Supporting Information for Circular Permutation of the Trp-cage: Fold Rescue upon Addition of a Hydrophobic Staple

Aimee Byrne, Brandon L. Kier, D. V. Williams, Michele Scian, and Niels H. Andersen*

Representative CD data.

Figure 1S. Circular Dichroism Temperature Scan for cp-TC2 (upper left), cp-T²C3 (lower left), and standard sequence-order controls, TC16b (upper right) and its [P12W]-mutant, T²C16b (lower right). All peptides display helical signatures, but the standard topology gives rise to significantly higher melting points. A comparison of the two left panels also indicates that the P12W mutation increases the fold stability of the circular permutant.

CSD (Chemical Shift Deviation) calculations and reference compounds

- The P12W mutation does not alter shift deviations for residues 1-14,16,19-20 of the Trp-cage but some additional ring current shifts do result: $P^{17}H\alpha$ (which appears at its coil value in Trp-cages) and $P^{18}H\delta3$ are both 0.5 ppm further upfield in the Trp²-cage, and W⁶H $\zeta2$ (upfield by 1.7 ppm vs 0.2 ppm in the corresponding Trp-cage). Additional ring current effects due to W12 are also observed at sites that were shielded by the W6 indole ring. For example, the P^{18} H α and H $\beta3$ resonances, which appear at 2.40 – 2.32 and 0.21 – 0.12 ppm, respectively [5b] in previous optimized Trp-cage species, move to 2.04 and – 0.42 ppm for this Trp²-cage. The CSD comparisons shown in Fig. 3 reflect the appropriate non-cyclic

reference compound for each mutated permutant structure. The direct CSD comparison of $cp-T^2C3b$ and (P12W)-T²C16b appears below (Fig. 2S).

Figure 2S. CSD comparisons for (P12W)-T²C16b and its circular permutant (cp-T²C3b). The upfield shift of H17 α seen in panel A, is not observed for species lacking the P12W mutation. The other large shifts in panel A are observed for all Trp-cage species. The large shifts in panel B are specifically associated with the added tryptophan (ring current effects).

The ring current shifts associated with the added Trp of the circular permutant (P19W) differ from those of (P12W)-TC16b only at a single P19 resonance. The shifts observed at P17H α (panel A) and at other sites (panel B) are analogous to those in the normal topology reference, but equally diminished in magnitude due to a lower fold population and contributions from species with a frayed C-terminus.

Comparisons of mutational $\Delta\Delta G$ values, circular permutants versus normal topology.

The additional stability data upon which $\Delta\Delta G_U$ increments for key mutations in both non-permuted and permuted Trp-cages are based are collected in Table S1. CD melting temperature are included where available. The sequences of the non-permuted reference compounds are shown here: DAYAQ WLKDG GPSSG RPPPS (TC10b), DAYAQ WLADG GPASG RPPPS (TC13b), DAYAQ WLAD**a** GPAS**a** RPPPS (TC16b), and NLYIQ WLKDG GPSSG RPPPS (TC5b).

Similar data for cyclo-TC1 [cyclo-(GDAYAQ WLADG GPSSG RPPPSG)] appears here: Tm = 95 (pH = 6 -7), = 84 °C (pH = 2.5), implying an acidification $\Delta\Delta G_U$ of -2.5 kJ/mol. The Tm for the corresponding non-cyclic control, GDAYAQ WLADG GPSSG RPPPSG, was 58 °C. All of these were determined from CD melts.

In Table S1, instances of decreased thermal stability associated with inclusion of glycines in the loop are indicated by yellow highlighting. The corresponding reference comparisons are shown with blue highlighting.

Additional insights from loop substitutions in the circular permutants. The alternative loop insertions examined provide numerous examples in which the inclusion of glycines can be seen to decrease the thermal robustness of the fold. An Aib residue provides an additional increment of thermal robustness versus an alanine. At low temperatures the most fold-stabilizing substitution for the original SGGDA loop was SDAAL, but the SDUAA loop provided the more stable fold at tempertures greater than 35 °C. The fold stabilizing effect of Aib insertion, presumably associated with its strong preference for helical phi/psi values, is maximal when Aib is the first helical residue and remains when it is moved to the second position; however, Aib is notably destabilizing as the 3rd helical residue ($\Delta\Delta$ G circa 6 kJ/mol versus the optimal 1st position). Studies in designed helices indicate that this is a general feature of Aib insertions into helices.

Construct	fraction folded (χ_{F}) at			Tm, NMR (CD)	∆G _∪ (kJ/	mol) at	ΔTm
	280 K	300 K	320 K		280 K	300 K	
cp-IC1	0.435	0.230	0.098	1	-0.609	-2.81	ret
at pH 2.5	0.20	0.12					
$\Delta\Delta G_U$					-2.61	-2.0	
cp-TC2 (=G10 a)	0.591	0.374	0.201	17	0.857	-1.20	16
$\Delta\Delta \dot{G}_{U}$					+1.47	+1.6	
S20A (= S13A)	0.615	0.392	0.245	20	1.09	-1.02	3
$\Delta \Delta G_{U}$					+0.23	+0.18	
S21A (= S14A)	0.434	0.316	0.202	4	-0.618	-1.80	-13
$\Delta \Delta G_{U}$					-1.47	-0.60	
P19W (= P12W)	0.786	0.586	0.336	35	3.03	0.809	18
$\Delta\Delta G_{U}$					+2.17	+2.0	

Table 1S. Mutational Effects in the Trp-cage and its Circular Permutants

cp-TC2 loop mutants							
WT loop = SGGDA	<mark>0.591</mark>	0.374	<mark>0.201</mark>	17	0.857	-1.20	ref
loop = SGNAA	0.584	0.338	0.178	15	0.786	-1.56	-2
loop = SGGNAA	0.496	0.279	0.138	6	-0.038	-2.21	-11
loop = SGGGGNAA	0.586	0.284	<mark>0.124</mark>	13	0.808	-2.15	-4
loop = SPADA	0.345	0.21	0.13	< 0	-1.49	-3.08	
loop = STADA (= cp-TC2b) $AAGu$	0.635	0.44	0.281	22.5(19)	1.29 +0.43	0.562 +0.64	3
$\log p = STUDA$	0.62	0.495	0.37	26.5	1.14	-0.05	9
loop = SGUDA	0.756	0.578	0.362	36	2.63	0.732	19
loop = SDAAA	0.648	0.528	0.42	36.5	1.42	0.26	19.5
loop = SDAUA	0.572	0.42	0.34	14 (18)	0.675	-0.75	~0
loop = SDAAL	0.791	0.635	0.462	43.5	3.10	1.29	26.5
$\Delta\Delta G_U$					+1.81	+2.5	
loop = SDAAU	0.18	0.11	0.09	<< 0	-3.53	-4.87	
loop = DGUDA	0.78	0.58	<mark>0.366</mark>	36.5	2.95	0.75	19.5
loop = GAUDA	0.506	0.356	<mark>0.243</mark>	8	0.056	-1.38	-9
cp-TC2c, loop = SDUAA	<mark>0.734</mark>	0.595	<mark>0.502</mark>	48(48.5)	2.36 +1.5	0.896 +2 1	31
				(50.4)	11.0	12.1	2
cp-T ² C3b	0.936	0.824	0.689	~63 (67)	6.24	3.59	48
= (P19W,S20A)-SDUAA							
$\Delta \Delta G_{U}$					+5.38	+4.8	
Non-cp-controls				(
TC5b	0.98	0.92	0.43	(42)	9.0		17
		0.45		(23)	(-4.5 est) (3.9 est)		15
TC10b	0.99	0.90	0.67	57 (56)	12.2		_
at pH2.5	~0.9	0.67	0.41	39 (41)	(-4.1 est)		-16
(S13A)		0.91		(62)	(1.8 est)		4
(S14A)	0.98	0.44	0.00	21	(-8.4 est)		-35
(G10 a)		0.97	0.86	(72.5)	(4.0 est)		16.5
TC13b				(68)			
(P12W)				(77)	(2.3 est)		9
TC16b		0.99	0.95	(83)	17.9		0
at pH2.5 (P12W)		0.90	0.00	(74)	(-2.5 est) (3.5 est)		- 9 14
(· · - · ·)	1	1		. ,	. /		

NMR Structure Ensemble Calculations.

Previously used procedures [5b, 11, 22] were employed to generate NMR ensembles for cp-T²C3b and (P12W)-T²C16b from the NOE intensities observed in $\tau_{mix} = 50$ ms and 80 ms, respectively, in NOESY spectra recorded at 800 and 750 MHz, respectively. Additional long-range constraints, and data that was used to determine which constraints were influenced by secondary NOEs came from longer τ_{mix} experiments. The chemical shifts and the NOE-derived constraints appear in Tables 5S and 6S. The resulting ensembles are compared in Figure 3S, immediately below. We replaced the Aib in cp-T²C3b with a glycine for the restrained dynamics runs (and deleted the NOE constraints for the Aib methyl groups). The two ensembles of accepted structures from CNS are shown below (Fig. 3S).

Figure 3S. (P12W)-TC16b (left panel) generated from 30/40 lowest energy structures. cp-T²C3b (right panel) ensemble generated from 32/40 lowest energy structures. Structure and violation statistics for the ensembles appear in Tables 2S and 3S.

We reinserted the methyl goups of the Aib unit for a final steepest descent minimization to produce the structures that have been deposited at the PDB; these structures do predict the observed NOE contacts with the Aib methyl groups. Views of this ensemble and that of (P12W)-TC16b appear in Fig. 4S.

