Supporting Information

Oxidative *ortho*-Alkenylation of Arylphosphine Oxides by Rhodium-Catalyzed Twofold C-H Bond Cleavages^{‡,†}

Juntae Mo,[†] Sujin Lim,[†] Sangjune Park, Taekyu Ryu, Sanghyuck Kim and Phil Ho Lee*

Department of Chemistry, Kangwon National University, Chuncheon 200-701, Republic of Korea

FAX: (+)-82-33-253-7582. e-mail: phlee@kangwon.ac.kr

Contents

1.	Experimental section	S2
2.	Additional data for reaction optimization	S3
3.	Studies with isotopically labeled compounds	S5
4.	Preparation of arylphosphine oxides	S 8
5.	Rh-catalyzed oxidative <i>ortho</i> -alkenylation of arylphosphine oxides with activated alkyl acrylates	S12
6.	Rh-catalyzed oxidative <i>ortho</i> -alkenylation of arylphosphin oxides with non activated styrene derivatives	S19
7.	References ·····	S23
8.	¹ H and ¹³ C NMR spectra of products	S24

Experimental Section

General: Reactions were carried out in oven-dried glassware under a nitrogen atmosphere. $[Cp^*RhCl_2]_2$ were purchased from Anfenchem Co. AgSbF₆ and Ag₂CO₃ were purchased from Alfa Chemical Co. Cu(OAc)₂ was purchased from Aldrich Chemical Co. Other commercial available reagents were used without purification and all solvents were reaction grade.

All reaction mixtures were stirred magnetically and were monitored by thin-layer chromatography using Merck silica gel 60 F_{254} precoated glass plates, which were visualized with UV light and then, developed using either iodine or a solution of anisaldehyde. Flash column chromatography was carried out using Merck silica gel 60 (0.040-0.063 mm, 230-400 mesh). ¹H NMR (400 MHz), ¹³C NMR (100 MHz), and ³¹P NMR (161 MHz) spectra were recorded on a Brucker DPXFT spectrometer. Deuterated chloroform was used as the solvent, and chemical shift values (δ) are reported in parts per million relative to the residual signals of this solvent (δ 7.26 for ¹H and δ 77.0 for ¹³C). Infrared spectra were recorded on FT-IR spectrometer as either a thin film pressed between two sodium chloride plates or as a solid suspended in a potassium bromide disk. Mass spectra were obtained from the KBSI on high resolution mass spectrometer. Melting points were determined in open capillary tube using Electrothermal 9100 apparatus.

Additional data for reaction optimization

O H Me H	H + E = CO ₂ (<i>n</i> -Bu) 2a	cat. [Cp*Rh(AgSbF ₆ Cu(OAc)	Cl ₂] ₂ →	O ⊢ Me ⊢ E + 3a	E H Me E 4a	
entry	solvent	yield (%) ^b	entry	solvent	yield (%) ^b	
1	CH ₃ CN	0	8	toluene	0	
2	CH ₃ NO ₂	0	9	xylene	4	
3	MeOH	0	10	C_6F_6	2	
4	t-BuOH	35 (6:1) ^c	11	THF	12	
5	<i>t</i> -AmOH	12 (4:1) ^c	12	DMF	0	
6	DCE	30 (4.5:1) ^c	13	DMSO	0	
7	dioxane	50 (3:1) ^c	14 ^d	dioxane	0	

Table 1. Solvent screening of oxidative alkenylation of phenyldimethylphosphine oxide with *n*-butyl acrylate^a

^{*a*} Reaction conditions: [Cp*RhCl₂]₂ (2 mol %), AgSbF₆ (8 mol %), **1a** (0.2 mmol), **2a** (0.4 mmol), Cu(OAc)₂ (2.0 equiv), solvent (0.8 mL) at 80 °C for 20 h. ^{*b*} Yields based on ¹H NMR integration relative to dibromethane internal standard. ^{*c*} The ratio of **3a** and **4a**. ^{*d*} [Cp*Rh(MeCN)₃](SbF₆)₂ (2 mol %) was used.

