Supplementary data

Novel Synthetic $(1 \rightarrow 6)$ - α -D-Mannodisaccharide Substrates Support Processive Mannosylation Catalysed by the Mycobacterial Cell Envelope Enzyme Fraction.

Erika Lattová,^{*a,b*} Zuzana Svetlíková,^{*c*} Katarína Mikušová,^{*c*} Helene Perreault,^{*a*} and Monika Poláková^{**b*}

^aDepartment of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
^bInstitute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38
Bratislava, Slovakia

^cDepartment of Biochemistry, Comenius University, Faculty of Natural Sciences, Mlynská dolina, CH1, SK-842 15 Bratislava, Slovakia

Contents

Experimental.	Pages S2-S11.
$^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of the targeted disaccharides 27-30.	Pages S12-S15.
Figures S1-S7.	Pages S16-S22.

Experimental

General procedure for tritylation. Synthesis of compounds 5-8.

Glycoside 1, 1, 2, 1, 3, 1 or 4^1 (3 mmol, 1 eq) was dissolved in pyridine (7 mL), and triphenylmethyl chloride (2 eq) was added. The solution was stirred at 55 °C for 24 h. After cooling, the pyridine was evaporated and the residue was co-evaporated with toluene (2 × 20 mL). The crude product was purified by column chromatography (hexane:EtOAc 5:1 \rightarrow 0:1) to give 6-*O*-protected compouds **5-8** as an oil.

Octyl 6-*O***-triphenylmethyl-α-D-mannopyranoside (5).** (1.22 g, 76%); $[α]_D$ +19 (*c* 1, methanol); lit² $[α]_D$ +16.9 (*c* 1.3, CHCl₃); ¹H NMR (300 MHz, CD₃OD): δ 7.49-7.46 (m, 5H, Ar), 7.30-7.19 (m, 10H, Ar), 4.79 (d, 1H, $J_{1,2} = 1.1$ Hz, H-1), 3.95 (dt, 1H, J = 6.9 Hz, J = 9.4 Hz, OCH₂C₇H₁₅), 3.84-3.77 (m, 2H, H-2, H-5), 3.65 (dd, 1H, $J_{2,3} = 3.4$ Hz, $J_{3,4} = 9.3$ Hz, H-3), 3.54 (dt, 1H, J = 6.3 Hz, J = 9.5 Hz, OCH₂C₇H₁₅), 3.51-3.42 (m, 2H, H-4, H-6a), 3.24 (dd, 1H, $J_{5,6b} = 7.8$ Hz, $J_{6a,6b} = 9.6$ Hz, H-6b), 1.73-1.69 (m, 2H, OCH₂CH₂C₆H₁₃), 1.50-1.22 (m, 10H, O(CH₂)₂(CH₂)₅CH₃), 0.85 (t, 3H, J = 6.9 Hz, O(CH₂)₇CH₃).¹³C NMR (75 MHz, CD₃OD): δ 145.7, 130.0, 128.7, 128.0 (Ar), 101.5 (C-1), 87.8 (C(Ph)₃), 73.8, 72.2 (C-2, C-5), 73.0 (C-3), 69.3 (C-4), 68.5 (OCH₂C₇H₁₅), 65.4 (C-6), 33.0, 30.8, 30.6, 30.5, 27.6, 23.8 (OCH₂(CH₂)₆CH₃),), 14.5 (O(CH₂)₇CH₃). HRMS (MALDI): m/z 557.2868 MNa⁺; calcd 557.2879 for C₃₃H₄₂O₆Na.

Cyclohexylmethyl 6-*O***-triphenylmethyl-α-D-mannopyranoside (6).** (1.27 g, 82%); $[α]_D$ +20 (*c* 1, methanol); ¹H NMR (400 MHz, CD₃OD): δ 7.52-7.50 (m, 5H, Ar), 7.32-7.24 (m, 10H, Ar), 4.80 (d, 1H, $J_{1,2} = 1.3$ Hz, H-1), 3.88-3.80 (m, 3H, H-2, H-5, OC $H_2C_6H_{11}$), 3.68 (dd, 1H, $J_{2,3} = 3.5$ Hz, $J_{3,4} = 9.4$ Hz, H-3), 3.48-3.43 (m, 2H, H-4, H-6a), 3.37 (dd, 1H, J = 5.9 Hz, J = 9.3 Hz, OC $H_2C_6H_{11}$), 3.26 (dd, 1H, $J_{5,6b} = 8.0$ Hz, $J_{6a,6b} = 9.4$ Hz, H-6b), 1.84-1.08 (m, 11H, OCH₂C₆ H_{11}). ¹³C NMR (100 MHz, CD₃OD): δ 145.8, 130.1, 128.8, 128.1 (Ar), 101.5 (C-1), 87.8 (*C*(Ph)₃), 74.0(2x), 72.3 (C-2, C-5, OCH₂C₆ H_{11}), 73.2 (C-3), 69.4 (C-4), 65.5 (C-6), 39.3, 31.7, 31.4, 27.9, 27.2, 27.1 (OCH₂C₆ H_{11}). HRMS (MALDI): m/z 541.2605 MNa⁺; calcd 541.2566 for C₃₂H₃₈O₆Na.

2-Cyclohexylethyl 6-*O***-triphenylmethyl-\alpha-D-mannopyranoside (7).** (1.18 g, 74%); $[\alpha]_D$ +21 (*c* 1, methanol); ¹H NMR (600 MHz, CD₃OD): δ 7.51-7.49 (m, 5H, Ar), 7.31-7.23 (m,

10H, Ar), 4.81 (d, 1H, $J_{1,2} = 1.2$ Hz, H-1), 4.04 (dt, 1H, J = 7.1 Hz, J = 9.5 Hz, OC H_2 CH $_2$ C $_6$ H $_{11}$), 3.84-3.80 (m, 2H, H-2, H-5), 3.68 (dd, 1H, $J_{2,3} = 3.4$ Hz, $J_{3,4} = 9.4$ Hz, H-3), 3.57 (dt, 1H, J = 6.6 Hz, J = 9.6 Hz, OC H_2 CH $_2$ C $_6$ H $_{11}$), 3.48-3.44 (m, 2H, H-4, H-6a), 3.25 (dd, 1H, $J_{5,6b} = 7.9$ Hz, $J_{6a,6b} = 9.6$ Hz, H-6b), 1.90-0.96 (m, 13 H, OCH $_2$ CH $_2$ C $_6$ H $_{11}$).¹³C NMR (150 MHz, CD $_3$ OD): δ 145.8, 130.1, 128.8, 128.1 (Ar), 101.6 (C-1), 87.9 (*C*(Ph)₃), 74.0, 72.3 (C-2, C-5), 73.0 (C-3), 69.4 (C-4), 66.6 (OCH $_2$ CH $_2$ C $_6$ H $_{11}$), 65.6 (C-6), 38.4, 36.3, 35.0, 34.6, 27.8, 27.6(2x) (OCH $_2$ CH $_2$ C $_6$ H $_{11}$). HRMS (MALDI): m/z 555.2735 MNa⁺; calcd 555.2723 for C $_{33}$ H $_{40}$ O $_6$ Na.