Figure 4S. Stereo views of the above ensembles; the optimized standard-topology Trp-cage (P12W)- T^2C16b (top) and the optimized circular permutant cp- T^2C3b (below).

Type of constraint	Number	r.m.s deviation
Intraresidue	120	0.022 ± 0.004
Sequential	80	0.025 ± 0.006
i/i+n, n = 2-4	42	0.027 ± 0.016
i/i+n, $n \ge 5$	65	0.037 ± 0.002
Structure statistics ^a .		
E _{TOTAL} (kcal/mol)		-39.3 ± 1.21
E _{NOE} (kcal/mol)		$19.5 \hspace{0.1 in} \pm \hspace{0.1 in} 0.49$
E _{vdW} (kcal/mol)		-84.9 ± 1.1
Bond violations (Å)		3.29 ± 0.079
Angle violations (°)		19.9 ± 0.28
Improper torsion violati	ons (°)	2.87 ± 0.12
Convergence winthin fina	ll ensemble, atomic r.n	n.s deviations (Å) ^b :
Pairwise over the ensemb	le ((±s.e.)	
Backbone		0.03 ± 0.01
Heavy atom		0.36 ± 0.13

Table 2S. NMR structure statistics for the (P12W)- T^2C16b ensemble (30 accepted structures from 40 starts).

Table 3S. NMR structure statistics for the $cp-T^2C3b$ ensemble (32 accepted structures from 40 starts).

Type of constraint	Number	r.m.s deviation
Intraresidue	132	0.014 ± 0.003
Sequential	73	0.051 ± 0.043
i/i+n, n = 2-4	49	0.018 ± 0.015
i/i+n, $n \ge 5$	47	0.04 ± 0.064
Structure statistics ^{a.} .		
E _{TOTAL} (kcal/mol)		-64.9 ± 4.3
E _{NOE} (kcal/mol)		$4.18\ \pm 0.20$
E _{vdW} (kcal/mol)		-90.7 ± 4.0
Bond violations (Å)		3.10 ± 0.19
Angle violations (°)		17.4 ± 0.87
Improper torsion violation	ons (°)	1.15 ± 0.10
Convergence winthin final	l ensemble, atomic r.n	n.s deviations (Å) ^{b.} :
Pairwise over the ensembl	e ((±s.e.)	
Backbone		0.19 ± 0.06
Heavy atom		0.65 ± 0.16

^{a.} Values are mean \pm standard deviation. ^{b.} All convergence measures are over residues 3-19.

	$(P12W)-T^{2}$	C16b		-	cp-T ² C3b	i i i i i i i i i i i i i i i i i i i	
Residue	φ Φ	Ψ	χ^1	Residue	Φ	Ψ	χ^1
D1		112.6(105.2)	-118.8(76.7)				
A2	-117.0(75)	-45.1(31.2)		A9	-68.9(2.0)	-29.9(0.7)	
Y3	-66.4(3)	-50.1(2.4)	-151.5(0.6)	Y10	-61.2(0.6)	-35.2(0.2)	-168.7(2.0)
A4	-65.6(1.5)	-34.2(1.3)		A11	-69.7(1.5)	-53.2(0.3)	
Q5	-69.0(1.2)	-38.4(0.6)	178.1(2.8)	Q12	-60.3(0.7)	-35.5(1.0)	-152.3(1.1)
W6	-60.7(0.6)	-48.9(0.2)	179.2(0.4)	W13	-56.4(0.9)	-46.8(1.2)	179.7(0.9)
L7	-64.4(0.4)	-36.4(0.3)	-62.4(1.1)	L14	-62.4(1.1)	-42.9(1.4)	-68.0(0.3)
A8	-75.4(0.7)	-18.3(1.0)		A15	-59.7(1.4)	-31.8(2.1)	
D9	-88.8(1.0)	15.7(0.6)	-117.9(9.6)	D16	-87.3(3.7)	10.9(8.6)	-129.4(12.3)
a10	103.3(0.8)	-3.4(0.4)		a17	90.3(10.6)	7.4(9.1)	
G11	67.3(0.2)	-96.9(0.4)		G18	61.7(3.4)	-105.6(3.4)	
W12	-97.3(0.4)	10.8(1.6)	-82.0(0.3)	W19	-68.2(2.7)	-30.0(1.8)	-74.4(4.1)
A13	-85.5(1.6)	-31.8(0.4)		A20	-90.4(8.0)	36.8(17.4)	
S14	-62.9(0.7)	-29.6(0.7)	32.7(0.9)	S21	-93.4(12.5)		178.8(30.2)
a15	100.1(0.7)	-24.3(0.5)	89.3(86.5)				
R16	-86.0(0.4)	153.6(0.3)	80.1(1.1)	R1		133.6(8.6)	57.9(6.9)
P17	-83.5(0.4)	166.1(0.5)	5.0(0.4)	P2	-73.9(10.3)	164.0(5.4)	8.0(23.1)
P18	-62.8(0.8)	145.9(0.9)	17.8(0.5)	Р3	-53.4(3.9)	117.3(3.7)	1.4(17.3)
P19	-80.8(0.4)	142.2(12)	22.7(0.4)	P4	-81.5(1.4)	142.4(6.6)	30.7(0.6)
S20	-129.9(30)		57.2(80.2)				
cyclo-T	C1						
S20	-86(7)	-31(6)		S5	-57.7(4.9)	-44.9(2.8)	52.8(1.1)
G21	-74(8)	147(4)		D6	-57(6)	142(7)	-55(78)
G(-1)	-67(4)	-40(6)		U7	-70(7)	-38.3(1.5)	
D1	-70.0(4.0)	-43.0(3.0)		A8	-56.4(2.8)	-56.9(1.1)	

Table 4S. Dihedral angles statistics (\pm s.d.) for the NMR ensembles of (P12W)-T²C16b (30 structures)and cp-T²C3b (32 structures), as well as the loop of cyclo-TC1.

Additional dihedral angle comparisons for Trp-cages are given in M. Scian *et al.* [11]; these include the averages for all Trp-cages prior to the two additions shown above.

Table 5S. Chemical shifts and the NOE constraint list for (P12W)-T²C16b

Chemical shifts at 280K

#	Res		Ηα	Ηβ	Ηγ	Нδ	Hε	Нζ	Hη
1	Asp		4.252	3.153, 2.962					
2	Ala	8.311	4.246	1.488					
3	Tyr	8.849	3.952	3.185 ² , 3.529 ³		7.053	6.780		
4	Ala	8.311	4.083	1.572					
5	Gln	8.129	3.950	2.196, 2.121	2.395		7.881, 7.048		
6	Trp	8.033	4.096	3.033 ² , 3.444 ³		6.764	9.600, 6.814	5.732, 6.876	6.160
7	Leu	8.381	3.284	1.837^2 , 1.338^3	1.569	$0.968^1, 0.858^2$			
8	Ala	8.161	4.000	1.468					
9	Asp	7.953	4.531	2.660^2 , 2.764^3					
10	dAla	7.378	4.309	1.263					
11	Gly	8.393	0.309^2 , 3.013^3						
12	Trp	9.118	4.596	3.528, 3.182		7.628	10.583, 7.924	7.620, 7.213	7.340
13	Ala	7.806	4.351	1.482					
14	Ser	8.047	4.080	3.840					
15	dAla	7.452	4.519	1.613					
16	Arg	8.143	5.046	1.859, 1.733	1.729, 1.540	3.260, 3.156	7.651		
17	Pro		3.999	$1.927^2, 2.379^3$	2.065, 1.739	3.622 ² , 3.826 ³			
18	Pro		2.030	1.096 ² , -0.421 ³	1.543, 1.247	3.182, 2.290			
19	Pro		4.289	1.960^2 , 2.167^3	1.793, 1.735	2.863 ² , 3.097 ³			
20	Ser	7.938	4.140	3.772					

Distance constraints employed in genrating the NMR structure ensemble.

Residue #	Atom Name	Shift (ppm)	Residue #	Atom Name	Shift (ppm)	d (Å)	d– (Å)	$d+({\rm \AA})$
Intraresid	lue							
1	ha	4.21	1	hb2	3.11	2.80	0.72	0.66
1	hb1	2.95	1	ha	4.22	3.00	0.85	0.89
2	ha	4.25	2	hb#	1.49	2.50	0.27	0.24
3	hb2	3.08	3	hd1	7.04	2.41	0.21	0.51
3	hb1	3.14	3	hd2	7.04	2.47	0.26	0.53
3	ha	3.97	3	hb2	3.08	2.63	0.32	0.26
3	ha	3.97	3	hd1	7.04	3.20	0.34	0.48
3	ha	3.97	3	hb1	3.13	3.09	0.46	0.37
3	hb2	3.08	3	hn	8.75	2.90	0.57	0.47
3	hb1	3.13	3	hn	8.75	3.58	0.71	0.66
3	ha	3.97	3	hn	8.75	2.90	0.90	1.00
4	ha	4.08	4	hb#	1.57	2.35	0.23	0.22
4	hb#	1.57	4	hn	8.29	2.44	0.25	0.23
4	ha	4.07	4	hn	8.29	2.80	0.37	0.30
5	hg1	2.40	5	hb1	2.19	2.54	0.29	0.25
5	hb*	2.13	5	hn	8.04	2.69	0.34	0.27
5	ha	3.96	5	hn	8.04	2.76	0.36	0.29
5	hg#	2.40	5	he22	7.80	2.82	0.38	0.90
5	ha	3.95	5	hg1	2.40	2.83	0.38	0.30

