Supporting Information

Palladium-Catalyzed Three-Component Reaction of Ferrocenyl Allenes, Aryl Iodides and Active Methylene Compounds:Regio- and Stereoselective Synthesis of *(E)*-Alkenylferrocenes

Shufeng Chen,* Zhenlong Gao, Chao Wu, Haiying Zhao, Baoguo Li*

College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. of China

E-mail address: shufengchen@imu.edu.cn; bauoguol@sohu.com

CONTENTS

1.	General information	52
2.	General procedure for the synthesis of allene ferrocenesS	2
3.	General procedure for the palladium-catalyzed three-component reaction of ferrocenyl allend	es,
	aryl iodides and active methylene compoundsS	3
4.	ReferencesS	57

1. General information All reagents were used as received from commercial sources, unless specified otherwise, or prepared as described in the literature. All Solvents were purified following standard literature procedures. For chromatography, 200-300 mesh silica gel (Qingdao, China) was employed. ¹H and ¹³C NMR spectra were recorded at 500 MHz and 125 MHz FT-NMR spectrometer. Chemical shifts are reported in *ppm* using tetramethylsilane as internal standard when CDCl₃ was used as solvent. IR spectra were recorded on a FT-IR instrument. The HRMS analysis was obtained on a GCTOF mass spectrometer. Melting points were determined with melting points apparatus and are uncorrected.

2. General procedure for the synthesis of allene ferrocenes 1^1

 $(CH_2O)_n$ (4.3 mmol), CuI (1.9 mmol), toluene (30 mL), ferrocenylacetylene (2.4 mmol), and *i*-Pr₂NH (4.1 mmol) were added sequentially into a dried reaction tube equipped with a reflux condenser under an nitrogen atmosphere. The resulting mixture was stirred for 20 min at room temperature and then heated at 130 °C for the indicated time. The mixture was cooled to room temperature. The solvent was removed in a vacuum, and the resulting residue was purified on a silica gel column (eluent: petroleum ether) to provide the desired ferrocenyl allene product **1a-e**.

Propa-1,2-dienylferrocene (1a): Red oil; IR (KBr) 3094, 1944, 1460, 1105, 852 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.13 (s, 5H), 4.16 (s, 2H), 4.25 (s, 2H), 4.85 (d, *J* = 7.0 Hz, 2H), 5.84 (t, *J* = 7.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 67.1, 68.4, 69.3, 77.5, 80.4, 90.2, 208.9; HRMS calcd for C₁₃H₁₂Fe: 224.0288, found: 224.0295.

1'-(Propa-1,2-dienyl)-1-benzoylferrocene (1b): Red oil; IR (KBr) 3093, 1943, 1638, 1445, 1168, 854 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.20 (t, *J* = 2.0 Hz, 2H), 4.26 (d, *J* = 1.5 Hz, 2H), 4.53 (t, *J* = 2.0 Hz, 2H), 4.77 (d, *J* = 7.0 Hz, 2H), 4.87 (t, *J* = 2.0 Hz, 2H), 5.67 (t, *J* = 7.0 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.87 (d, *J* = 7.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 68.7, 70.4, 72.5, 73.7, 77.9, 79.0, 82.6, 88.4, 128.2, 128.3, 131.5, 139.9, 198.5, 209.0; HRMS calcd for C₂₀H₁₆FeO:

328.0551, found: 328.0545.

l'-(Propa-1,2-dienyl)-1-(2-Chlorobenzoyl)ferrocene (1c): Red oil; IR (KBr) 3095, 1943, 1647, 1444, 1130, 854 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.32 (d, *J* = 12.5 Hz, 4H), 4.55 (s, 2H), 4.68 (s, 2H), 4.83 (s, 2H), 5.72 (s, 1H), 7.34~7.52 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 68.7, 70.6, 72.1, 74.5, 78.0, 79.0, 82.5, 88.7, 126.3, 128.8, 130.4, 130.9, 131.1, 139.4, 198.4, 209.0; HRMS calcd for C₄₀H₃₀Cl₂Fe₂O₂Na [2M+Na]⁺: 747.0229, found: 747.0222.