Octyl 6-*O***-triphenylmethyl-1-thio-\alpha-D-mannopyranoside (8).** (1.21 g, 73%); [α]_D +93 (*c* 1, methanol); ¹H NMR (400 MHz, CD₃OD): δ 7.51-7.48 (m, 6H, Ar), 7.32-7.22 (m, 9H, Ar), 5.33 (d, 1H, $J_{1,2} = 0.9$ Hz, H-1), 4.20 (ddd, 1H, H-5), 3.93 (dd, 1H, $J_{2,3} = 3.4$ Hz, H-2), 3.69 (dd, 1H, $J_{3,4} = 9.3$ Hz, H-3), 3.54 (t, 1H, $J_{4,5} = 9.6$ Hz, H-4), 3.48 (dd, 1H, $J_{5,6a} = 1.8$ Hz, $J_{6a,6b} = 9.8$ Hz, H-6a), 3.29 (dd, 1H, $J_{5,6b} = 7.5$ Hz, H-6b), 2.88 (ddd, 1H, J = 6.3 Hz, J = 8.3 Hz, J = 12.9 Hz, SC $H_2C_7H_{15}$), 2.74 (ddd, 1H, J = 6.8 Hz, J = 8.4 Hz, J = 12.8 Hz, SC $H_2C_7H_{15}$), 1.80-1.71 (m, 2H, SC $H_2CH_2C_6H_{13}$), 1.46-1.40 (m, 2H, S(CH₂)₂C $H_2C_5H_{11}$), 1.33-1.19 (m, 8H, S(CH₂)₃(C H_2)₄CH₃), 0.86 (t, 3H, J = 7.0 Hz, S(C H_2)₇C H_3). ¹³C NMR (100 MHz, CD₃OD): δ 145.7, 130.1, 128.8, 128.1 (Ar), 87.9 (C-1), 85.8 (C(Ph)₃), 74.1 (C-5), 73.6(2x) (C-2, C-3), 69.6 (C-4), 65.4 (C-6), 33.1, 31.6, 31.0, 30.6, 30.5, 30.3, 23.8 (S(CH₂)₇CH₃), 14.6 (S(CH₂)₇CH₃). HRMS (MALDI): m/z 573.2659 MNa⁺; calcd 573.2651 for C₃₃H₄₂O₅SNa.

General procedure for the protection of secondary hydroxyl groups. Synthesis of compounds 9-12.

Partially protected mannopyranoside **5**, **6**, **7**, or **8** (1 mmol, 1 eq) was dissolved in DMF (7 mL), the solution was cooled to 0 °C, and sodium hydride (60% in mineral oil, 5 eq) was added during stirring. After 15 min, benzyl bromide (4 eq) was added and the resulting mixture was brought to rt and the stirring was continued for 16 h. The reaction was quenched with methanol (2-3 mL). The reaction mixture was diluted with CH_2Cl_2 (30 mL), washed with water (10 mL). The organic phase was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic phases were again washed with water (10 mL), dried (Na₂SO₄), filtered and concentrated. The crude product was purified by column chromatography (hexane:EtOAc 10:1→6:1) and desired products **9-12** were obtained in oil forms.

Octyl 2,3,4-tri-*O***-benzyl-6***O***-triphenylmethyl-α-D-mannopyranoside (9).** (0.67 g, 83%); [α]_D +15 (*c* 1, CHCl₃); lit² [α]_D +18.7 (*c* 0.3, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.57-7.16 (m, 28H, Ar), 6.88 (m, 2H, Ar), 4.90 (d, 1H, $J_{1,2} = 1.3$ Hz, H-1), 4.82 (d, 1H, J = 12.5Hz, PhC*H*₂), 4.73-4.65 (m, 4H, 2x PhC*H*₂), 4.26 (d, 1H, J = 10.4 Hz, PhC*H*₂), 4.00 (dd, 1H, $J_{3,4} = 9.5$ Hz, $J_{4,5} = 9.5$ Hz, H-4), 3.89 (dd, 1H, $J_{2,3} = 3.0$ Hz, H-3), 3.82-3.79 (m, 2H, H-2, H-5), 3.74 (dt, 1H, J = 6.9 Hz, J = 9.5 Hz, OC*H*₂C₇H₁₅), 3.51 (dd, 1H, $J_{5,6a} = 1.3$ Hz, $J_{6a,6b} = 9.7$ Hz, H-6a), 3.41 (dt, 1H, J = 6.6 Hz, J = 9.5 Hz, OC*H*₂C₇H₁₅), 3.26 (dd, 1H, $J_{5,6b} = 5.3$ Hz, H-6b), 1.59-1.50 (m, 2H, OCH₂C*H*₂C₆H₁₃), 1.33-1.18 (m, 10H, O(CH₂)₂(C*H*₂)₅CH₃), 0.86 (t, 3H, J = 7.0 Hz, O(CH₂)₇C*H*₃). ¹³C NMR (75 MHz, CDCl₃): δ 144.2, 138.8, 138.7, 138.2, 128.9-126.8 (Ar), 97.6 (C-1), 86.2 (*C*(Ph)₃), 80.4, 75.8, 75.2, 75.1, 72.7, 72.3, 71.9, 67.4 (C-2, C-3, C-4, C-5, 3x PhCH₂, OCH₂C₇H₁₅), 63.1 (C-6), 31.8, 29.5, 29.4, 29.2, 26.2, 22.6 (OCH₂(CH₂)₆CH₃), 14.1 (O(CH₂)₇CH₃). HRMS (MALDI): *m*/z 827.4269 MNa⁺; calcd 827.4287 for C₅₄H₆₀O₆Na.