5	ha	3.96	5	hb2	2.19	2.60	0.35	0.36
5	hg1	2.40	5	hn	8.04	3.53	0.48	0.78
5	hg2	2.40	5	he21	6.94	2.75	0.51	0.71
5	ha	3.96	5	he22	7.80	4.16	0.80	0.80
6	hb1	3.44	6	hn	7.99	2.47	0.26	0.23
6	hb2	3.04	6	hn	7.99	2.59	0.30	0.26
6	hb1	3.44	6	he3	6.82	2.68	0.33	0.27
6	hb2	3.03	6	hd1	6.77	2.68	0.33	0.27
6	ha	4.11	6	hd1	6.76	2.75	0.35	0.29
6	ha	4.11	6	hn	7.99	2.89	0.40	0.32
6	hb1	3 44	6	hd1	676	3.00	0.43	0.85
6	ha	5.11	6	hb2	0.70	2.50	0.10	0.10
6	ha		6	hb1		3 10	0.20	0.20
6	hh hh2	3.04	6	he3	6.82	3.10	0.20 0.47	0.20
6	ha	4 09	6	he3	6.82	4 30	0.85	0.07
7	ha	1.57	7	hd1#	0.02	2.60	0.05	0.50
7	hg	1.57	7	hd2#	0.95	2.00	0.35	0.54
7	hg	1.57	7	hn	8 35	2.00	0.45	0.04
7	hb2	1.57	7	hn	8 35	2.50	0.27	0.24
7	1102 bb2	1.82	7	1111 hd1#	0.05	2.05	0.32	0.20
7	1102 hh 1	1.02	7	1101#	0.95	2.00	0.32	0.57
7		1.54	7	1101#	0.95	2.08	0.55	0.37
7	na ba	5.20 2.28	7	1111 h.d2#	0.55	2.70	0.54	0.28
7	па 1.1.1	3.28	7	na2#	0.85	2.17	0.30	0.99
7	nb1	1.34	/	nn	8.35	2.85	0.39	0.95
7	nbi	1.34	/	nd2#	0.85	2.88	0.39	0.62
7	ha	3.28	7	hbl	1.33	2.50	0.35	0.36
7	ha	3.29	7	hb2	1.82	3.17	0.49	0.39
7	hb2	1.82	7	hd2#	0.85	3.27	0.52	0.72
7	hd1#	0.95	7	hn	8.35	3.35	0.54	0.74
7	ha	3.28	7	hd1#	0.95	3.38	0.56	1.50
7	ha	3.27	7	hg	1.57	3.40	0.56	0.46
7	hg	1.57	7	hb1	1.33	3.57	0.61	0.52
8	ha	4.00	8	hb	1.47	2.15	0.17	0.19
8	hb	1.47	8	hn	8.10	2.22	0.19	0.20
8	ha	4.00	8	hn	8.10	2.62	0.31	0.26
9	hb2	2.69	9	hn	7.88	2.54	0.29	0.25
9	ha	4.48	9	hn	7.88	2.84	0.38	0.31
9	ha		9	hb1		3.20	0.38	0.31
9	hb1	2.82	9	hn	7.88	2.85	0.39	0.91
10	ha	4.30	10	hb#	1.26	2.21	0.18	0.35
10	hb#	1.26	10	hn	7.36	2.43	0.25	0.73
10	ha	4.30	10	hn	7.36	3.12	0.47	0.38
11	ha2	0.33	11	hn	8.33	2.49	0.27	0.24
11	ha1	3.00	11	hn	8.33	2.64	0.32	0.26
12	hb2	3.18	12	hd1	7.62	2.36	0.23	0.82
12	ha	4.59	12	he3	7.92	2.62	0.31	0.76
12	hb1	3.54	12	he3	7.92	2.76	0.36	0.29
12	hb2	3.18	12	hn	8.98	2.50	0.44	0.35
12	ha	4.59	12	hn	8.98	2.92	0.54	0.44
12	hd1	7.62	12	hn	8.98	3.60	0.62	0.54
12	hb2	3.18	12	hz3	7.21	4.09	0.78	0.77
12	ha		12	hb2		3.10	0.10	0.10
12	ha		12	hb1		2.50	0.20	0.20
12	hh1	3.54	12	hn	8.98	3.26	0.52	0.42
12	hb2	3.53	12	hd1	7.62	2.69	0.14	0.80

i,

12	hb1	3.18	12	he3	7.92	3.16	0.18	0.99
13	hb#	1.48	13	hn	7.78	2.16	0.16	0.91
13	ha	4.34	13	hb#	1.47	2.23	0.19	0.20
13	ha	4.34	13	hn	7.78	2.69	0.33	0.27
14	ha	4.09	14	hb2	3.45	2.59	0.30	0.26
14	ha	4.09	14	hb1	3.87	2.67	0.33	0.27
14	ha	4.09	14	hn	8.00	2.73	0.35	0.28
14	hb1	3.86	14	hn	8.00	3.09	0.46	0.37
14	ha	4.08	14	hø	4.29	4.01	0.75	0.72
14	hg		14	hb2	,	2.75	0.35	0.42
14	hb1		14	hg		2.30	0.26	0.32
15	hb#	1.61	15	hn	7.43	2.22	0.19	0.70
15	ha	4 50	15	hb#	1.61	2.24	0.19	0.20
16	hb1	1.84	16	hn	8 10	2.63	0.15	0.33
16	hơ?	1.83	16	hn	8.10	2.05	0.35	0.63
16	ha	5.03	16	hb1	1.84	3.00	0.15	0.05
16	ha	5.03	16	hb1	1.04	2 40	0.15	0.25
16	hd2	3.05	16	hg1	1.04	2.40	0.10	0.25
16	hd1	3.17	16	hg?	1.55	2.00	0.30	0.29
16	hd1	3.18	16	hb1	1.55	2.49	0.27	0.00
16	ha	5.03	16	hn	1.7 4 8.10	2.08	0.39	0.32
16	hd?	3.05	16	hh2	1.74	2.95	0.42	0.55
16	hg2	1.56	16	1102 hn	1.74 8.10	2.90	0.31	0.55
16	hd1	3.17	16	ha?	1.84	2.70	0.27	0.47
16	hd?	3.17	10	ng2 hg1	1.04	2.79	0.40	0.32
16	1102 hh1#	5.20	10	hg1	1.55	2.00	0.29	0.30
10	11111# hh1#		10	hai		2.20	0.20	0.55
10	11111# bb1#		10	hdo		2.00	0.40	0.60
10	11111#	4.02	10	1102 hh 1	2 27	2.20	0.20	0.30
17	na	4.02	17	101 112	2.37	2.30	0.57	0.30
17	na 1. 12	4.01	17	112	1.75	3.00	0.40	0.37
17	hd2	3.62	17	hb2	1.75	3.00	0.20	0.21
17	na 1. 11	4.02	17	ng2	2.06	4.05	0.77	0.74
1/	nai	3.82	1/	nb1	2.37	4.00	0.23	0.26
18	na	2.06	18	nb2	1.10	2.80	0.22	0.34
18	hdl	2.34	18	hgl	1.22	2.34	0.24	0.25
18	ha	2.06	18	hbl	-0.36	2.30	0.45	0.36
18	hgl	1.22	18	hb2	1.10	3.01	0.37	0.37
18	hgl	1.23	18	hbl	-0.36	2.32	0.37	0.48
18	ha	2.06	18	hd2	3.18	3.88	0.71	0.66
18	hd2	3.18	18	hb2	1.09	3.95	0.24	0.29
18	hd1	2.34	18	hbl	-0.34	3.00	0.17	0.24
18	ha	2.06	18	hg1	1.23	4.55	0.92	1.07
18	hd1	2.34	18	hb2	1.10	4.00	0.75	0.72
18	hg2	1.55	18	hb2	1.10	2.50	0.47	0.38
19	ha	4.28	19	hb1	1.95	2.30	0.49	0.40
19	hb1	1.96	19	hg1	1.78	2.30	0.27	0.47
19	hd2	2.85	19	hg2	1.73	2.30	0.27	0.47
19	hb2	2.14	19	hg2	1.73	2.31	0.29	0.42
19	hd1		19	hb1		3.00	0.26	0.23
19	hd1	3.08	19	hb2	2.15	4.46	0.90	1.01
20	ha	4.15	20	hb2	3.76	2.50	0.37	0.37
20	ha	4.14	20	hn	7.81	3.29	0.52	0.43
20	hb#	3.77	20	hn	7.81	3.36	0.55	0.45
i+1								
- <u>-</u> -	hh1	3 1 3	4	hn	8 29	3.01	0.64	0 35
5	1101	5.15	4	1111	0.27	5.01	0.04	0.55