1'-(Propa-1,2-dienyl)-1-(4-Chlorobenzoyl)ferrocene (1d): Red oil; IR (KBr) 3094, 1944, 1630, 1444, 1165, 848 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.20 (s, 2H), 4.27 (s, 2H), 4.56 (s, 2H), 4.79 (d, *J* = 7.0 Hz, 2H), 4.85 (s, 2H), 5.67 (t, *J* = 7.0 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.84 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 68.7, 70.4, 72.3, 73.8, 78.0, 78.6, 82.6, 88.3, 128.4, 129.7, 137.7, 138.1, 197.1, 209.0; HRMS calcd for C₂₀H₁₅ClFeO: 362.0161, found: 362.0163.

l'-(Propa-1,2-dienyl)-1-(3,5-dichlorobenzoyl)ferrocene (1e): Red oil; IR (KBr) 3081, 1940, 1622, 1444, 1178, 850 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.21 (s, 2H), 4.30 (s, 2H), 4.60 (s, 2H), 4.82 (d, *J* = 6.5 Hz, 2H), 4.84 (s, 2H), 5.67 (t, *J* = 6.5 Hz, 1H), 7.52 (s, 1H), 7.76 (d, *J* = 1.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) 68.8, 70.5, 72.3, 74.2, 78.0, 78.1, 83.0, 88.1, 126.7, 131.2, 135.0, 142.2, 195.7, 209.0; HRMS calcd for C₂₀H₁₄Cl₂FeO: 395.9771, found: 395.9772.

3. General procedure for the palladium-catalyzed three-component reaction of ferrocenyl allenes, aryl iodides and active methylene compounds

To a solution of ferrocenyl allene (0.3 mmol), aryl iodide (0.36 mmol), active methylene compound (0.36 mmol) and K_2CO_3 (0.6 mmol) in 5 mL anhydrous CH₃CN under a N₂ atmosphere was added Pd[Fc(PPh₂)₂]Cl₂·CH₂Cl₂ (0.015 mmol, 5 mol %). The reaction mixture was then heated to reflux temperature and the progress was monitored by TLC. After completion of the reaction, solvent was removed by evaporation, and the residue was purified by column chromatography over silica gel

to give the alkenylferrocene products 4a-p.

Ethyl 2-acetyl-5-ferrocenyl-4-phenylpent-4-enoate (4a): Yellow oil; IR (KBr) 3110, 1739, 1715, 1639, 1400, 819, 700 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.33~7.34 (m, 4H), 7.25~7.26 (m, 1H), 6.40 (s, 1H), 4.43 (d, *J* = 1.0 Hz, 2H), 4.27 (d, *J* = 1.0 Hz, 2H), 4.16 (s, 5H), 3.98 (q, *J* = 7.5 Hz, 2H), 3.5 (t, *J* = 7.5 Hz, 1H); 3.36 (m, 2H), 2.08 (s, 3H), 1.13 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (500 MHz, CDCl₃) δ 203.0, 169.5, 142.5, 135.1, 128.7, 128.4, 127.1, 126.5, 81.5, 69.5, 69.1, 69.0, 61.3, 57.9, 29.4, 29.2, 13.9; HRMS calcd for C₂₅H₂₆FeO₃: 430.1231, found: 430.1238.

Diethyl 2-(3- ferrocenyl-2-phenylallyl)malonate (4b): Yellow oil; IR (KBr) 3126, 1731, 1664, 1614, 1400, 819, 699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.34~7.36 (m, 4H), 7.24~7.26 (m, 1H), 6.40 (s, 1H), 4.47 (s, 2H), 4.27 (s, 2H), 4.16 (s, 5H), 4.01~4.03 (m, 4H), 3.54 (t, *J* = 8.0 Hz, 1H); 3.39 (d, *J* = 8.0 Hz, 2H), 1.15 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 169.1, 142.6, 135.0, 128.8, 128.3, 127.0, 126.5, 81.4, 69.3, 69.1, 69.0, 61.3, 50.6, 30.0, 14.0; HRMS calcd for C₂₆H₂₈FeO₄: 460.1337, found: 460.1336.