Cyclohexylmethyl 2,3,4-tri-*O*-benzyl-6-*O*-triphenylmethyl-α-D-mannopyranoside (10). (0.67 g, 85%); $[α]_D + 22$ (*c* 1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.14 (m, 28H, Ar), 6.88 (m, 2H, Ar), 4.86 (d, 1H, $J_{1,2} = 1.3$ Hz, H-1), 4.83 (d, 1H, J = 12.5 Hz, PhC H_2), 4.73-4.65 (m, 4H, 2x PhC H_2), 4.27 (d, 1H, J = 10.5 Hz, PhC H_2), 3.95 (dd, 1H, $J_{3,4} = 9.5$ Hz, $J_{4,5} =$ 9.6 Hz, H-4), 3.88 (dd, 1H, $J_{2,3} = 3.0$ Hz, H-3), 3.83-3.78 (m, 2H, H-2, H-5), 3.59 (dd, 1H, J=7.3 Hz, J = 9.3 Hz, OC H_2 C₆H₁₁), 3.48 (dd, 1H, $J_{5,6a} = 1.3$ Hz, $J_{6a,6b} = 9.7$ Hz, H-6a), 3.27-3.19 (m, 2H, H-6b, OC H_2 C₆H₁₁), 1.77-0.90 (m, 11 H, OCH₂C₆ H_{11}). ¹³C NMR (100 MHz, CDCl₃): δ 145.8, 138.9, 138.8, 138.4, 129.1-127.0 (Ar), 97.9 (C-1), 86.5 (*C*(Ph)₃), 80.7, 76.0, 75.5, 75.4, 73.1, 72.9, 72.6, 72.3 (C-2, C-3, C-4, C-5, 3x PhCH₂, OCH₂C₆H₁₁), 63.4 (C-6), 38.1, 30.5, 30.2, 26.8, 26.1, 26.0 (OCH₂C₆H₁₁). HRMS (MALDI): *m*/z 811.3986 MNa⁺; calcd 811.3975 for C₅₃H₅₆O₆Na.

2-Cyclohexylethyl 2,3,4-tri-*O***-benzyl-6-***O***-triphenylmethyl-\alpha-D-mannopyranoside (11). (0.69 g, 86%); [\alpha]_D +21 (***c* **1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): \delta 7.52-7.17 (m, 28H, Ar), 6.89 (m, 2H, Ar), 4.89 (d, 1H, J_{1,2} = 1.5 Hz, H-1), 4.83 (d, 1H, J = 12.5 Hz, PhCH_2), 4.72-4.65 (m, 4H, 2x PhCH_2), 4.27 (d, 1H, J = 10.5 Hz, PhCH_2), 3.97 (dd, 1H, J_{3,4} = 9.3 Hz, J_{4,5} = 9.4 Hz, H-4), 3.89 (dd, 1H, J_{2,3} = 3.0 Hz, H-3), 3.84-3.78 (m, 3H, H-2, H-5, OCH_2CH₂C₆H₁₁), 3.49 (dd, 1H, J_{5,6a} = 1.5 Hz, J_{6a,6b} = 9.8 Hz, H-6a), 3.44 (dt, 1H, J =7.0 Hz, J = 9.7 Hz,** OC H_2 CH₂C₆H₁₁), 3.25 (dd, 1H, $J_{5,6b}$ = 5.6 Hz, H-6b), 1.71-0.86 (m, 13 H, OCH₂CH₂C₆H₁₁). ¹³C NMR (100 MHz, CDCl₃): δ 144.4, 138.9, 138.8, 138.5, 138.4, 129.1-127.0 (Ar), 97.8 (C-1), 86.5 (*C*(Ph)₃), 80.5, 75.9, 75.5, 75.3, 72.9, 72.5, 72.2 (C-2, C-3, C-4, C-5, 3x PhCH₂), 65.7 (OCH₂CH₂C₆H₁₁), 63.5 (C-6), 37.1, 34.9, 33.6, 33.5, 26.8, 26.5(2x) (OCH₂CH₂C₆H₁₁). HRMS (MALDI): m/z 825.4133 MNa⁺; calcd 825.4131 for C₅₄H₅₈O₆Na.

Octyl 2,3,4-tri-*O***-benzyl-6***-O***-triphenylmethyl-1-thio**-α**-D-mannopyranoside (12).** (0.65 g, 79%); $[\alpha]_D$ +49 (*c* 1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.17 (m, 28H, Ar), 6.90-6.88 (m, 2H, Ar), 5.41 (s, 1H, H-1), 4.79 (d, 1H, *J* = 12.2 Hz, PhC*H*₂), 4.74-4.61 (m, 4H, 2x PhC*H*₂), 4.27 (d, 1H, *J* = 10.8 Hz, PhC*H*₂), 4.14-4.07 (m, 2H, H-4, H-5), 3.86-3.83 (m, 2H, H-2, H-3), 3.49 (dd, 1H, *J*_{5,6a} = 1.5 Hz, *J*_{6a,6b} = 9.9 Hz, H-6a), 3.28 (dd, 1H, *J*_{5,6b} = 4.6 Hz, H-6b), 2.70-2.54 (m, 2H, SC*H*₂C₇H₁₅), 1.63-1.56 (m, 2H, SCH₂C*H*₂C₆H₁₃), 1.32-1.23 (m, 10H, S(CH₂)₂(C*H*₂)₅CH₃), 0.86 (t, 3H, *J* = 7.0 Hz, S(CH₂)₇CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 144.4, 138.7, 138.5, 138.4, 129.1-127.0 (Ar), 86.5 (*C*(Ph)₃), 81.9 (C-1), 80.6, 77.4, 75.5, 75.4,72.5, 72.4(2x) (C-2, C-3, C-4, C-5, 3x PhCH₂), 63.1 (C-6), 32.0, 31.3, 29.8, 29.5, 29.4, 29.2, 22.9 (S(*C*H₂)₇CH₃), 14.3 (S(CH₂)₇CH₃). HRMS (MALDI): *m*/*z* 843.4014 MNa⁺; calcd 843.4059 for C₅₄H₆₀O₅SNa.

General procedure for detritylation. Synthesis of acceptors 13-16.

Compound 9, 10, 11 or 12 (0.6 mmol, 1 eq) was dissolved in CH_2Cl_2 :MeOH (2:1, 6 mL), and *p*-TsOH (0.89 eq) was added. The reaction mixture was stirred at rt until TLC indicated that reaction is complete (~35 min). The reaction mixture was diluted with CH_2Cl_2 (30 mL), washed with satd. NaHCO₃ (2 × 10 mL) and water (10 mL), then dried (Na₂SO₄), filtered and concentrated. Purification by column chromatography (hexane:EtOAc 4:1 \rightarrow 2:1) gave the acceptors 13-16 as an oil.