3	hb2	3.08	4	hn	8.28	3.16	0.48	0.39
3	ha	3.96	4	hn	8.28	3.56	0.61	0.52
4	ha	4.08	3	hd2	7.04	3.52	0.60	0.50
4	hn	8.29	3	hd2	7.04	3.57	0.61	0.52
4	hn	8.29	3	hn	8.75	3.42	0.66	0.59
4	hb#	1 57	5	hn	8.04	2.96	0.42	0 34
4	hn	8 29	5	hn	8.04	2.90	0.42	0.34
т 1	ha	4.09	5	hn	8.04	2.97	0.72	0.54
4 5	ha	4.08	3	1111 bb#	0.04 1 57	3.91	0.72	0.07
5	lia	5.90	4	10#	1.37	4.05	0.77	0.74
с С	na	3.96	6	hn	7.99	3.56	0.25	0.36
5	hbl	2.12	6	hn	7.99	2.60	0.31	0.41
5	hg#	2.40	6	hn	7.99	4.11	0.78	0.77
6	hn	7.99	7	hn	8.35	2.68	0.33	0.27
6	hb1	3.44	7	hn	8.35	2.86	0.39	0.31
6	hb2	3.04	7	hn	8.35	3.30	0.53	0.43
7	hg	1.57	6	he3	6.82	2.17	0.33	0.37
7	hd2#	0.85	6	he3	6.82	2.70	0.34	0.98
7	hd2#	0.85	6	hz3	6.86	2.72	0.34	0.58
7	hn	8.35	6	he3	6.82	3.00	0.43	0.35
7	ha	3.28	6	he3	6.82	3.40	0.56	0.46
7	hd1#	0.95	6	he3	6.82	3.00	0.49	1.20
7	hø	1.57	6	hz3	6.86	3.66	0.64	0.56
, 7	hb?	1.87	6	he3	6.82	3.78	0.68	0.61
7	hd2#	0.85	6	hb2	6.14	3.63	0.00	0.01
7	hd1#	0.85	6	hr2	6.95	3.03 4.10	0.70	1.12
7	141#	0.93	0	112.5	0.83	4.19	0.81	1.12
/		1.34	0	nes	0.82	4.41	0.88	0.97
/	hbl	1.34	8	hn	8.10	3.30	0.53	0.43
7	ha	3.27	8	hn	8.10	3.48	0.58	0.49
7	hd1#	0.95	8	hn	8.10	4.12	0.79	1.20
8	hn	8.10	7	hn	8.35	2.67	0.33	0.27
8	hn	8.11	9	hn	7.88	2.71	0.34	0.28
8	hb	1.47	9	hn	7.88	2.74	0.35	0.29
8	ha	4.00	9	hn	7.88	3.56	0.61	0.52
9	ha	4.49	8	hb	1.47	4.11	0.78	0.77
9	ha	4.49	10	hn	7.35	3.03	0.60	0.51
9	hb2	2.70	10	hn	7.36	3.93	0.73	0.68
9	hb1	2.82	10	hn	7.36	4.20	0.81	0.83
10	hn	7.36	9	hn	7.88	2.70	0.34	0.28
10	hn	7.36	11	hn	8 33	2 31	0.21	0.21
10	hb#	1.26	11	hn	8 33	3.06	0.45	0.21
10	ha	1.20	11	hn	8 33	3.00	0.45	0.00
10	hh#	4.29	11	hn	8.55	J.J4 4 50	0.04	1.52
10	110#	0.22	14	1111	8.00 7.25	4.30	0.91	1.55
11	na2	0.33	10	hn	7.55	5.95	0.75	0.69
11	hal	2.99	10	hn	7.35	4.14	0.79	0.79
11	hal	2.99	12	hn	8.98	2.60	0.38	0.31
11	ha2	0.33	12	hn	8.98	3.12	0.47	0.38
11	ha1	2.99	12	hd1	7.62	4.36	0.86	0.93
12	ha	4.59	11	ha2	0.33	4.41	0.88	0.97
12	hb2	3.18	13	hn	7.78	3.51	0.60	0.80
12	ha	4.59	13	hn	7.78	3.56	0.61	0.52
12	hb1	3.53	13	hn	7.78	3.73	0.67	0.59
13	hn	7.78	12	hn	8.98	2.70	0.27	0.25
13	hn	7.78	14	hn	8.00	2.55	0.49	0.25
13	hb#	1.47	14	hn	8.00	3.33	0.54	1.50
13	ha	4.34	14	hn	8.00	3.37	0.55	0.45

14	ha	4.09	15	hn	7.43	3.35	0.55	0.45
14	hb1	3.87	15	hn	7.43	4.12	0.79	0.78
14	hb2	3.46	15	hn	7.43	4.22	0.82	0.84
15	hn	7.43	14	hn	8.00	2.58	0.30	0.25
15	hb#	1.61	16	hn	8.09	3.03	0.44	1.25
15	ha	4.50	16	hn	8.10	3.43	0.57	0.47
16	hn	8.09	15	hn	7.43	2.45	0.26	0.23
16	hg2	1.54	15	hn	7.43	3.80	0.59	0.49
16	hg2	1.84	15	hn	7.44	4.20	0.60	0.75
16	ha	5.03	17	hd1	3.82	2.30	0.31	0.21
16	ha	5.03	17	hd2	3.62	2.79	0.27	0.24
16	hb2	1.84	17	hd2	3.62	2.95	0.38	0.31
16	hg1	1.84	17	hd2	3.62	3.60	0.39	0.31
17	hd1	3.82	16	hn	8 10	4 05	0.77	0.75
17	hd?	3.62	16	hn	8.09	4 42	0.88	0.75
17	ha	4.02	18	hd1	2 34	2.46	0.00	0.23
17	ha	4.02	18	hd2	2.54	2.40	0.20	0.25
17	hd1	4.02	10	ho	2.06	2.55	0.29	0.25
19	hd2	2.00	10	ha	2.00	2.10	0.24	0.22
19	hd2	2.85	10	lla hh2	2.00	2.30	0.27	0.24
19	11d2	2.83	10	102	1.09	2.39	0.50	0.40
19	nd I	3.08	18	nb2	1.09	3.73	0.66	0.59
19	nd2	2.85	18	nbl	-0.35	3.94	0.73	0.69
19	hdl	3.09	18	hbl	-0.36	4.09	0.78	0.77
19	ha	4.28	20	hn	7.81	2.21	0.18	0.19
19	hb1	1.96	20	hn	7.81	3.54	0.61	0.51
19	hb2	2.14	20	hn	7.81	3.71	0.66	0.58
i i+n n-	2-4							
1, 1±11, 11− ?	⊿- - ha	1 25	5	hb1	2 1 2	3.00	0.59	0.50
2	ha	4.23	5	hn	2.12	3.00	0.59	0.50
2	hh#	4.24	5	hn	8.04 8.04	2.90	0.00	1.50
2	110#	1.47	5	lill hal	0.04 2.40	5.80 4.00	0.09	0.76
2	ha	4.24	5	ng i hh i	2.40	4.09	0.70	0.70
3	na	3.97	0	nd1	5.44 2.04	3.47	0.58	0.49
3	na	3.97	0	1.2	5.04	3.00	0.62	0.55
3	ha	3.97	6	he3	6.82	3.73	0.67	0.59
3	ha	3.96	7	hn	8.35	3.66	0.64	0.56
4	ha	4.08	7	hdl#	0.95	2.84	0.38	0.61
4	ha	4.08	7	hn	8.35	3.20	0.50	0.40
4	ha	4.08	7	hb2	1.83	3.28	0.52	0.42
4	ha	4.08	7	hb1	1.34	3.62	0.63	0.94
5	ha	3.95	8	hb	1.47	2.52	0.28	0.24
5	ha	3.96	8	hn	8.10	3.21	0.50	0.40
5	ha	3.95	9	hn	7.88	4.18	0.81	0.82
6	ha	4.11	9	hb2	2.69	3.10	0.48	0.35
6	ha	4.10	9	hb1	2.83	3.50	0.33	0.43
6	ha	4.11	9	hn	7.88	3.48	0.59	0.49
7	hd1#	0.95	3	he2	6.77	2.95	0.42	1.20
7	hd2#	0.85	3	he2	6.77	3.06	0.45	1.20
7	hd1#	0.95	3	hd2	7.04	3.14	0.48	1.20
7	hd2#	0.86	3	hd2	7.04	4.03	0.76	1.20
7	ha	3.28	10	hn	7.35	3.67	0.65	0.56
7	ha	3.28	11	hn	8.32	2.90	0.40	0.32
7	ha	3.28	11	ha2	0.33	3.02	0.66	0.28
7	ha	3.28	11	ha1	2.99	3.89	0.72	0.66
7	hd2#	0.85	11	ha2	0.34	4.00	0.95	1.20
8	hb	1.47	5	he21	6.94	3.78	0.68	0.61
-			-		··· ·			