2,2-Bis((E)-3-ferrocenyl-2-phenylallyl)malononitrile (4d): Orange solid. Mp. 198-199 °C; IR (KBr) 3132, 1659, 1651, 1614, 1401, 816, 753 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.35 (m, 10H), 6.58 (s, 2H), 4.29~4.31 (m, 8H), 4.16 (s, 10H), 3.32 (s, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 137.6, 132.4, 130.9, 130.1, 128.9, 128.9, 128.3, 79.1, 70.7, 70.6, 70.5, 29.7, 27.7; HRMS calcd for C₄₁H₃₄Fe₂N₂: 666.1421, found: 666.1417.

2,2-Bis((E)-2-(4-chlorophenyl)-3-ferrocenylallyl)malononitrile (4e): Orange solid. Mp. 214-215 °C; IR (KBr) 3130, 1614, 1454, 1400, 833 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.33 (m, 4H), 7.27 (m, 4H), 6.57 (s, 2H), 4.33 (m, 4H), 4.27 (m, 4H), 4.16 (s, 10H), 3.28 (s, 4H); ¹³C NMR (500 MHz, CDCl₃) δ 139.7, 134.5, 133.9, 130.3, 128.8, 128.5, 114.6, 80.4, 69.5, 69.4, 69.4, 38.8, 35.9; Anal. calcd for C₄₁H₃₂Cl₂Fe₂N₂: C, 66.97; H, 4.39; N, 3.81; Found: C, 67.15; H, 4.52; N, 3.98.

2,2-Bis((E)-2-(4-bromophenyl)-3-ferrocenylallyl)malononitrile (4f): Orange solid. Mp. 209-210 °C; IR (KBr) 3133, 1613, 1454, 1400, 830, 729 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.48 (m, 4H), 7.21 (m, 4H), 6.57 (s, 2H), 4.32 (m, 4H), 4.26 (m, 4H), 4.16 (s, 10H), 3.27 (s, 4H); ¹³C NMR (500 MHz, CDCl₃) δ 140.1, 134.5, 131.7, 130.2, 128.7, 122.0, 114.6, 80.3, 69.6, 69.4, 69.2, 38.7, 35.9; Anal. calcd for C₄₁H₃₂Br₂Fe₂N₂: C, 59.75; H, 3.91; N, 3.40; Found: C, 59.38; H, 4.12; N, 3.53.

2,2-Bis((E)-2-(2-chlorophenyl)-3-ferrocenylallyl)malononitrile (4g): Orange solid. Mp. 153-154 °C; IR (KBr) 3135, 1614, 1401, 695 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.33~7.36 (m, 4H), 7.25~7.26 (m, 4H), 6.48 (s, 2H), 4.34 (m, 8H), 4.19 (s, 10H), 3.43 (s, 4H); ¹³C NMR (500 MHz, CDCl₃) δ 141.3, 133.7, 131.6, 128.6, 128.0, 127.2, 114.7, 80.7, 69.4, 69.4, 38.9, 36.0; Anal. calcd for C₄₁H₃₂Cl₂Fe₂N₂: C, 66.97; H, 4.39; N, 3.81; Found: C, 67.22; H, 4.06; N, 3.87.

2,2-Bis((E)-3-ferrocenyl-2-p-tolylallyl)malononitrile (4h): Orange solid. Mp. 198-199 °C; IR (KBr) 3133, 1614, 1401, 820, 585 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.23~7.25 (m, 4H), 7.15~7.17 (m, 4H), 6.54 (s, 2H), 4.27~4.28 (m, 8H), 4.15 (s, 10H), 3.30 (s, 4H), 2.34 (s, 6H); ¹³C NMR (500 MHz, CDCl₃) δ 138.4, 137.8, 133.0, 131.7, 129.2, 127.1, 114.8, 80.9, 69.4, 69.3, 69.2, 38.9, 36.0, 21.2; Anal. calcd for C₄₃H₃₈Fe₂N₂: C, 74.37; H, 5.52; N, 4.03; Found: C, 74.69; H, 5.41; N, 4.12.

