 3H), 3.11 (dd, *J* = 10.8, 8.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 172.09 (C), 152.71 (C), 141.26 (C), 129.44 (CH), 129.00 (CH x 2), 128.82 (CH x 2), 128.26 (CH), 127.50 (CH), 124.66 (C), 121.51 (CH), 117.09 (CH), 101.25 (CH), 56.94 (CH₃), 53.13 (CH₃), 52.12 (CH), 45.81 (CH). HRMS (ESI, M+Na): m/z calcd. for C₁₈H₁₈O₄Na 321.1103, found 321.1097.

(±)-(2S*,3S*,4S*)-methyl 2-methoxy-4-(2,4,6-trimethoxyphenyl)chroman-3-

carboxylate (81)

Reaction of alcohol **9c** (250 mg, 0.86 mmol), acrylate **10g** (100 μ L, 0.95 mmol) and (±)-BPA (91 mg, 0.26 mmol) in CH₂Cl₂ (5 mL) at rt for 3.5h (TLC control), as described for the chroman **8a**, followed by purification on a silica gel column using ethyl acetatehexanes (1:19) as the eluent furnished the requisite acetal **8l** (241 mg, 73%) as a sticky solid.

Physical Appearance: sticky solid

R_f: 0.6 (1:4, EtOAc:Hexanes)

IR (neat): 3004, 2947, 2844, 1735, 1602, 1461, 1365, 1329, 1212, 1153, 1119, 1038, 1004, 909, 817, 735 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.06 (t, *J* = 8.0 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 1H), 6.73 (t, *J* = 8.0 Hz, 1H), 6.64 (d, *J* = 7.6 Hz, 1H), 6.16 (d, *J* = 2.0 Hz, 1H), 6.08 (d, *J* = 2.0 Hz, 1H), 5.17 (d, *J* = 8.8 Hz, 1H), 5.04 (d, *J* = 11.6 Hz, 1H), 3.80 (s, 3H), 3.66 (s, 3H), 3.60-3.50 (m, 4H), 3.45 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 172.75 (C), 160.60 (C), 159.77 (C), 159.88 (C), 152.53 (C), 127.00 (CH), 126.92 (CH), 126.07 (C), 121.04 (CH), 116.33 (CH), 109.13 (C), 102.32 (CH), 92.08 (CH), 90.70 (CH), 57.16 (CH₃), 56.34 (CH₃), 55.62 (CH₃), 55.32 (CH3), 51.81 (CH3), 48.44 (CH), 35.05 (CH).

HRMS (ESI, M+H⁺): m/z calcd. for $C_{21}H_{25}O_7$ 389.1600, found 389.1591.

Formal Synthesis of Myristinin B/C

(±)-5-(benzyloxy)-2-(hydroxy(3-iodo-2,4,6-trimethoxyphenyl)methyl)phenol (9h):

To a cold (-78 °C), magnetically stirred solution of diiodide **12a** (8.3 g, 19.73 mmol) in dry THF (75 mL) was added *n*-BuLi (11 mL, 17.54 mmol, 1.6M in hexane) and stirred for 20 min. The aldehyde **11c** (1 g, 4.38 mmol) in dry THF (15 mL) was added slowly; the resulting mixture was slowly warmed to rt and stirred for 2h. Upon completion (TLC control), the reaction was carefully quenched with saturated aq. NH₄Cl (10 mL). The aqueous layer was extracted with ethyl acetate (3 x 10 mL) combined organic layer was washed with brine and dried (*anhyd*. Na₂SO₄). Evaporation of the solvent followed by purification of the residue by repeated washing with ethyl acetate-hexanes (1:9) furnished the iodoalcohol **9h** (1.43 g, 62%) as a white solid.