Octyl 2,3,4-tri-*O***-benzyl-***α***-D-mannopyranoside (13).** (0.29 g, 86%); $[\alpha]_D + 32$ (*c* 1, CHCl₃); lit² $[\alpha]_D + 27.6$ (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.26 (m, 15H, Ar), 4.93 (d, 1H, J = 10.9 Hz, PhC H_2), 4.79 (d, 1H, J = 12.3 Hz, PhC H_2), 4.78 (d, 1H, $J_{1,2} = 1.6$ Hz, H-1), 4.70-4.64 (m, 4H, 2x PhC H_2), 3.98 (dd, 1H, $J_{3,4} = 9.3$ Hz, $J_{4,5} = 9.4$ Hz, H-4), 3.92 (dd, 1H, $J_{2,3} = 2.7$ Hz, H-3), 3.83 (dd, 1H, $J_{5,6a} = 2.8$ Hz, $J_{6a,6b} = 11.7$ Hz, H-6a), 3.79-3.75 (m, 2H, H-2, H-6b), 3.63 (m, 1H, H-5), 3.58 (dt, 1H, J = 6.8 Hz, J = 9.5 Hz, OC H_2 C₇H₁₅), 3.31 (dt, 1H, J = 6.5 Hz, J = 9.6 Hz, OC H_2 C₇H₁₅), 1.52-1.48 (m, 2H, OCH₂C $_7$ H₁₃), 1.30-1.23 (m, 10H, O(CH₂)₂(CH₂)₅CH₃), 0.88 (t, 3H, J = 6.5 Hz, O(CH₂)₇CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 138.7, 138.6, 138.5, 129.6-127.8 (Ar), 98.4 (C-1), 80.5, 75.5, 75.3, 75.2, 73.2, 72.5, 72.3, 68.0 (C-2, C-3, C-4, C-5, 3x PhCH₂, OCH₂C₇H₁₅), 62.7 (C-6), 32.0, 29.6(2x), 29.4, 26.3, 22.9 (OCH₂(CH₂)₆CH₃), 14.3 (O(CH₂)₇CH₃). HRMS (MALDI): m/z 585.3220 MNa⁺; calcd 585.3192 for C₃₅H₄₆O₆Na.

Cyclohexylmethyl 2,3,4-tri-*O*-benzyl-α-D-mannopyranoside (14). (0.29 g, 89%); $[α]_D$ +36 (*c* 1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.26 (m, 15H, Ar), 4.93 (d, 1H, *J* = 10.9 Hz, PhC*H*₂), 4.79 (d, 1H, *J* = 12.3 Hz, PhC*H*₂), 4.74 (d, 1H, *J*_{1,2} = 1.5 Hz, H-1), 4.69-4.63 (m, 4H, 2x PhC*H*₂), 3.97 (dd, 1H, *J*_{3,4} = 9.3 Hz, *J*_{4,5} = 9.4 Hz, H-4), 3.91 (dd, 1H, *J*_{2,3} = 2.8 Hz, H-3), 3.83 (dd, 1H, *J*_{5,6a} = 3.0 Hz, *J*_{6a,6b} = 11.6 Hz, H-6a), 3.78-3.74 (m, 2H, H-2, H-6b), 3.64-3.60 (m, 1H, H-5), 3.40 (dd, 1H, *J* =7.0 Hz, *J* = 9.3 Hz, OC*H*₂C₆H₁₁), 3.12 (dd, 1H, *J* =6.0 Hz, *J* = 9.4 Hz, OC*H*₂C₆H₁₁), 1.70-0.84 (m, 11H, OCH₂C₆H₁₁). ¹³C NMR (100 MHz, CDCl₃): δ 138.7, 138.6(2x), 129.6-127.8 (Ar), 98.5 (C-1), 80.5, 75.3, 75.2(2x), 73.4, 73.1, 72.5, 72.3 (C-2, C-3, C-4, C-5, 3x PhCH₂, OCH₂C₆H₁₁), 62.7 (C-6), 38.0, 30.3, 30.0, 26.7, 26.0(2x) (OCH₂C₆H₁₁). HRMS (MALDI): *m*/z 569.2855 MNa⁺; calcd 569.2879 for C₃₄H₄₂O₆Na.

2-Cyclohexylethyl 2,3,4-tri-*O*-benzyl-α-D-mannopyranoside (15). (0.28 g, 85%); $[α]_D$ +34 (*c* 1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.22 (m, 15H, Ar), 4.93 (d, 1H, *J* = 10.9 Hz, PhC*H*₂), 4.79 (br d, 2H, H-1, PhC*H*₂), 4.70-4.64 (m, 4H, 2x PhC*H*₂), 3.97 (dd, 1H, *J*_{3,4} = 9.3 Hz, *J*_{4,5} = 9.4 Hz, H-4), 3.91 (dd, 1H, *J*_{2,3} = 2.9 Hz, H-3), 3.83 (dd, 1H, *J*_{5,6a} = 2.9 Hz, *J*_{6a,6b} = 11.6 Hz, H-6a), 3.78-3.74 (m, 2H, H-2, H-6b), 3.67-3.62 (m, 2H, H-5, OC*H*₂CH₂C₆H₁₁), 3.35 (dt, 1H, *J* =6.8 Hz, *J* = 9.6 Hz, OC*H*₂CH₂C₆H₁₁), 1.69-0.83 (m, 13H, OCH₂C*H*₂C₆H₁₁). ¹³C NMR (100 MHz, CDCl₃): δ 138.7, 138.6(2x), 129.6-127.9 (Ar), 98.4 (C-1), 80.4, 75.5, 75.2 (2x), 73.1, 72.5, 72.3 (C-2, C-3, C-4, C-5, 3x PhCH₂), 65.9 (OCH₂CH₂C₆H₁₁), 62.7 (C-6), 37.0, 34.8, 33.6, 33.5, 26.7, 26.4(2x) (OCH₂CH₂C₆H₁₁). HRMS (MALDI): *m*/z 583.3048 MNa⁺; calcd 583.3036 for C₃₅H₄₄O₆Na.