2,2-Bis((E)-3-ferrocenyl-2-(4-methoxyphenyl)allyl)malononitrile (4i): Orange solid. Mp. 141-142 °C; IR (KBr) 3135, 1609, 1401, 1242, 836, 669 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.27~7.28 (m, 4H), 6.88~6.89 (m, 4H), 6.51 (s, 2H), 4.28 (m, 4H), 4.27 (m, 4H), 4.15 (s, 10H), 3.80 (s, 6H), 3.29 (s, 4H); ¹³C NMR (500 MHz, CDCl₃) δ 159.5, 133.7, 132.4, 131.4, 128.4, 114.9, 113.9, 81.0, 69.4, 69.3, 55.2, 39.0, 36.0; Anal. calcd for C₄₃H₃₈Fe₂N₂O₂: C, 71.09; H, 5.27; N, 3.86; Found: C, 69.85; H, 5.49; N, 3.97.

2,2-Bis((E)-2-(3,5-dichlorophenyl)-3-ferrocenylallyl)malononitrile (4j): Orange solid. Mp. 146-147 °C; IR (KBr) 3134, 1613, 1401, 796, 676 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.36 (m, 2H), 7.26 (m, 2H), 7.21 (m, 2H), 6.65 (s, 2H), 4.38 (m, 4H), 4.34 (m, 4H), 4.21 (s, 10H), 3.27 (s, 4H); ¹³C NMR (500 MHz, CDCl₃) δ 144.5, 135.3, 135.3, 128.3, 127.7, 125.6, 114.4, 79.7, 70.0, 69.6, 69.3, 47.7, 29.7; Anal. calcd for C₄₁H₃₀Cl₄Fe₂N₂: C, 61.23; H, 3.76; N, 3.48; Found: C, 61.49; H, 3.99; N, 4.27.

2,2-Bis((E)-3-ferrocenyl-2-(4-nitrophenyl)allyl)malononitrile (4k): Orange solid.

Mp. 194-195 °C; IR (KBr) 3134, 1614, 1401, 855, 587 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.22~8.23 (m, 4H), 7.50~7.52 (m, 4H), 6.74 (s, 2H), 4.41 (m, 4H), 4.33 (m, 4H), 4.20 (s, 10H), 3.38 (s, 4H); ¹³C NMR (500 MHz, CDCl₃) δ 147.7, 147.3, 137.5, 129.1, 127.8, 124.1, 114.4, 79.7, 70.1, 69.7, 69.6, 38.5, 35.9; Anal. calcd for C₄₁H₃₂Fe₂N₄O₄: C, 65.10; H, 4.26; N, 7.41; Found: C, 65.39; H, 4.35; N, 7.64.

2,2-Bis((E)-2-(4-acetylphenyl)-3-ferrocenylallyl)malononitrile (41): Orange solid. Mp. 119-120 °C; IR (KBr) 3129, 1680, 1602, 1402, 1270, 826, 731, 584 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.94~7.95 (m, 4H), 7.44~7.46 (m, 4H), 6.68 (s, 2H), 4.36 (m, 4H), 4.31 (m, 4H), 4.17 (s, 10H), 3.37 (s, 4H), 2.58 (s, 6H); ¹³C NMR (500 MHz, CDCl₃) δ 197.3, 146.0, 136.3, 135.8, 130.2, 128.7, 127.2, 114.5, 80.1, 69.8, 69.6, 69.5, 38.4, 36.0, 26.6; Anal. calcd for C₄₅H₃₈Fe₂N₂O₂: C, 72.02; H, 5.10; N, 3.73; Found: C, 71.83; H, 5.21; N, 3.79.