Physical Appearance: white solid

m.p.: 78-79 °C

R_f: 0.4 (1:3, EtOAc:Hexanes)

IR (neat): 3415, 1579, 1449, 1390, 1314, 1260, 1150, 1097, 1017, 967, 834, 736 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃): δ 8.73 (s, 1H), 7.45-7.30 (m, 5H), 6.60 (d, J = 2.3 Hz, 1H), 6.40-6.25 (m, 4H), 5.00 (s, 2H), 4.63 (d, J = 11.3 Hz, 1H), 3.94 (s, 3H), 3.82 (s, 3H), 3.64 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 159.93 (C x 2), 159.10 (C), 157.80 (C), 137.01 (C), 128.65 (CH x 2), 128.04 (CH), 127.62 (CH x 2), 127.44 (CH), 119.92 (C), 115.82

(C), 106.27 (CH), 103.16 (CH), 92.63 (CH), 74.06 (C), 70.04 (CH₂), 69.40 (CH), 62.19 (CH₃), 56.75 (CH₃), 56.22 (CH₃).

HRMS (ESI, M+Na): m/z calcd. for C₂₃H₂₃O₆NaI 545.0437, found 545.0417.

(±)-(2S*,4S*)-7-(benzyloxy)-2-(4-(benzyloxy)phenyl)-4-(3-iodo-2,4,6-

trimethoxyphenyl)chroman (13):

Reaction of alcohol 9h (130 mg, 0.25 mmol), olefin 10a (255 mg, 1.21 mmol) and (±)-BPA (50 mg, 0.14 mmol) in CH₂Cl₂ (4 mL) at rt for 20 min (TLC control), as described for the chroman **8a**, followed by purification on a silica gel column using ethyl acetatehexanes (1:19) as the eluent furnished the requisite chroman 13 (162 mg, 91%) as a white solid.

Physical Appearance: white solid

m.p.: 68-70 °C

R_f: 0.2 (1:9, EtOAc:Hexanes)

1015, 831, 809, 801, 738 cm⁻¹.

¹H NMR (400 MHz, CD₃CN): δ 7.40-7.10 (m, 12H), 6.90 (d, J = 8.6 Hz, 2H), 6.45 (t, J= 8.5 Hz, 1H), 6.38 (d, J = 2.4 Hz, 1H), 6.33 (s, 1H), 6.29 (dd, J = 8.5, 2.4, 1H), 5.04 (d, J = 11.2 Hz, 1H), 4.99 (s, H) 4.90 (s, 2H), 4.68 (dd, J = 12.0, 5.8 Hz, 1H) 3.75 (s, 3H), 3.69 (s, 3H), 3.41 (s, 3H), 2.57 (q, J = 12.0 Hz, 1H), 1.93 (dd, J = 12.0, 5.8 Hz, 1H).

¹³C NMR (100 MHz, CD₃CN, DEPT): δ 161.45 (C), 160.59 (C), 159.58 (C), 159.34 (C), 158.56 (C), 156.84 (C), 138.45 (C), 138.26 (C), 134.93 (C), 129.44 (CH x 2), 129.39 (CH x 2), 128.81 (CH), 128.71 (CH), 128.64 (CH x 2), 128.57 (CH x 2), 128.52 (CH x 2), 120.14 (C), 119.68 (C), 115.63 (CH x 3), 108.51 (CH), 103.28 (CH), 95.29 (CH), 79.19 (CH), 73.50 (C), 70.52 (CH₂), 70.45 (CH₂), 62.66 (CH₃), 57.27 (CH₃), 57.20 (CH₃), 35.56 (CH₂), 34.86 (CH),

HRMS (ESI, M+H⁺): m/z calcd. for $C_{38}H_{36}O_{6}I$ 715.1557, found 715.1548.