8	ha	4.01	10	hn	7.35	3.59	0.62	0.53
8	hb	1.47	10	hn	7.36	3.95	0.74	0.69
9	hb2	2.69	6	hd1	6.76	4.72	0.58	0.67
9	hn	7.88	11	hn	8.34	3.58	0.62	0.53
9	hb1	2.82	11	hn	8.33	4.12	0.45	0.65
9	hb2	2.70	11	hn	8.33	3.90	0.47	0.65
10	ha	4 30	14	hn	8.00	3.60	0.37	0.50
10	hd hb#	1.36	1/	hn	8.00	4 50	0.91	1.53
10	hal	3.00	7	hd2#	0.00	3.67	0.51	1.55
11	ha1	2.00	13	hn	0.05 7 78	3.07	0.05	0.71
11	ha	2.99	13	hn	2.00	2.53	0.75	0.71
12	lia h a	4.39	14	1111	0.00 7.42	2.02	0.05	0.55
12	na h a	4.00	15	1111 1	7.45	5.92 2.29	0.72	0.08
15	na	4.34	15	hn 1	7.45	5.58	0.55	0.40
14	ha	4.08	16	hn	8.10	3.52	0.32	0.73
14	hbl	3.87	16	hn	8.10	4.25	0.83	0.86
15	hb#	1.61	12	he3	7.92	3.41	0.56	0.46
15	ha	4.50	12	he3	7.91	4.37	0.87	0.94
i. i±n. n >	>5							
3	_ C ha	3 97	19	hd2	2.85	3.06	0.58	0.48
3	ha	3.97	19	hg2	1.73	2.70	0.51	0.52
6	hh2	6.14	12	hz^2	7.62	2.65	0.39	0.71
6	hz?	5.76	12	hz2	7.62 7.62	3.80	0.42	0.93
6	hz2	5.76	12	he3	7.02	3.54	0.42	0.55
6	hb2	5.70	12	hn	8.08	4.05	0.70	0.04
6	hal	0.13	12	hn	0.90 9.10	4.05	0.63	0.80
6	hd1	9.37	10	liii hn	8.10 8.10	5.04	0.04	0.55
0	liu i	0.77	10	1111 1-1-2#	0.10	4.44	0.69	0.99
0	na		10	nn2#		2.60	0.50	0.60
6	hel		16	0		2.00	0.10	0.20
6	nel		16	C		4.00	0.25	0.35
9	hbl		16	hh1#		3.80	0.60	0.80
12	ha	4.60	6	he1	9.57	3.50	0.38	0.77
12	ha	4.59	6	hh2	6.14	3.95	0.80	0.80
14	hb1	3.87	9	hb1	2.81	3.47	0.58	0.49
14	hb2	3.45	9	hb1	2.81	3.66	0.64	0.56
14	hb1	3.86	9	hb2	2.69	3.93	0.73	0.68
14	hb2	3.45	9	hb2	2.69	4.00	0.75	0.72
16	hh2#		5	hg1		3.40	0.30	0.40
16	hg1	1.55	6	hd1	6.77	2.63	0.25	0.33
16	hg1	1.84	6	he1	9.57	3.15	0.38	0.48
16	hd1	3.15	6	hd1	6.77	3.46	0.58	0.48
16	hd2	3.27	6	hd1	6.76	4.23	0.82	0.85
16	hg2	1.84	6	hd1	6.76	2.55	0.29	0.25
16	he		6	hd1		3.19	0.49	0.40
17	ha	4.02	6	hz2	5.76	3.39	0.65	0.57
17	ha	4.02	6	he1	9.57	3.36	0.34	0.60
17	hb1	2.35	12	hh2	7.34	2.10	0.54	0.44
17	hb1	2.35	12	hz2	7.62	3.43	0.57	0.47
17	ha	4.02	12	hz3	7.21	3.52	0.60	0.50
17	ha	4.02	12	he3	7.92	3.77	0.68	0.61
17	hb1	2.35	12	hz3	7.21	3.77	0.68	0.61
17	hb2	1.74	12	hh2	7.34	4.19	0.81	0.83
17	hb2	1.75	12	hz3	7.21	4.24	0.83	0.85
17	<u>-</u>	4.01	12	hz2	7.62	4.33	0.86	0.91
18	hb2	1.10	3	he1	6.77	3.24	0.51	0.41
18	hb1	-0.35	3	he1	677	3 30	0.53	0.43
10	1101	0.55	5	1101	0.11	2.50	0.00	0.70

```
Electronic Supplementary Material (ESI) for RSC Advances This journal is \textcircled{} The Royal Society of Chemistry 2013
```

110							
nd2	1.10	3	hd1	7.04	3.62	0.63	0.54
hb1	-0.35	3	hd1	7.04	3.95	0.74	0.69
hg1	1.22	3	he1	6.77	4.20	0.81	0.83
hd1	2.34	6	hz2	5.76	2.49	0.37	0.30
ha	2.06	6	hd1	6.77	3.23	0.47	0.78
ha	2.06	6	he1	9.57	3.74	0.67	0.59
hd1	2.34	6	hh2	6.14	3.83	0.76	0.73
hg1	1.23	6	hh2	6.14	3.89	0.78	0.76
hb1	-0.35	6	hh2	6.13	3.93	0.79	0.79
hb1	-0.35	6	hz3	6.86	4.13	0.79	0.79
hd1	2.35	6	he1	9.57	4.23	0.32	0.45
hb1	-0.35	6	hz2	5.76	3.99	0.84	0.88
hb1	-0.35	6	he3	6.82	4.37	0.87	0.94
ha	2.06	6	he3	6.82	4.42	0.88	0.97
hg1	1.22	6	hz2	5.76	3.88	0.81	0.82
hg1	1.22	12	hz2	7.62	3.96	0.74	0.70
hb1	1.96	2	hb#	1.49	3.82	0.69	0.63
hb2	2.15	2	hb#	1.49	3.85	0.70	0.64
hd2	2.85	3	hd1	7.04	2.98	0.43	0.34
hd2	2.84	3	he1	6.77	3.18	0.49	0.39
hg2	1.79	3	hd1	7.04	3.51	0.60	0.50
hb1	1.96	3	hd1	7.04	3.70	0.57	0.94
	hb2 hb1 hg1 hd1 ha hd1 hb1 hb1 hb1 hb1 hb1 hb1 hb1 hb1 hb1 hb	hb2 1.10 hb1 -0.35 hg1 1.22 hd1 2.34 ha 2.06 ha 2.06 hd1 2.34 hg1 1.23 hb1 -0.35 hb1 1.22 hg1 1.22 hb1 1.96 hb2 2.15 hd2 2.84 hg2 1.79 hb1 1.96	hb21.103hb1 -0.35 3hg1 1.22 3hd1 2.34 6ha 2.06 6ha 2.06 6hd1 2.34 6hg1 1.23 6hb1 -0.35 6hb1 1.22 6hg1 1.22 12hb1 1.96 2hb2 2.15 2hd2 2.85 3hd2 2.84 3hg2 1.79 3hb1 1.96 3	hb21.103hd1 $hb1$ -0.35 3hd1 $hg1$ 1.22 3he1 $hd1$ 2.34 6hz2 ha 2.06 6hd1 ha 2.06 6he1 $hd1$ 2.34 6hh2 $hg1$ 1.23 6hh2 $hb1$ -0.35 6hh2 $hb1$ -0.35 6he1 $hb1$ -0.35 6he2 $hb1$ -0.35 6he2 $hb1$ -0.35 6he3 $hg1$ 1.22 6hz2 $hb1$ 1.96 2hb# $hb2$ 2.15 2hb# $hd2$ 2.85 3hd1 $hd2$ 2.84 3he1 $hg2$ 1.79 3hd1 $hb1$ 1.96 3hd1	hb21.103hd17.04hb1 -0.35 3hd17.04hg1 1.22 3he1 6.77 hd1 2.34 6hz2 5.76 ha 2.06 6he1 9.57 hd1 2.34 6hh2 6.14 hg1 1.23 6hh2 6.14 hg1 1.23 6hh2 6.14 hb1 -0.35 6hh2 6.13 hb1 -0.35 6he1 9.57 hb1 -0.35 6he2 5.76 hb1 -0.35 6he2 5.76 hb1 -0.35 6he3 6.82 ha 2.06 6he3 6.82 ha 2.06 6he3 6.82 hg1 1.22 12 hz2 7.62 hb1 1.96 2 hb# 1.49 hb2 2.15 2 hb# 1.49 hb2 2.15 2 hb# 1.49 hd2 2.84 3 he1 6.77 hg2 1.79 3 hd1 7.04 hb1 1.96 3 hd1 7.04	h021.105 $hd1$ 7.043.02 $hb1$ -0.35 3 $hd1$ 7.04 3.95 $hg1$ 1.22 3 $he1$ 6.77 4.20 $hd1$ 2.34 6 $hz2$ 5.76 2.49 ha 2.06 6 $hd1$ 6.77 3.23 ha 2.06 6 $he1$ 9.57 3.74 $hd1$ 2.34 6 $hh2$ 6.14 3.83 $hg1$ 1.23 6 $hh2$ 6.14 3.89 $hb1$ -0.35 6 $ha2$ 6.86 4.13 $hb1$ -0.35 6 $he1$ 9.57 4.23 $hb1$ -0.35 6 $he2$ 5.76 3.99 $hb1$ -0.35 6 $he3$ 6.82 4.37 ha 2.06 6 $he3$ 6.82 4.37 ha 2.06 6 $he3$ 6.82 4.42 $hg1$ 1.22 6 $hz2$ 5.76 3.88 $hg1$ 1.22 12 $hz2$ 7.62 3.96 $hb1$ 1.96 2 $hb#$ 1.49 3.82 $hb2$ 2.15 2 $hb#$ 1.49 3.85 $hd2$ 2.84 3 $he1$ 6.77 3.18 $hg2$ 1.79 3 $hd1$ 7.04 3.70	hb21.105 $hd1$ 7.04 3.62 0.65 $hb1$ -0.35 3 $hd1$ 7.04 3.95 0.74 $hg1$ 1.22 3 $he1$ 6.77 4.20 0.81 $hd1$ 2.34 6 $hz2$ 5.76 2.49 0.37 ha 2.06 6 $hd1$ 6.77 3.23 0.47 ha 2.06 6 $he1$ 9.57 3.74 0.67 $hd1$ 2.34 6 $hh2$ 6.14 3.83 0.76 $hg1$ 1.23 6 $hh2$ 6.14 3.89 0.78 $hb1$ -0.35 6 $hh2$ 6.13 3.93 0.79 $hb1$ -0.35 6 $he2$ 6.86 4.13 0.79 $hb1$ -0.35 6 $he2$ 5.76 3.99 0.84 $hb1$ -0.35 6 $he3$ 6.82 4.37 0.87 ha 2.06 6 $he3$ 6.82 4.42 0.88 $hg1$ 1.22 6 $hz2$ 5.76 3.88 0.81 $hg1$ 1.22 6 $hz2$ 5.76 3.88 0.81 $hg1$ 1.22 12 $hz2$ 7.62 3.96 0.74 $hb1$ 1.96 2 $hb#$ 1.49 3.85 0.70 $hd2$ 2.85 3 $hd1$ 7.04 2.98 0.43 $hd2$ 2.84 3 $he1$ 6.77 3.18 0.49