Octyl 2,3,4-tri-*O*-benzyl-1-thio-α-D-mannopyranoside (16). (0.27 g, 79%); $[α]_D$ +65 (*c* 1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.26 (m, 15H, Ar), 5.26 (d, 1H, $J_{1,2} = 0.7$ Hz, H-1), 4.94 (d, 1H, J = 10.9 Hz, PhC H_2), 4.69 (d, 1H, J = 10.9 Hz, PhC H_2), 4.68-4.57 (m, 4H, 2x PhC H_2), 4.02-3.97 (m, 2H, H-3, H-5), 3.86-3.74 (m, 4H, H-2, H-4, H-6a, H-6b), 2.58-2.46 (m, 2H, SC H_2 C₇H₁₅), 1.57-1.52 (m, 2H, SC H_2 C₆H₁₃), 1.36-1.21 (m, 10H,

S(CH₂)₂(CH₂)₅CH₃), 0.88 (t, 3H, J = 6.9 Hz, S(CH₂)₇CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 138.6, 138.4, 138.3, 128.6-127.9 (Ar), 82.9 (C-1), 80.6, 76.8, 75.5, 75.2, 72.6(2x), 72.4 (C-2, C-3, C-4, C-5, 3x PhCH₂), 62.6 (C-6), 32.0, 31.7, 29.8, 29.3(2x), 29.0, 22.9 (S(CH₂)₇CH₃), 14.3 (S(CH₂)₇CH₃). HRMS (MALDI): m/z 601.2981 MNa⁺; calcd 601.2964 for C₃₅H₄₆O₅SNa.

Synthesis of disaccharides 18-21. General procedure for coupling of the donor 17 with acceptors 13-16.

Donor 17 (0.55 mmol, 1.5 eq), acceptor 13, 14, 15 or 16 (0.36 mmol, 1 eq) and 4Å MS (0.5 g) in CH₂Cl₂ (6 mL) were cooled at 0 °C and stirred under inert atmosphere for 15 min. After BF₃OEt₂ (0.55 mmol, 1.5 eq) was added, the reaction mixture was stirred at 0 °C until TLC indicated total consuption of starting material (30 min.). The reaction mixture was poured into satd NaHCO₃:CH₂Cl₂ (1:1, 30 mL) under stirring. The organic phase was separated, washed with satd NaHCO₃ (10 mL), water (10 mL), dried (Na₂SO₄), filtered and concentrated. Purification by column chromatography (hexane:EtOAc $10:1\rightarrow3:1$) yielded disaccharides 18-21 as an oil.

Octyl 2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl- $(1\rightarrow 6)$ -2,3,4-tri-O-benzyl- α -D-manno**pyranoside (18).** (0.26 g, 83%); $[\alpha]_{D}$ +32 (c 1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.26 (m, 15H, Ar), 5.35 (dd, 1H, *J*_{3',4'} = 10.0 Hz, H-3'), 5.29 (dd, 1H, *J*_{2',3'} = 3.4 Hz, H-2'), 5.25 (t, 1H, $J_{4',5'} = 10.0$ Hz, H-4'), 4.98 (d, 1H, J = 11.2 Hz, PhCH₂), 4.92 (d, 1H, $J_{1',2'} = 1.6$ Hz, H-1'), 4.77 (d, 1H, $J_{1,2} = 1.7$ Hz, H-1), 4.72 (d, 1H, J = 11.5 Hz, PhC H_2), 4.69 (d, 1H, J = 12.5Hz, PhCH₂), 4.60 (m, 3H, PhCH₂, $\frac{1}{2}$ PhCH₂), 4.18 (dd, 1H, $J_{5',6'a} = 5.2$ Hz, $J_{6'a,6'b} = 12.3$ Hz, H-6'a), 4.13-4.06 (m, 2H, H-5', H-6'b), 3.91 (dd, 1H, $J_{2,3} = 3.0$ Hz, $J_{3,4} = 9.1$ Hz, H-3), 3.85-3.73 (m, 5H, H-2, H-4, H-5, H-6a, H-6b), 3.63 (dt, 1H, J = 6.7 Hz, J = 9.7 Hz, $OCH_2C_7H_{15}$), 3.34 (dt, 1H, J = 6.5 Hz, J = 9.7 Hz, OCH₂C₇H₁₅), 2.13, 2.05, 2.02, 1.96 (each s, each 3H, 4x) CH₃CO), 1.57-1.51 (m, 2H, OCH₂CH₂C₆H₁₃), 1.30-1.21 (m, 10H, O(CH₂)₂(CH₂)₅CH₃), 0.88 (t, 3H, J = 6.6 Hz, O(CH₂)₇CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 171.0, 170.0 (2x), 169.8 (4x) CH₃CO), 138.6, 128.6-127.8 (Ar), 97.8 (C-1), 97.6 (C-1'), 80.7 (C-3), 75.2 (PhCH₂), 75.0(2x) (C-2, C-4), 72.9 (PhCH₂), 72.3 (PhCH₂), 71.4 (C-5), 69.8 (C-2'), 69.3 (C-3'), 68.6 (C-5'), 67.8 (OCH₂C₇H₁₅), 67.2 (C-6), 66.5 (C-4'), 62.6 (C-6'), 32.1, 29.6(2x), 29.5, 26.4, 22.9 (OCH₂(*C*H₂)₆CH₃), 21.1, 20.9(2x), 20.8 (4×*C*H₃CO), 14.3 (O(CH₂)₇*C*H₃). HRMS (MALDI): m/z 915.4146 MNa⁺; calcd 915.4143 for C₄₉H₆₄O₁₅Na.

Cyclohexylmethyl 2,3,4,6-tetra-*O***-acetyl-α-D-mannopyranosyl-(1→6)-2,3,4-tri-***O***-benzyl-α-D-mannopyranoside (19).** (0.28 g, 90%); $[\alpha]_D$ +43 (*c* 1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.25 (m, 15H, Ar), 5.34 (dd, 1H, $J_{3',4'}$ = 10.0 Hz, H-3'), 5.30 (dd, 1H, $J_{2',3'}$ = 3.3 Hz, H-2'), 5.25 (t, 1H, $J_{4',5'}$ = 10.0 Hz, H-4'), 4.97 (d, 1H, *J* = 11.2 Hz, PhCH₂), 4.91 (d, 1H, $J_{1',2'}$ = 1.6 Hz, H-1'), 4.76 (d, 2H, H-1, PhCH₂), 4.68 (d, 1H, *J* = 12.5 Hz, PhCH₂), 4.61 (m, 3H, PhCH₂, ½ PhCH₂), 4.18 (dd, 1H, $J_{5',6'a}$ = 5.3 Hz, $J_{6'a,6'b}$ = 12.3 Hz, H-6'a), 4.14-4.06 (m, 2H, H-5', H-6'b), 3.89 (dd, 1H, $J_{2,3}$ = 3.0 Hz, $J_{3,4}$ = 9.1 Hz, H-3), 3.85-3.71 (m, 5H, H-2, H-4, H-5, H-6a, H-6b), 3.43 (dd, 1H, *J* =7.1 Hz, *J* = 9.4 Hz, OCH₂C₆H₁₁), 3.14 (dd, 1H, *J* = 5.9 Hz, *J* = 9.4 Hz, OCH₂C₆H₁₁), 2.13, 2.04, 2.02, 1.96 (each s, each 3H, 4x CH₃CO), 1.71-0.86 (m, 11H, OCH₂C₆H₁₁), 1³C NMR (100 MHz, CDCl₃): δ 171.0, 170.0 (2x), 169.7 (4x CH₃CO), 138.6, 128.6-127.8 (Ar), 98.0 (C-1), 97.6 (C-1'), 80.6 (C-3), 75.3 (PhCH₂), 75.0(2x) (C-2, C-4), 73.3 (OCH₂C₆H₁₁), 72.9 (PhCH₂), 72.4 (PhCH₂), 71.4 (C-5), 69.8 (C-2'), 69.3 (C-3'), 68.6 (C-5'), 67.3 (C-6), 66.4 (C-4'), 62.6 (C-6'), 38.0, 30.3, 30.0, 26.7, 26.1, 26.0 (OCH₂C₆H₁₁), 21.1, 20.9(2x), 20.8 (4×CH₃CO). HRMS (MALDI): *m/z* 899.3815 MNa⁺; calcd 899.3829 for C₄₈H₆₀O₁₅Na.