(±)-1-(3-((2S*,4S*)-7-(benzyloxy)-2-(4-(benzyloxy)phenyl)chroman-4-yl)-2,4,6-

trimethoxyphenyl)ethanone (14):

To a magnetically stirred suspension of iodoflavan 13 (715 mg, 1.01 mmol), PPh₃ (55 mg, 0.21 mmol) and Pd(OAc)₂ (28 mg, 0.12 mmol) in degassed dry DMF (5 mL) in a sealed tube, was added ethyl vinyl ether (10h) (1 mL, 10.44 mmol) and dry Et₃N (2.2 mL, 15.03 mmol) and heated at 110 $^{\circ}$ C for 22h (TLC control). The reaction mixture was quenched with 2N HCl (10 mL). The aqueous layer was extracted with ethyl acetate (3 x 20 mL), combined organic layer was washed with brine and dried (*anhyd*. Na₂SO₄). Evaporation of the solvent and purification of residue on a silica gel column using ethyl acetate-hexanes (1:4) afforded the ketone **14** (565 mg, 90%) as a white solid.

Physical Appearance: white solid

m.p.: 80-82 °C

R_f: 0.3 (1:4, EtOAc:Hexanes)

IR (neat): 2924, 2852, 1698, 1595, 1502, 1456, 1402, 1247, 1153, 1108, 1018, 831, 738 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.50-7.25 (m, 12H), 7.00 (d, J = 8.7 Hz, 2H), 6.61 (m, 1H), 6.56 (d, J = 2.5 Hz, 1H), 6.41 (dd, J = 8.5, 2.5 Hz, 1H), 6.24 (s, 1H), 5.13 (d, J = 10.4 Hz, 1H), 5.09 (s, 2H), 5.00 (s, 2H), 4.69 (dd, J = 12.0, 5.7 Hz, 1H), 3.82 (s, 3H), 3.79 (s, 3H), 3.51 (s, 3H), 2.67 (q, J = 12.0, 1H), 2.54 (s, 3H), 2.07 (ddd, J = 12.0, 5.8, 1.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 202.33 (C), 160.72 (C), 158.66 (C), 157.84 (C), 157.19 (C), 156.67 (C), 156.04 (C), 137.32 (C), 137.10 (C), 133.98 (C),128.67 (CH x 2), 128.58 (CH x 2), 128.04 (CH), 127.90 (CH), 127.84 (CH), 127.80 (CH), 127.70 (CH x 2), 127.53 (CH x 2), 119.04 (C), 118.56 (C), 118.13 (C), 114.98 (CH x 3), 108.18 (CH), 102.54 (CH), 93.34 (CH), 78.64 (CH), 70.14 (CH₂), 70.08 (CH₂), 64.07 (CH₃), 56.24 (CH₃), 55.88 (CH₃), 35.19 (CH₂), 32.77 (CH), 32.68 (CH₃).

HRMS (**ESI**, **M**+**H**⁺): m/z calcd. for C₄₀H₃₉O₇ 631.2696, found 631.2696.

(±)-1-(3-((2*S**,4*S**)-7-(benzyloxy)-2-(4-(benzyloxy)phenyl)chroman-4-yl)-2,4,6trimethoxyphenyl)dodecan-1-one (15):

To a cold (0 °C), magnetically stirred solution of ketone **14** (900 mg, 1.43 mmol) in dry THF (12 mL), was added *t*-BuOK (200 mg, 1.78 mmol) and the resulting mixture was stirred for 1h at rt. The iodide **16** (370 μ L, 1.72 mmol) was added slowly, the resulting mixture was stirred for 24h at rt and then reaction was carefully quenched with saturated aq. NH₄Cl (10 mL). The aqueous layer was extracted with ethyl acetate (3 x 10 mL), combined organic layer was washed with brine and dried (*anhyd*. Na₂SO₄). Evaporation of the solvent and purification of residue on a silica gel column using ethyl acetate-

hexanes (1:19) afforded the flavan **15** (228 mg, 21%) as a sticky solid and the unreacted ketone **14** (610 mg, 68%) as a sticky solid.