Table 6S. Chemical shifts and the NOE constraint list for $cp-T^2C3b$

Chemical shifts at 280K

#	Res		Hα	Нβ	Ηγ	Нδ	Нε	Нζ	Hη
1	Arg		4.509	1.979, 1.821	1.936, 1.645	3.173	7.421		
2	Pro		4.006	1.724, 2.422	2.101, 2.007	3.526, 3.811			
3	Pro		2.262	1.12, -0.07	1.454, 1.646	3.237, 2.548			
4	Pro		4.336	1.956, 2.164	1.794, 1.735	2.711, 3.054			
5	Ser	8.229	4.189	3.837, 3.764					
6	Asp	7.852	4.511	2.716, 2.618					
7	Aib	8.769		1.419					
8	Ala	8.338	4.239	1.500					
9	Ala	8.272	4.474	1.542					
10	Tyr	8.545	3.931	3.183, 3.119		7.011	6.754		
11	Ala	8.417	4.125	1.585					
12	Gln	8.164	3.955	2.181, 2.10	2.407		8.027, 7.048		
13	Trp	7.964	4.120	2.997, 3.515		6.752	9.214, 6.817	6.093, 6.876	6.530
14	Leu	8.458	3.245	1.725, 1.433	1.512	0.940, 0.880			
15	Ala	7.924	3.991	1.466					
16	Asp	8.099	4.454	2.711, 2.801					
17	dAla	7.290	4.328	1.225					
18	Gly	8.187 0.6	545, 2.807						
19	Trp	8.767	4.627	3.517, 3.166		7.517	10.53, 7.849	7.584, 7.243	7.345
20	Ala	7.851	4.498	1.406					
21	Ser	7.580	4.047	3.469, 3.861					

Distance constraints employed in genrating the NMR structure ensemble.

Residue #	Atom Name	Shift (ppm)	Residue #	Atom Name	Shift (ppm)	d (Å)	d- (Å)	d+ (Å)
Intraresidue	(i.i) constr	aints						
10	he#	6.76	10	hd#	7.01	1.96	0.06	1.02
10	hb2	3.11	10	hd#	7	2.48	0.25	0.65
10	hb2	3.12	10	hn	8 54	2.56	0.29	0.25
10	hb1	3 19	10	hn	8 54	2.7	0.34	0.28
10	hb1	3.19	10	hd#	7	2.71	0.32	0.69
10	ha	3.10	10	hb1	32	2.71	0.43	0.34
10	ha	3.94	10	hb1	3.13	2.90	0.37	0.34
10	ha	3.94	10	hd1	7	3.12	0.45	0.32
10	ha	3.94	10	hn	, 8 54	3.12	0.49	0.70
10	ha	1 1 1 J	10	hh#	16	2 53	0.18	0.32
11	hb#	1 59	11	hn	8.41	2.35	0.10	0.22
11	ha	4.13	11	hn	0.41 8.41	2.00	0.39	0.20
11	ha#	15 2 /	12	hh?	2.18	2.07	0.32	0.31
12	hg#	2.4	12	he#	2.10	2.40	0.2	0.2
12	ha	3.96	12	hb1	2.1	2.37	0.21	0.33
12	ha	3.96	12	hn	2.1 8.15	2.78	0.25	0.22
12	hh2	2.50	12	hn	8.15	2.04	0.20	0.23
12	1102 hb1	2.19	12	hn	0.1J 8 15	2.52	0.28	0.24
12	ho	2.1	12	hb2	0.1J 2.10	2.02	0.31	0.20
12	lla bo	3.97	12	1102 ha#	2.19	2.71	0.34	0.20
12	lla bo	2.90	12	ng# bo#	2.4 8.01	2.04	0.38	0.51
12	lla ha?	5.90 2.4	12	he	0.01 0.15	5.54 2.79	0.0	0.51
12	ngo ha2	2.4	12	lill ha?	0.13 6.92	3.78	0.08	0.01
15	11Z.5	0.88	13	nes 1	0.82	2.2	0.2	0.34
13	1101 1-1-2	5.52	13	nn	/.90	2.33	0.22	0.21
13	nn2	0.54	13	nz3	0.88	2.41	0.25	0.62
13	nb2	5	13	nn	/.96	2.5	0.27	0.24
13	nz2	6.1	13	nn2	6.53	2.5	0.27	0.64
13	hdl	6.76	13	hel	9.21	2.6	0.31	0.66
13	ha	4.12	13	hn	7.95	2.65	0.32	0.27
13	hb2	3	13	hdl	6.75	2.66	0.32	0.47
13	hbl	3.52	13	he3	6.81	2.78	0.36	0.49
13	ha	4.12	13	hb2	3	2.82	0.38	0.3
13	ha	4.12	13	hdl	6.75	2.92	0.41	0.53
13	ha	4.14	13	hbl	3.54	3.04	0.45	0.36
13	hz2	6.1	13	hel	9.21	3.11	0.47	0.77
13	hb2	3	13	he3	6.81	3.73	0.66	0.79
13	hbl	3.52	13	hdl	6.75	3.81	0.69	0.82
14	hb2	1.73	14	hn	8.45	2.64	0.25	0.23
14	hg	1.52	14	hn	8.45	2.55	0.29	0.25
14	ha	3.25	14	hn	8.45	2.69	0.33	0.27
14	ha	3.25	14	hb1	1.44	2.51	0.34	0.28
14	hb1	1.44	14	hn	8.45	3.31	0.37	0.3
14	ha	3.24	14	hb2	1.71	3.08	0.39	0.31
14	ha	3.25	14	hd2#	0.88	2.74	0.37	0.31
14	ha	3.25	14	hg	1.51	3.39	0.62	0.53
14	hb2	1.73	14	hd2#	0.88	3.72	0.56	0.45
14	ha	3.25	14	hd1#	0.93	4.09	0.58	0.67
14	hd2#	0.88	14	hn	8.45	3.54	0.62	0.74
14	hd1#	0.94	14	hn	8.45	3.49	0.54	0.76
15	ha	3.98	15	hb#	1.45	2.28	0.09	0.28
15	hb#	1.46	15	hn	7.92	2.57	0.2	0.22
15	ha	3.98	15	hn	7.91	2.66	0.33	0.27

16	hb2	2.71	16	hn	8.09	2.52	0.28	0.24
16	ha	4.46	16	hb1	2.79	2.93	0.41	0.33
16	hb1	2.8	16	hn	8.09	3.28	0.52	0.42
16	ha	4.45	16	hn	8.08	3.35	0.54	0.45
16	ha	4.46	16	hb2	2.72	3.03	0.56	0.49
17	ha	4.34	17	hb#	1.22	2.36	0.16	0.27
17	ha	4 33	17	hn	7.28	2.71	0.28	0.24
17	hb#	1.22	17	hn	7.28	3.02	0.34	0.29
18	ha1	0.66	18	hn	8.19	2.85	0.35	0.29
18	ha?	2.81	18	hn	8.18	2.33	0.3	0.29
10	hh2	7 35	10	hz?	7.58	2.55	0.18	0.59
19	hd1	7.55	19	he1	10.52	2.17	0.10	0.57
19	hz3	7.37	19	he3	7.83	2.5	0.21	0.63
10	ha	1.25	10	he3	7.83	2.43	0.25	0.05
19	11a bb2	4.04	19	he2	7.84	2.7 4 1	0.3	0.45
19	1102 hb1	3.31	19	hd1	7.04	4.1	0.70	0.01
19	IIU1 hh1	3.17	19	hn	7.30 9.75	2.62	0.37	0.5
19		5.17	19	1111 1-1-1	8.73 2.10	5.02 2.6	0.41	0.55
19	na	4.65	19	nbi	3.19	2.0	0.27	0.31
19	na	4.64	19	nn 12	8.75	2.54	0.48	0.38
19	hbl	3.17	19	he3	7.84	3.19	0.49	0.6
19	ha	4.63	19	hb2	3.51	3.27	0.52	0.42
19	hdl	7.57	19	hn	8.75	3.46	0.58	0.68
19	hb2	3.52	19	hd1	7.56	2.69	0.59	0.69
19	hb2	3.52	19	hn	8.75	2.72	0.43	0.48
19	ha	4.64	19	hd1	7.56	4.23	0.82	1.05
1	hd#	3.18	1	he	7.42	2.41	0.25	0.22
1	ha	4.51	1	hb*	1.93	2.75	0.45	0.36
1	ha	4.51	1	hb*	1.96	2.7	0.5	0.4
1	hg2	1.65	1	he	7.41	3.51	0.6	0.5
1	hg1	1.82	1	he	7.41	3.56	0.61	0.52
1	hb*	1.93	1	he	7.41	3.95	0.73	0.69
1	ha	4.51	1	hg2	1.63	3.99	0.75	0.71
1	ha	4.51	1	hg1	1.81	4.25	0.83	0.86
20	ha	4.48	20	hb#	1.4	2.36	0.13	0.19
20	ha	4.49	20	hn	7.85	2.69	0.27	0.39
20	hb#	1.4	20	hn	7.84	2.82	0.27	0.26
21	ha	4.05	21	hb1	3.87	2.4	0.24	0.22
21	ha	4.05	21	hb2	3.46	2.73	0.35	0.28
21	ha	4.06	21	hn	7.58	2.85	0.38	0.31
21	hb2	3.48	21	hn	7.57	3.11	0.47	0.37
21	hb1	3.87	21	hn	7 57	3 19	0.65	0.57
2	hd1	3.82	2	hø?	2.11	3.01	0.44	0.35
2	hd1	3.82	2	hg1	2.01	2 77	0.49	0.39
$\frac{2}{2}$	ha	4 01	$\frac{2}{2}$	hb?	17	3.26	0.51	0.37
2	hd2	3 52	2	hg1	2.02	3 31	0.53	0.12
2	hd2	3.52	2	hb2	1.72	3.76	0.55	0.45
2	hd1	3.55	2	hb1	2.41	J.70 A 1	1	1 20
2	he	J.81 4.01	2	hd1	2.41	4.1	0.21	0.26
2	lla ha	4.01	2	hd2	5.24 2.55	2.51	0.31	0.20
2	118	4.01	3	1.2	2.33	2.75	0.41	0.55
3 2	na2	2.54	3	ng2	1.45	2.07	0.46	0.37
3	nd I	3.24	3	ngi	1.66	2.33	0.27	0.38
3	hd2	2.56	3	hgl	1.66	3.02	0.33	0.44
3	ha	2.27	3	hb2	1.11	2.93	0.26	0.39
3	ha	2.26	3	hbl	-0.09	2.3	0.47	0.4
3	hg2	1.42	3	hb1	-0.08	3.01	0.39	0.43
3	hg1	1.66	3	hb1	-0.05	2.28	0.32	0.47
4	ha	4.34	4	hb1	2.15	2.59	0.3	0.25
4	hd1	3.06	4	hg1	1.78	2.58	0.4	0.32