2-Cyclohexylethyl 2,3,4,6-tetra-*O*-acetyl-α-D-mannopyranosyl-(1→6)-2,3,4-tri-*O*-benzylα-D-mannopyranoside (**20**). (0.26 g, 81%); $[α]_D$ +46 (*c* 1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.25 (m, 15H, Ar), 5.34 (dd, 1H, $J_{3',4'}$ = 9.9 Hz, H-3'), 5.30 (dd, 1H, $J_{2',3'}$ = 3.3 Hz, H-2'), 5.25 (t, 1H, $J_{4',5'}$ = 9.9 Hz, H-4'), 4.98 (d, 1H, J = 11.2 Hz, PhCH₂), 4.91 (d, 1H, $J_{1',2'}$ = 1.5 Hz, H-1'), 4.76 (d, 1H, $J_{1,2}$ = 1.7 Hz, H-1), 4.72 (d, 1H, J = 11.2 Hz, PhCH₂), 4.69 (d, 1H, J = 12.5 Hz, PhCH₂), 4.60 (m, 3H, PhCH₂, ½ PhCH₂), 4.18 (dd, 1H, $J_{5',6'a}$ = 5.3 Hz, $J_{6'a,6'b}$ = 12.3 Hz, H-6'a), 4.15-4.06 (m, 2H, H-5', H-6'b), 3.90 (dd, 1H, $J_{2,3}$ = 3.0 Hz, $J_{3,4}$ = 9.1 Hz, H-3), 3.85-3.72 (m, 5H, H-2, H-4, H-5, H-6a, H-6b), 3.68 (dt, 1H, J = 6.9 Hz, J = 9.7 Hz, OCH₂CH₂C₆H₁₁), 3.36 (dt, 1H, J = 6.7 Hz, J = 9.8 Hz, OCH₂CH₂C₆H₁₁), 2.13, 2.05, 2.02, 1.96 (each s, each 3H, 4x CH₃CO), 1.68-0.86 (m, 13H, OCH₂CH₂C₆H₁₁). ¹³C NMR (100 MHz, CDCl₃): δ 171.0, 170.0 (2x), 169.7 (4x CH₃CO), 138.6, 128.6-127.8 (Ar), 97.8 (C-1), 97.7 (C-1'), 80.6 (C-3), 75.2 (PhCH₂), 75.0(2x) (C-2, C-4), 72.9 (PhCH₂), 72.4 (PhCH₂), 71.4 (C-5), 69.8 (C-2'), 69.3 (C-3'), 68.6 (C-5'), 67.3 (C-6), 66.4 (C-4'), 65.7 (OCH₂CH₂C₆H₁₁), 62.6 (C-6'), 37.0, 34.7, 33.6, 33.4, 26.8, 26.5(2x) (OCH₂CH₂C₆H₁₁), 21.1, 20.9(2x), 20.8 (4×CH₃CO). HRMS (MALDI): m/z 913.4010 MNa⁺; calcd 913.3986 for C₄9H₆₂O₁₅Na.

Synthesis of disaccharide 22.

To a stirred and cooled at 0 °C solution containing disaccharide **21** (0.22 mmol, 1 eq) in CH₂Cl₂ (5 mL), *m*CPBA (0.66 mmol, 3 eq) was added. The reaction mixture was stirred at rt for 2 h, then diluted with CH₂Cl₂ (20 mL), washed with satd NaHCO₃ (2 × 20 mL) and water (20 mL). The organic phase was dried (Na₂SO₄), filtered and concentrated. The crude product was purified by flash chromatography (hexane:EtOAc $3:1\rightarrow1.5:1$). To a stirred and at 0 °C precooled solution containing compound (**21**) (0.22 mmol, 1 eq) in CH₂Cl₂ (5 mL) *m*CPBA (0.66 mmol, 3eq, based on 77% peroxide content) was added. The reaction mixture was stirred at rt for 2 h, diluted with CH₂Cl₂ (20 mL), washed with satd NaHCO₃ (2 × 15 mL) and water (20 mL). The organic phase was dried (Na₂SO₄), filtered and concentrated. The crude product was purified by flash chromatography (hexane:EtOAc $3:1\rightarrow1.5:1$).