Second iteration:

Reaction of ketone **14** (610 mg, 0.97 mmol), *t*-BuOK (130 mg, 1.16 mmol) and iodide **16** (250 μ L, 1.16 mmol) in dry THF (10 mL) as described above, furnished the unreacted ketone **14** (416 mg, 68%) and the flavan **15** (162 mg, 22%) [Overall yield (390 mg, 36%, 66% brsm) after two iterations].

Physical Appearance: Sticky solid

R_f: 0.3 (1:9, EtOAc:Hexanes)

IR (neat): 2925, 2853, 1699, 1596, 1501, 1456, 1403, 1323, 1246, 1160, 1137, 1107, 830, 810, 738 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃): δ 7.40-7.10 (m, 12H), 6.92 (d, J = 8.4 Hz, 2H), 6.53 (dd, J = 8.4, 6.6 Hz, 1H), 6.48 (d, J = 2.0, 1H), 6.33 (dd, J = 8.4, 2.0 Hz, 1H), 6.15 (s, 1H), 5.04 (d, J = 11.3 Hz, 1H), 4.99 (s, 2H), 4.91 (s, 2H), 4.59 (dd, J = 11.7, 5.7 Hz, 1H), 3.70 (s, 3H), 3.69 (s, 3H), 3.41 (s, 3H), 2.72 (t, J = 8.0 Hz, 2H), 2.65-2.55 (m, 1H), 1.99 (dd, J = 13.0, 5.7 Hz, 1H), 1.65-1.55 (m, 2H), 1.20-1.10 (m, 16H), 0.85-0.75 (m, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 205.48 (C), 160.44 (C), 158.65 (C), 157.82 (C), 156.93 (C), 156.33 (C), 156.02 (C), 137.31 (C), 137.09 (C), 133.97 (C), 128.68 (CH x 2), 128.59 (CH x 2), 128.05 (CH), 127.91 (CH), 127.81 (CH), 127.71 (CH), 127.58 (CH x 2), 127.53 (CH x 2), 119.06 (C), 118.75 (C), 118.00 (C), 114.96 (CH x 3), 108.16 (CH), 102.51 (CH), 93.40 (CH), 78.67 (CH), 70.12 (CH₂), 70.06 (CH₂), 64.19 (CH₃), 55.90 (CH₃), 55.84 (CH₃), 45.22 (CH₂), 35.18 (CH₂), 32.78 (CH), 32.02 (CH₂), 29.74 (CH₂ x 2), 29.66 (CH₂), 29.59 (CH₂), 29.46 (CH₂), 29.30 (CH₂), 23.97 (CH₂), 22.80 (CH₂), 14.24 (CH₃).

HRMS (ESI, M+Na): m/z calcd. for C₅₀H₅₈O₇Na 793.4080, found 793.4086.

Crystal data and structure refinement for 8b

Identification code	8b	Colle C
CCDC No.	932658	
Empirical formula	C ₂₁ H ₁₈ O	
Formula weight	330.36	
Temperature	298(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Monoclinic, P2(1)/c	
Unit cell dimensions	a = 13.2722(19) A alp	bha = 90 deg.
	b = 5.7365(6) A bet	ta = 103.844(4) deg.
	c = 21.383(3) A gas	mma = 90 deg.
Volume	1580.7(4) A^3	
Z, Calculated density	4, 1.203 Mg/m^3	
Absorption coefficient	0.072 mm^-1	
F(000)	608	
Crystal size	0.25 x 0.20 x 0.18 mm	
Theta range for data collection	1.96 to 24.85 deg.	
Limiting indices	-14<=h<=15, -6<=k<=6,	-21<=l<=25
Reflections collected / unique	8164 / 2662 [R (int) = 0.0)379]
Completeness to theta = 24.85	97.1 %	
Absorption correction	Semi-empirical from equ	ivalents
Max. and min. transmission	0.9871 and 0.9822	
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	2662 / 0 / 199	
Goodness-of-fit on F^2	1.054	
Final R indices [I>2sigma(I)]	R1 = 0.0520, wR2 = 0.11	78
R indices (all data)	R1 = 0.0910, wR2 = 0.13	88
Largest diff. peak and hole	0.181 and -0.214 e.A^-3	