4	hd2	2.72	4	hg2	1.73	2.48	0.49	0.39
4	hd2	2.71	4	hg1	1.79	3.33	0.54	0.44
4	ha	4.34	4	hb2	1.95	3.1	0.56	0.46
4	hd1	3.04	4	hg2	1.71	3.41	0.56	0.47
4	hd1	3.06	4	hb1	2.15	3.57	0.61	0.52
4	hd2	2.71	4	hb2	1.95	4	0.75	0.71
4	hd2	2.71	4	hb1	2.15	4.18	0.81	0.82
5	ha	4.2	5	hb1	3.76	2.6	0.31	0.26
5	ha	4.19	5	hb2	3.83	2.85	0.32	0.37
5	ha	4.19	5	hn	8.21	2.69	0.33	0.27
5	hb1	3.77	5	hn	8.22	2.73	0.51	0.41
5	hb2	3.84	5	hn	8.22	3.21	0.53	0.43
6	ha	4.51	6	hn	7.85	2.88	0.38	0.33
6	hb2	2.62	6	hn	7.84	2.69	0.34	0.28
6	hb1	2.72	6	hn	7.84	2.72	0.35	0.28
6	ha	4.51	6	hb2	2.62	2.77	0.36	0.29
6	ha	4.52	6	hb1	2.71	2.55	0.23	0.21
8	ha	4.24	8	hb#	1.5	2.56	0.26	0.37
8	ha	4.24	8	hn	8.33	2.67	0.33	0.32
8	hb#	1.5	8	hn	8.33	2.4	0.14	0.2
9	ha	4.47	9	hb#	1.54	2.48	0.16	0.21
9	ha	4.47	9	hn	8.26	2.62	0.31	0.26
9	nb#	1.54	9	nn	8.26	2.74	0.25	0.24
i, i±1								
10	hn	8.53	11	hn	8.4	2.68	0.27	0.24
10	hb1	3.19	11	hn	8.41	2.96	0.42	0.33
10	hb2	3.12	11	hn	8.4	3.8	0.69	0.62
10	ha	3.94	11	hn	8.41	3.76	0.69	0.64
11	hn	8.43	10	hd#	7	3.65	0.62	0.94
11	ha	4.13	10	hd#	7	4.06	0.75	1.11
11	hb#	1.59	12	hn	8.15	3.12	0.37	0.31
11	ha	4.13	12	hn	8.15	3.55	0.61	0.51
12	hn	8.16	11	hn	8.41	2.89	0.4	0.32
12	hb1	2.1	13	hn	7.96	2.89	0.4	0.32
12	hb2	2.19	13	hn	7.96	3.26	0.52	0.42
13	hn	7.97	12	hn	8.15	2.47	0.27	0.23
13	hb1	3.52	14	hn	8.45	2.65	0.32	0.27
13	hn	7.97	14	hn	8.45	2.67	0.33	0.27
13	he3	6.82	14	hn	8.45	2.9	0.4	0.52
13	hb2	3	14	hn	8.45	3.61	0.63	0.54
14	hg	1.51	13	he3	6.81	2.72	0.41	0.52
14	ha	3 25	13	he3	6.81	3 37	0.55	0.65
14	hb2	1 73	13	he3	6.81	3.62	0.63	0.03
14	hd2#	0.88	13	he3	6.81	3.6 <u>2</u>	0.53	0.66
14	hd2#	0.88	13	hz3	6.87	5.04 2.72	0.55	0.68
14	ha	1.52	13	hz3	6.87	3.87	0.50	0.00
14	ng	2.25	13	ha2	6.07	2.02	0.71	0.05
14	na hh 1	5.23	15	IIZ5 ha2	0.87	5.95	0.75	0.00
14	1101 1.41#	1.44	13	1105	0.01	4.14	0.79	0.99
14	nu1# ⊾21#	0.94	13	nzo h-2	0.8/	4.52	0.75	0.88
14	na1#	0.94	15	ne3	0.81	4.62	0.84	1.01
14	hbl	1.44	15	hn	7.92	3.21	0.41	0.46
14	hb2	1.73	15	hn	7.92	2.82	0.37	0.3
14	ha	3.25	15	hn	7.92	3.52	0.6	0.5
15	hn	7.93	14	hn	8.45	2.64	0.32	0.27
15	hb#	1.47	16	hn	8.09	3.28	0.42	0.34
15	ha	3.98	16	hn	8.09	3.63	0.63	0.55

15	hn		16	hn		2.8	0.35	0.35
16	ha	4.46	17	hn	7.28	3.83	0.7	0.63
16	hb1	2.8	17	hn	7.31	3.99	0.75	0.71
16	hb2	2.72	17	hn	7.28	4.42	0.88	0.98
17	hn	7.29	16	hn	8.09	2.91	0.37	0.3
17	hn	7.29	18	hn	8.18	2.46	0.13	0.22
17	ha	4.34	18	hn	8.18	3.59	0.62	0.53
17	hb#	1.22	18	hn	8 18	4 26	0.73	0.62
18	ha?	2.81	17	hn	7.28	4 25	0.83	0.86
18	ha2	2.81	19	hn	8 75	3.1	0.57	0.38
18	ha1	0.65	19	hn	8 75	2.6	0.37	0.50
10	ha	4.63	19	ha?	2.81	4.07	0.50	0.51
10	ha	4.63	20	hn	2.01	3.1	0.77	0.70
19	ha	4.03	20	hd1	2.91	2.1	0.39	0.45
1	ha	4.51	2	hd2	2.52	2.55	0.55	0.23
1	lla hh*	4.31	2	liuz hd2	2.52	2.80	0.39	0.51
1	nD*	1.97	2	nd2	5.52 2.52	3.89	0.4	0.42
1	nD*	1.93	2	nd2	3.52	3	0.53	0.43
20	nn	4.40	19	hn		2.82	0.27	0.26
20	ha	4.49	21	hn	7.57	3.39	0.56	0.46
20	hb#	1.4	21	hn	7.57	4.5	0.81	0.72
3	hd1	3.24	2	hbl	2.42	3.43	0.57	0.47
4	hd1	3.05	3	ha	2.26	2.35	0.22	0.33
4	hd2	2.71	3	ha	2.27	2.65	0.48	0.38
4	hd2	2.71	3	hb2	1.11	3.8	0.69	0.62
4	hd2	2.72	3	hb1	-0.07	4.03	0.76	0.73
4	hd1	3.05	3	hb2	1.12	4.13	0.79	0.79
4	ha	4.34	5	hn	8.22	2.25	0.2	0.05
4	hb2	1.95	5	hn	8.22	3.68	0.65	0.57
4	hb1	2.15	5	hn	8.22	4.39	0.87	0.95
5	ha	4.19	6	hn	7.85	3.45	0.57	0.48
5	hb1	3.77	6	hn	7.84	4.05	0.77	0.74
5	hb2	3.85	6	hn	7.84	4.17	0.8	0.81
6	hn	7.85	5	hn	8.22	2.68	0.46	0.39
6	ha	4.51	7	hn	8.76	2.68	0.51	0.48
6	hn	7.86	7	hn	8.75	4.35	0.46	0.4
8	hn	8.34	7	hn	8.76	2.59	0.52	0.62
8	hn	8.33	9	hn	8.26	2.54	0.19	0.4
8	hb#	1.5	9	hn	8.27	3.32	0.43	0.35
9	hn	8.27	10	hn	8.54	2.47	0.32	0.27
9	hb#	1.53	10	hn	8.53	3.55	0.5	0.4
9	ha	4.48	10	hn	8.54	3.48	0.61	0.57
i i+n n	- 2-4							
1 , 1 _1 , 1	- <u>-</u>	3 0/	13	hb1	3 57	3.07	0.42	0.34
10	ha	3.04	13	hn	7.05	3.07	0.42	0.54
10	ha	3.94	13	lill ha?	6.91	2.21	0.5	0.4
10	lla ba	5.94 2.02	13	hes hes	0.81	5.// 2.49	0.08	0.8
10	114	3.93	15	102) 0.45	5.48 2.02	0.08	0.01
10	na	3.94	14	nn	8.45 9.45	5.95 2.04	0.75	0.08
11	na	4.13	14	nn	ð.45 1.72	5.24 2.72	0.45	0.35
11	ha	4.13	14	hb2	1./3	3.72	0.5	0.4
11	ha	4.13	14	hdl#	0.94	3.59	0.52	0.41
11	hb#	1.59	14	hn	8.45	4.86	0.82	0.74
12	ha	3.96	15	hb#	1.46	2.61	0.18	0.31
12	ha	3.96	15	hn	7.92	3.05	0.45	0.36
12	ha	3.96	16	hn	8.09	3.85	0.7	0.64
13	ha	4.12	16	hb2	2.71	3.17	0.49	0.39