Octyl 2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl- $(1\rightarrow 6)$ -2,3,4-tri-O-benzyl- α -D-manno**pyranosyl sulfone (22).** (0.17 g, 49% over 2 steps); $[\alpha]_D$ +48 (c 1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.17 (m, 15H, Ar), 5.24-5.15 (m, 3H, H-2', H-3', H-4'), 4.81 (br d, 2H, H-1', PhC H_2), 4.77 (d, 1H, $J_{1,2} = 2.0$ Hz, H-1), 4.62 (d, 1H, J = 11.8 Hz, PhC H_2), 4.57 (d, 1H, J = 12.2 Hz, PhCH₂), 4.54 (d, 1H, J = 12.1 Hz, PhCH₂), 4.50 (d, 1H, J = 11.8 Hz, PhCH₂), 4.46 (d, 1H, J = 11.5 Hz, PhCH₂), 4.40 (dd, 1H, J_{2.3} = 3.3 Hz, H-2), 4.30 (m, 1H, H-5), 4.11-4.06 (m, 2H, H-3, H-6'a), 4.00 (dd, 1H, $J_{5',6'b} = 2.2$ Hz, $J_{6'a,6'b} = 12.2$ Hz, H-6'b), 3.87 (m, 1H, H-5'), 3.78 (t, 1H, $J_{3,4} = 9.0$ Hz, $J_{4,5} = 9.0$ Hz, H-4), 3.69 (dd, 1H, $J_{5,6a} = 5.8$ Hz, $J_{6a,6b} = 11.3$ Hz, H-6a), 3.61 (dd, $J_{5.6b} = 1.4$ Hz, H-6b), 3.06-2.93 (m, 2H, SO₂CH₂C₇H₁₅), 2.07, 1.95(2x), 1.89 (each s, each 3H, 4x CH₃CO), 1.78-1.66 (m, 2H, S O₂CH₂CH₂C₆H₁₃), 1.36-1.19 (m, 10H, $SO_2(CH_2)_2(CH_2)_5CH_3$, 0.81 (t, 3H, J = 6.3 Hz, $SO_2(CH_2)_7CH_3$).¹³C NMR (100 MHz, CDCl₃): § 170.9, 170.0, 169.9, 169.7 (4x CH₃CO), 138.2, 138.1, 137.5, 128.7-127.9 (Ar), 97.9 (C-1'), 88.5 (C-1), 79.4 (C-3), 75.7 (C-5), 74.6 (PhCH₂), 73.5(2x) (PhCH₂, C-4), 72.9 (PhCH₂), 70.9 (C-2), 69.7 (C-2'), 69.1 (C-3'), 68.8 (C-5'), 67.4 (C-6), 66.3 (C-4'), 62.5 (C-6'), 50.6 (SO₂CH₂(CH₂)₆CH₃), 31.9, 29.3, 29.2, 28.7, 22.8, 21.7 (SO₂CH₂(CH₂)₆CH₃), 21.1, 20.9(2x), 20.8 (4×CH₃CO), 14.3 (SO₂CH₂(CH₂)₆CH₃). HRMS (MALDI): m/z 963.3804 MNa⁺; calcd 963.3813 for C₄₉H₆₄O₁₆SNa.

General procedure for removal of acetyl groups. Synthesis of disaccharides 23-26.

To a solution of protected disaccharide **18**, **19**, **20** or **22** (0.17 mmol) in MeOH:CH₂Cl₂ (17:1, 4.75 mL) was added 1M MeONa (0.25 mL). After stirring overnight (16 h), the solution was

neutralized with Dowex 50 H⁺-form, filtered and concentrated. The crude product was purified by column chromatography (CH₂Cl₂:MeOH 9:1 \rightarrow 5:1) to give partially deprotected disaccharides **23-26** as an oil.

Octyl α-D-mannopyranosyl-(1→6)-2,3,4-tri-*O*-benzyl-α-D-mannopyranoside (23). (0.11 g, 95%); $[\alpha]_D$ +46 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CD₃OD): δ 7.39-7.25 (m, 15H, Ar), 4.89 (d, 1H, $J_{1',2'}$ = 1.2 Hz, H-1'), 4.88 (d, 1H, J = 11.0 Hz, PhCH₂), 4.81 (d, 1H, $J_{1,2}$ = 1.4 Hz, H-1), 4.70-4.62 (m, 3H, PhCH₂), 4.58 (d, 1H, J = 11.6 Hz, PhCH₂), 4.54 (d, 1H, J = 11.6 Hz, PhCH₂), 3.93-3.58 (m, 13H, H-2, H-3, H-4, H-5, H-6a, H-6b, H-2', H-3', H-4', H-5', H-6'a, H-6'b, OCH₂C₇H₁₅), 3.37 (dt, 1H, J =6.1 Hz, J = 9.7 Hz, OCH₂C₇H₁₅), 1.57-1.51 (m, 2H, OCH₂CH₂C₆H₁₃), 1.38-1.24 (m, 10H, O(CH₂)₂(CH₂)₅CH₃), 0.89 (t, 3H, J =6.7 Hz, O(CH₂)₇CH₃). ¹³C NMR (100 MHz, CD₃OD): δ 140.0, 139.8, 132.5, 130.0-128.8 (Ar), 102.1 (C-1'), 99.1 (C-1), 81.3, 76.4, 76.1(2x), 74.6, 73.8, 73.1, 72.9, 72.8, 72.2, 69.2 (C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5', 3x PhCH₂), 68.8 (OCH₂C₇H₁₅), 67.5 (C-6), 62.6 (C-6'), 33.1, 30.6(2x), 30.5, 27.5, 23.9 (OCH₂(CH₂)₆CH₃), 14.6 (O(CH₂)₇CH₃). HRMS (MALDI): *m*/z 747.3695 MNa⁺; calcd 747.3720 for C₄₁H₅₆O₁₁Na.

Cyclohexylmethyl α-**D**-mannopyranosyl-(1→6)-2,3,4-tri-*O*-benzyl-α-**D**-mannopyranoside (24). (0.11 g, 90%); $[α]_D$ +50 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CD₃OD): δ 7.38-7.26 (m, 15H, Ar), 4.89 (d, 1H, $J_{1',2'}$ = 1.3 Hz, H-1'), 4.88 (d, 1H, J = 10.9 Hz, PhC H_2), 4.76 (d, 1H, $J_{1,2}$ = 1.5 Hz, H-1), 4.69 (d, 1H, J = 12.2 Hz, PhC H_2), 4.65-4.62 (m, 2H, PhC H_2), 4.58 (d, 1H, J = 11.6 Hz, PhC H_2), 4.54 (d, 1H, J = 11.7 Hz, PhC H_2), 3.90-3.59 (m, 12H, H-2, H-3, H-4, H-5, H-6a, H-6b, H-2', H-3', H-4', H-5', H-6'a, H-6'b), 3.44 (dd, 1H, J = 6.9 Hz, J = 9.4 Hz, OC $H_2C_6H_{11}$), 3.16 (dd, 1H, J = 5.9 Hz, J = 9.4 Hz, OC $H_2C_6H_{11}$), 1.73-0.89 (m, 11H, OCH₂C₆ H_{11}).¹³C NMR (100 MHz, CD₃OD): δ 139.9, 139.8, 139.7, 133.6, 132.5, 129.5-128.8 (Ar), 101.9 (C-1'), 99.1 (C-1), 81.2, 76.3, 76.1(2x), 74.6, 74.3, 73.8, 73.1, 72.8(2x), 72.2, 68.5 (C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5', 3x PhCH₂, OCH₂C₆ H_{11}), 67.5 (C-6), 62.8 (C-6'), 39.2, 31.2, 31.1, 27.7, 27.1, 27.0 (OCH₂C₆ H_{11}). HRMS (MALDI): m/z 731.3395 MNa⁺; calcd 731.3407 for C₄₀H₅₂O₁₁Na.