Crystal data and structure refinement for 8d

Identification code	8d	
CCDC No.	932655	
Empirical formula	$C_{22}H_{18}O_3$	
Formula weight	330.36	C14 C15 C15 C15 C15 C15 C15 C15 C15 C15 C15
Temperature	298(2) K	C6 C C4
Wavelength	0.71073 A	
Crystal system, space group	Monoclinic, P2(1)/c	d ci oz
Unit cell dimensions	a = 10.1432(3) A alph	a = 90 deg.
	b = 8.1265(2) A beta	= 97.036(2) deg.
	c = 20.3620(6) A gam	ma = 90 deg.
Volume	1665.77(8) A^3	
Z, Calculated density	4, 1.317 Mg/m^3	
Absorption coefficient	0.087 mm^-1	
F(000)	696	
Crystal size	0.25 x 0.20 x 0.18 mm	
Theta range for data collection	2.02 to 28.45 deg.	
Limiting indices	-13<=h<=13, -9<=k<=10,	-27<=l<=24
Reflections collected / unique	12682 / 4171 [R(int) = 0.02]	217]
Completeness to theta $= 25.00$	100%	
Absorption correction	Multi-scan	
Max. and min. transmission	0.9845 and 0.9786	
Refinement method	Full-matrix least-squares o	n F^2
Data / restraints / parameters	4171 / 0 / 226	
Goodness-of-fit on F^2	1.023	
Final R indices [I>2sigma(I)]	R1 = 0.0550, wR2 = 0.131	9
R indices (all data)	R1 = 0.0959, wR2 = 0.155	1
Largest diff. peak and hole	0.332 and -0.209 e.A^-3	

Crystal data and structure refinement for 8f

Identification code	8f	0-8 C17 03
CCDC No.	932656	
Empirical formula	$C_{25}H_{26}O_5$	
Formula weight	406.46	
Temperature	298(2) K	C19 C20 C21 C21 C21 C21 C21 C24 C21 C24 C24 C24 C24 C24 C24 C24
Wavelength	0.71073 A	
Crystal system, space group	Monoclinic, P2(1)/c	
Unit cell dimensions	a = 8.2985(3) A alp	ha = 90 deg.
	b = 28.7950(11) A bet	a = 111.617(2) deg.
	c = 9.4916(3) A gai	mma = 90 deg.
Volume	2108.55(13) A^3	
Z, Calculated density	4, 1.280 Mg/m^3	
Absorption coefficient	0.088 mm^-1	
F(000)	864	
Crystal size	0.45 x 0.25 x 0.15 mm	
Theta range for data collection	2.41 to 30.04 deg.	
Limiting indices	-11<=h<=11, -36<=k<=3	9, -9<=l<=13
Reflections collected / unique	17954 / 6038 [R(int) = 0.	0296]
Completeness to theta $= 25.00$	99.9%	
Absorption correction	None	
Max. and min. transmission	0.9869 and 0.9613	
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	6038 / 0 / 275	
Goodness-of-fit on F^2	1.039	
Final R indices [I>2sigma(I)]	R1 = 0.0518, $wR2 = 0.11$	75
R indices (all data)	R1 = 0.1012, wR2 = 0.13	84
Largest diff. peak and hole	0.338 and -0.205 e.A^-3	