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2013

13	ha	4.12	16	hb1	2.8	3.64	0.64	0.55	
13	ha	4.12	16	hn	8.09	3.91	0.72	0.67	
14	hd1#	0.94	10	he2	6.75	3.24	0.4	0.57	
14	hd2#	0.87	10	he2	6.75	3.39	0.45	0.6	
14	hg	1.52	10	he2	6.75	3.57	0.61	0.72	
14	hg	1.51	10	hd2	7	3.84	0.7	0.64	
14	hd1#	0.94	10	hd2	7	4.23	0.72	0.61	
14	hd2#	0.87	10	hd2	7	4.79	0.9	0.86	
14	hg	1.51	11	hn	8.4	4.59	0.7	0.69	
14	ha	3.25	16	hn	8.09	4.05	0.76	0.74	
14	ha	3.25	17	hn	7.28	3.65	0.64	0.55	
14	ha	3.25	18	hn	8.18	2.98	0.43	0.34	
14	ha	3.24	18	ha2	2.81	3.69	0.65	0.57	
14	ha	3.25	18	ha1	0.65	4.23	0.82	0.85	
15	hb#	1.46	12	he#	7.04	3.88	0.61	0.49	
15	hb#	1.47	12	hn	8.16	4.63	0.85	0.78	
15	ha	3.98	17	hn	7.28	3.93	0.73	0.68	
16	hb2	2.71	18	hn	8.18	4.04	0.76	0.74	
21	hb2	3.86	18	ha2	2.81	3 53	0.54	0.44	
21	hb*	3.47	18	hn	8.18	3.66	0.64	0.56	
21	hb1	3.46	18	ha2	2.8	4.02	0.76	0.73	
4	hb2	1.95	6	hn	7.84	3.05	0.45	0.36	
6	hb1	2.72	9	hb#	1.54	4.21	0.4	0.33	
6	hb*		9	hb#		4.51	0.4	0.33	
9	ha	4.48	12	hn	8.15	3.44	0.57	0.48	
9	ha	4.47	12	hb*	2.1	3.81	0.69	0.62	
9	ha	4.47	12	hb*	2.18	4.17	0.8	0.81	
9	hb#	1.53	12	hn	8.15	5.22	1.03	1.11	
9	hb#	1.53	6	hn	7.84	5.52	1.13	1.33	
6	0		10	hn		2.25	0.25	0.25	
7	0		11	hn		2.25	0.25	0.25	
8	0		12	hn		2.25	0.25	0.25	
3	hb1		5	hn		4.5	0.5	2.5	
3	hb2		5	hn		4.5	0.5	1.5	
i. i±n. n	> 5								
10	ha ha	3.94	4	hg1	1.78	3.05	0.51	0.42	
10	ha		4	hg2		2.35	0.23	0.22	
10	ha	3.94	4	hd2	2.71	2.78	0.55	0.45	
13	hh2	6.53	19	hd1	7.56	3.62	0.63	0.94	
13	hz2	6.1	19	hd1	7.56	3.69	0.65	0.97	
13	hz2	6.1	19	he3	7.83	4.2	0.81	1.23	
13	hh2	6.53	19	hn	8.73	4.46	0.89	1.2	
13	hd1	6.76	1	he	7.4	3.63	0.63	0.75	
13	hb2	3	4	hg1	1.78	3.45	0.58	0.48	
18	ha1	0.66	13	hz3	6.87	4.07	0.77	0.96	
19	ha	4.63	13	hz2	6.09	3.87	0.71	0.85	
19	ha	4.63	13	he1	9.21	4.29	0.84	1.09	
1	hg2	1.65	13	hd1	6.75	2.74	0.35	0.49	
1	hg1	1.82	13	hd1	6.75	2.95	0.42	0.53	
1	hd#	3.17	13	hd1	6.75	3.2	0.5	0.6	
1	hg2	1.65	13	he1	9.21	3.37	0.55	0.65	
1	hb*	1.97	13	hd1	6.75	3.78	0.68	0.81	
1	hg1	1.81	13	he1	9.21	3.96	0.74	0.9	
1	hb*	1.93	13	hd1	6.75	4.03	0.76	0.93	
2	ha	4.03	13	hz2	6.1	3.33	0.53	0.68	

2	ha	4.01	19	hz3	7.24	2.99	0.42	0.53
2	ha	4	19	he3	7.83	3.9	0.72	0.86
2	hb1	2.42	19	hz3	7.23	3.4	0.52	0.66
2	hb1	2.42	19	hh2	7.34	2.28	0.35	0.31
3	hb2	1.12	10	he1	6.75	3.17	0.49	0.59
3	hb1	-0.08	10	he1	6.75	3.5	0.59	0.7
3	hb2	1.12	10	hd1	7	3.5	0.59	0.7
3	hb1	-0.09	10	hd1	7	4.53	0.92	1.26
3	hd2	2.55	13	hz2	6.09	3.14	0.48	0.58
3	ha	2.27	13	he1	9.21	3.83	0.7	0.83
3	ha	2.27	13	hd1	6.75	3.9	0.72	0.87
3	hd2	2.53	13	hh2	6.52	4.27	0.84	1.08
3	hb1	-0.09	13	hz3	6.87	4.32	0.85	1.11
3	hb1	-0.08	13	hz2	6.09	4.42	0.88	1.18
3	hb1	-0.09	13	he3	6.8	4.69	0.97	1.38
3	hd1	3.23	19	hh2	7.34	3.72	0.66	0.79
3	hd1	3.23	19	hz3	7.24	3.91	0.72	0.87
4	hd2	2.71	10	hd1	7.01	3.08	0.39	0.49
4	hg2	1.73	10	hd1	7.01	3.5	0.65	0.57
4	hg2	1.71	10	hn	8.54	3.28	0.54	0.41
4	hb2	1.94	10	hn	8.54	4.12	0.79	0.78
4	hg1	1.79	10	hn	8.54	4.22	0.82	0.84
4	hg2		10	he1		5.22	0.82	0.84
4	hd1	3.05	13	hd1	6.75	3.01	0.44	0.55
1	0		13	he1		2.25	0.25	0.25
9	hb#		4	hd2		4.35	0.5	0.6
9	hb#		4	hb2		3.5	0.5	0.5
9	hb#		4	hg1		2.9	0.4	0.4

Structural Features of the Trp-cage and its Circular Permutants

The dense web of long range interactions in the Trp-cage motif includes the docking of P^{18} - P^{19} rings onto the Trp⁶ and Tyr³ aryl moieties of the helix, the close association of the G¹¹-CH₂ and the Trp⁶ indole ring, an Asp⁹/Arg¹⁶ salt bridge [*12*], and a Trp⁶-Hɛ1 to O=C-Arg¹⁶ H-bond. Most of these are reflected in both long-range NOEs and ring current shifts; however, these alone do not serve to define the Asp⁹/Arg¹⁶ salt bridge. While the pH effect (3.1 kJ/mol of fold-destabilization on acidification) observed for cp-TC1 is comparable to that observed in Trp-cage constructs with a stabilizing Asp⁹/Arg¹⁶ interaction [*5b*, *12*], we cannot rule out the possibility that the pH effect represents the removal of a fold-favoring Coulombic effect between the termini of the RPPPSGG-DAYAQWLADGGPSS sequence. However, the chemical shifts also support the presence of the salt bridge in the folded state. The downfield shift of Arg¹⁶ Hε in cp-TC1 goes from 0.38 (TFE added) to 0.20 (pH 7) to 0.05 (pH 2); while a downfield shift of the Arg¹⁶ Hγ reports on Arg¹⁶ sidechain placement near the plane of the Trp⁶ indole ring.

In the case of the circularly permuted cage with two Trp residues, both the NMR ensembles and the ring current shifts indicate an essentially identical orientation of the two Trps as well as the Gly, Tyr, two prolines and the Leu in the hydrophobic core. Minor differences in ring current shifts (Fig. 2S, panel B) at the Pro immediately adjacent to the added loop in the circular permutant are observed, indicating the loop closure does effect a small backbone conformational change. The same proline (P19 and P4) dihedral angles are observed in cyclo-TC1.

References – all citation numbers [##] are those appearing in the communication text.