2-Cyclohexylethyl α -D-mannopyranosyl-(1 \rightarrow 6)-2,3,4-tri-*O*-benzyl- α -D-mannopyranoside (25). (0.11 g, 91%); [α]_D +54 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CD₃OD): δ 7.40-7.24 (m, 15H, Ar), 4.89 (br d, 2H, H-1', PhCH₂), 4.79 (d, 1H, $J_{1,2} = 1.6$ Hz, H-1), 4.72-4.62 (m, 3H,

PhC*H*₂), 4.59 (d, 1H, *J* = 11.7 Hz, PhC*H*₂), 4.54 (d, 1H, *J* = 11.7 Hz, PhC*H*₂), 3.91-3.57 (m, 13H, H-2, H-3, H-4, H-5, H-6a, H-6b, H-2', H-3', H-4', H-5', H-6'a, H-6'b, OC*H*₂CH₂C₆H₁₁), 3.39 (dd, 1H, *J* =6.9 Hz, *J* = 9.4 Hz, OC*H*₂CH₂C₆H₁₁), 1.74-0.86 (m, 13H, OCH₂C*H*₂C₆*H*₁₁).¹³C NMR (100 MHz, CD₃OD): δ 140.0, 139.8(2x), 133.7, 132.5, 129.6-128.8 (Ar), 102.1 (C-1'), 99.1 (C-1), 81.2, 76.4, 76.1(2x), 74.6, 73.8, 73.0(2x), 72.8, 72.2, 68.6 (C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5'), 67.6 (C-6), 66.7 (OCH₂CH₂C₆H₁₁), 62.9 (C-6'), 38.1, 36.0, 34.7, 34.4, 27.8, 27.6, 27.5 (OCH₂CH₂C₆H₁₁). HRMS (MALDI): *m*/*z* 745.3569 MNa⁺; calcd 745.3564 for C₄₁H₅₄O₁₁Na.

Octyl α-D-mannopyranosyl-(1→6)-2,3,4-tri-*O***-benzyl-α-D-mannopyranosyl sulfone (26).** (0.12 g, 89%); $[α]_D$ +52 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.70 (m, 2H, Ar), 7.53 (m, 2H, Ar), 7.36-7.19 (m, 11H, Ar), 4.85 (s, 1H, H-1'), 4.79 (d, 1H, *J* = 11.4 Hz, PhC*H*₂), 4.76 (d, 1H, *J*_{1,2} = 2.7 Hz, H-1), 4.65-4.58 (m, 4H, 2x PhC*H*₂), 4.47-4.44 (m, 2H, H-2, PhC*H*₂), 4.31 (m, 1H, H-5), 4.11 (d, 1H, *J*_{2,3} = 3.2 Hz, *J*_{3,4} = 7.8 Hz, H-3), 3.92-3.89 (m, 2H, H-2', H-4'), 3.85-3.76 (m, 4H, H-4, H-6a, H-3', H-6'a), 3.65-3.60 (m, 2H, H-6b, H-6'b), 3.45 (m, 1H, H-5'), 3.01-2.97 (m, 2H, SO₂C*H*₂C₇H₁₅), 1.77-1.65 (m, 2H, SO₂C*H*₂C*H*₂C₆H₁₃), 1.41-1.26 (m, 10H, SO₂(CH₂)₂(C*H*₂)₅CH₃), 0.92 (t, 3H, *J* = 7.1 Hz, SO₂(CH₂)₇CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 138.2, 138.0, 137.4, 132.6, 131.1, 129.0-127.8 (Ar), 100.3 (C-1'), 88.5 (C-1), 78.9 (C-3), 75.9 (C-5), 74.3 (PhCH₂), 73.9 (C-4), 73.4 (PhCH₂), 72.9 (PhCH₂), 72.4 (C-5'), 71.8 (C-3'), 71.1, 70.9 (C-2, C-2'), 66.8 (C-6), 66.5 (C-4'), 61.1 (C-6'), 50.1 (SO₂CH₂(CH₂)₆CH₃), 31.9, 29.3, 29.2, 28.7, 22.8, 21.7 (SO₂CH₂(CH₂)₆CH₃),14.3 (SO₂CH₂(CH₂)₆CH₃). HRMS (MALDI): *m*/*z* 795.3394 MNa⁺; calcd 795.3390 for C₄1_{H₅₆O₁₂SNa.}

¹ M. Poláková, M. Beláňová, L. Petruš and K. Mikušová, *Carbohydr. Res.*, 2010, 345, 1339.

V. Subramaniam, S. S. Gurcha, G. S. Besra and T. L. Lowary, *Bioorg. Med. Chem.*, 2005, 13, 1083.

Figure S1. LC-MS analysis of the enzymatic reaction mixture of **28**. Panel (A) - HPLC profile. Panel (B) - ESI mass spectra obtained from peaks 1-4 in figure (a); all peaks are as [M+Na]⁺.

Figure S2. LC-MS analysis of the enzymatic reaction mixture of **30**. Panel (a) – HPLC profile. Panel (b) - ESI mass spectra obtained from peaks 1-5 in figure (a); all peaks are as [M+Na]⁺.

Figure S3. MALDI-MS spectra recorded from the enzymatic sample of reference **27** after SPE fractionation. Peaks corresponding to consecutive mannose attachment are in a blue color and are detected as $[M+Na]^+$. Unlabeled peaks originated from membrane protein of ManT.

Figure S4. MALDI-MS spectra recorded from the sample **28** after SPE (**a**) and after additional microscale ZipTip fractionation (**b**). Peaks corresponding to consecutive mannose attachment are in a blue color and are detected as $[M+Na]^+$. Unlabeled peaks originated from the cell membrane protein of ManT.

Figure S5. MALDI-MS spectra recorded from the enzymatic sample **30** after SPE fractionation (inset represents a spectrum obtained after additional ZipTip-C18 fractionation). Peaks corresponding to consecutive mannose attachment are in a blue color and are detected as $[M+Na]^+$. Unlabeled peaks originated from membrane protein of ManT.

Figure S6. MALDI-MS spectra recorded from the sample 29: (a) before treatment with mannosidase;
(b) after incubation with mannosidase for 2h; and (c) after 8h incubation. All peaks are as [M+Na]⁺. Peaks corresponding to saccharide adducts are in blue color.

Figure S7. MALDI-MS spectra recorded from the sample 30: (a) before treatment with mannosidase,
(b) after incubation with mannosidase for 2h; and (c) after 8h incubation. All peaks are as [M+Na]⁺. Peaks corresponding to saccharide adducts are in blue color.