2,2-Bis((E)-3-(1'-benzoylferrocenyl)-2-phenylallyl)malononitrile (4m): Yellow oil; IR (KBr) 3126, 1638, 1450, 1400, 1285, 854, 729, 697 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.78~7.79 (m, 4H), 7.48~7.50 (m, 2H), 7.38~7.40 (m, 4H), 7.19-7.30 (m, 10H), 6.33 (s, 2H), 4.87 (m, 4H), 4.54 (m, 4H), 4.30 (m, 4H), 4.22 (m, 4H), 3.18 (s, 4H); ¹³C NMR (500 MHz, CDCl₃) δ 198.3, 140.8, 139.5, 133.3, 131.7, 131.6, 128.6, 128.2, 128.2, 128.1, 127.1, 114.5, 82.4, 78.9, 73.9, 72.7, 71.3, 71.3, 65.8, 38.6, 35.9; Anal. calcd for C₅₅H₄₂Fe₂N₂O₂: C, 75.53; H, 4.84; N, 3.20; Found: C, 75.91; H, 4.73; N, 3.12.

2,2-Bis((E)-3-(1'-o-chlorobenzoylferrocenyl)-2-phenylallyl)malononitrile (4n): Orange solid. Mp. 97-98 °C; IR (KBr) 3128, 1640, 1614, 1453, 1400, 1291, 854, 753, 696 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.22~7.44 (m, 18H), 6.40 (s, 2H), 4.69 (m, 4H), 4.56 (m, 4H), 4.41 (m, 4H), 4.33 (m, 4H), 3.20 (s, 4H); ¹³C NMR (500 MHz, CDCl₃) δ 198.0, 140.8, 138.9, 133.3, 131.6, 131.0, 131.0, 130.4, 128.8, 128.6, 128.3, 127.1, 126.3, 114.4, 82.4, 79.1, 74.5, 72.3, 71.4, 71.0, 38.7, 35.9; Anal. calcd for C₅₅H₄₀Cl₂Fe₂N₂O₂: C, 70.01; H, 4.27; N, 2.97; Found: C, 70.30; H, 4.15; N, 2.69.

2,2-Bis((E)-3-(1'-p-chlorobenzoylferrocenyl)-2-phenylallyl)malononitrile (40): Orange solid. Mp. 179-180 °C; IR (KBr) 3134, 1641, 1616, 1442, 1399, 1286, 839, 759, 698, 470 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.70~7.72 (m, 4H), 7.29~7.36 (m, 10H), 7.19~7.21 (m, 4H), 6.30 (s, 2H), 4.84 (m, 4H), 4.56 (m, 4H), 4.29 (m, 4H), 4.21 (m, 4H), 3.18 (s, 4H); ¹³C NMR (500 MHz, CDCl₃) δ 196.9, 140.7, 137.9, 137.6, 133.4, 131.4, 129.6, 128.6, 128.5, 128.4, 128.3, 127.0, 114.4, 82.4, 78.6, 74.0, 72.6, 71.3, 65.7, 38.6, 35.9; Anal. calcd for C₅₅H₄₀Cl₂Fe₂N₂O₂: C, 70.01; H, 4.27; N, 2.97; Found: C, 70.42; H, 4.12; N, 2.78.

2,2-Bis((E)-3-(1'-(3,5-dichlorobenzoyl)ferrocenyl)-2-phenylallyl)malononitrile (**4p**): Yellow oil; IR (KBr) 3118, 1639, 1563, 1446, 1398, 1282, 908, 805, 762, 738 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.65~7.66 (m, 4H), 7.46 (m, 2H), 7.25~7.34 (m, 10H), 6.32 (s, 2H), 4.84 (m, 4H), 4.61 (m, 4H), 4.32 (m, 4H), 4.25 (m, 4H), 3.20 (s, 4H); ¹³C NMR (500 MHz, CDCl₃) δ 195.4, 141.8, 140.7, 135.1, 133.8, 131.1, 128.7, 128.4, 127.0, 126.6, 114.4, 82.7, 77.9, 74.6, 72.6, 71.5, 71.4, 38.7, 36.0; Anal. calcd for C₅₅H₃₈Cl₄Fe₂N₂O₂: C, 65.25; H, 3.78; N, 2.77; Found: C, 65.53; H, 3.61; N, 2.70.

References.

1. S. Chen, B. Wang, Q. Yan, J. Shi, H. Zhao and B. Li, RSC Adv., 2013, 3, 1758.