Crystal data and structure refinement for 8j

Identification code	8j	
CCDC No.	932657	
Empirical formula	$C_{32}H_{30}O_{6}$	
Formula weight	510.56	
Temperature	298(2) K	
Wavelength	0.71073 A	- Fezo
Crystal system, space group	Monoclinic, P2(1)/n	
Unit cell dimensions	a = 8.2911(6) A	alpha $= 90 \text{ deg.}$
	b = 19.7700(18) A	beta = $96.314(3)$ deg.
	c = 17.1314(14) A	gamma = 90 deg.
Volume	2791.1(4) A^3	
Z, Calculated density	4, 1.215 Mg/m^3	
Absorption coefficient	0.083 mm^-1	
F(000)	1080	
Crystal size	0.25 x 0.22 x 0.15 mm	n
Theta range for data collection	1.58 to 18.86 deg.	
Limiting indices	-7<=h<=6, -17<=k<=	17, -15<=l<=15
Reflections collected / unique	9049 / 2192 [R(int) = 0.0475]	
Completeness to theta = 18.86	99.2%	
Absorption correction	Multi-scan	
Max. and min. transmission	0.9876 and 0.9795	
Refinement method	Full-matrix least-squa	res on F^2
Data / restraints / parameters	2192 / 0 / 347	
Goodness-of-fit on F^2	1.022	
Final R indices [I>2sigma(I)]	R1 = 0.0376, wR2 = 0).0951
R indices (all data)	R1 = 0.0555, wR2 = 0).1083
Largest diff. peak and hole	0.190 and -0.150 e.A [^]	<u>^-3</u>

Identification code	9h	
CCDC No.	932659	
Empirical formula	C23H20IO6	
Formula weight	519.29	
Temperature	293(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Triclinic, P1	
Unit cell dimensions	a = 9.3330(4) A alpha $= 107.576(2) deg.$	
	b = 9.5986(4) A beta $= 92.267(2) deg.$	
	c = 14.6529(7) A gamma = 90.024(2) deg.	
Volume	1250.30(10) A^3	
Z, Calculated density	2, 1.379 Mg/m^3	
Absorption coefficient	1.312 mm^-1	
F(000)	518	
Crystal size	0.38 x 0.31 x 0.25 mm	
Theta range for data collection	1.46 to 28.58 deg.	
Limiting indices	-12<=h<=11, -12<=k<=12, -19<=l<=19	
Reflections collected / unique	15676 / 5737 [R(int) = 0.0179]	
Completeness to theta $= 25.00$	95.2%	
Absorption correction	Multi-scan	
Max. and min. transmission	0.9845 and 0.9786	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	5737 / 1 / 313	
Goodness-of-fit on F^2	1.025	
Final R indices [I>2sigma(I)]	R1 = 0.0600, wR2 = 0.1982	
R indices (all data)	R1 = 0.0691, wR2 = 0.2301	
Largest diff. peak and hole	2.812 and -0.675 e.A^-3	

Crystal data and structure refinement for 9h

Fig. 2 ¹³C NMR Spectrum of chroman 8a

Electronic Supplementary Material (ESI) for RSC Advances This journal is C The Royal Society of Chemistry 2013

Fig. 14 ¹³C NMR Spectrum of chroman 8e

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

Fig. 17 ¹³C NMR Spectrum of chroman 8f

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

Fig. 20¹³C NMR Spectrum of chroman 8g

Fig. 21 NOESY Spectrum of chroman 8g

Fig. 23 ¹³C NMR Spectrum of chroman 8h

Fig. 24 NOESY Spectrum of chroman 8h

Fig. 26 ¹³C NMR Spectrum of chroman 8i

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

Fig. 27 NOESY Spectrum of chroman 8i

Fig. 29¹³C NMR Spectrum of chroman 8j

Fig 32 ¹³C NMR spectrum of acetal 8k

Fig. 33 NOESY Spectrum of acetal 8k

Fig. 36 NOESY Spectrum of acetal 81

Fig. 38 ¹³C NMR Spectrum of alcohol 9h

Fig. 40¹³C NMR Spectrum of chroman 13

Fig. 43 ¹³C NMR Spectrum of ketone 14

Fig. 45¹³C NMR Spectrum of ketone 15