Table 2. Reacivity study of dialkylphosphin oxide^a

	O ⊨ R P R H 1	+ H E - 2a E = CO ₂ (<i>n</i> -Bu)	cat. [Cp*RhCl AgSbF ₆ oxidant 1,4-dioxane, 12 Bu)		3		Ξ
-	entry	R		time (h)		yield (%) ^b	
-	1	Me ć	la	8	3a	59 (22) ^c	
	2	<i>i</i> -Pr	1j	24	3р	45 (26) ^d	
	3	Ph		24		0	

^a Reaction condition: **1** (0.2 mmol), **2a** (0.4 mmol), [Cp*RhCl₂]Cl₂ (2 mol %), AgSbF₆ (8 mol %), Cu(OAc)₂ (1.0 equiv), Ag₂CO₃ (1.0 equiv) at 120 °C for 24 h. ^{*b*} Isolated yield. ^{*c*} Number in parenthesis is yield of **4a**. ^{*d*} Recovery yield of starting material.

Me	Me O H Me H 1d	+ H Ar Ar = Ph (2e) 4-Cl-C ₆ H ₄ (2)	cat. [Cp AgS oxic i)	*RhCl _{2]2} bF ₆ lant	Me Me 5	O ₩ Me Ar
entry	2 (equiv)	oxidant (equiv)	solvent	temp (^o C)	yield (%) ^b
1	2e (3)	Cu(OAc) ₂ (1)/Ag ₂ C	O ₃ (1)	1,4-dioxane	120	60
2 ^c	2e (3)	Cu(OAc) ₂ (1)/Ag ₂ C	O ₃ (1)	1,4-dioxane	120	54
3	2e (3)	Cu(OAc) ₂ (2)/Ag ₂ C	O ₃ (2)	1,4-dioxane	120	56
4 ^{<i>d</i>}	2e (3)	Cu(OAc) ₂ (1)/Ag ₂ C	O ₃ (1)	1,4-dioxane	120	57
5 ^e	2e (3)	Cu(OAc) ₂ (1)/Ag ₂ C	O ₃ (1)	1,4-dioxane	120	20
6	2e (6)	Cu(OAc) ₂ (1)/Ag ₂ C	O ₃ (1)	1,4-dioxane	120	60
7	2e (3)	Cu(OAc) ₂ (1)		1,4-dioxane	120	0
8	2e (3)	$Ag_{2}CO_{3}(1)$		1,4-dioxane	120	60
9	2e (3)	Ag ₂ CO ₃ (1)		THF	90	62
10	2j (3)	Cu(OAc) ₂ (1)/Ag ₂ C	O ₃ (1)	1,4-dioxane	120	32
11	2j (1)	$Ag_2CO_3(1)$		Ethyl acetate	120	38
12	2j (3)	$Ag_2CO_3(1)$		<i>t</i> -BuOH	120	18
13	2j (3)	$Ag_{2}CO_{3}(1)$		THF	120	54
14	2j (3)	Ag ₂ CO ₃ (1)/AgOA	c (1)	THF	120	14
15	2j (3)	Cu(OAc) ₂ (1)/NaOA	Ac (1)	THF	80	9
16	2j (3)	Cu(OAc) ₂ (1)/Ag ₂ C	O ₃ (1)	THF	90	38

Table 3. Optimization of oxidative ortho-alkenylation of 1d with styrene derivatives^a

^{*a*} Reaction condition: [Cp*RhCl₂]₂ (2 mol %), AgSbF₆ (8 mol %), **1d** (0.2 mmol) in solvent (0.8 mL) for 24 h. ^{*b*} Isolated yield of product. ^{*c*} AgSbF₆ (16 mol %) was used. ^{*d*} 1,4-Dioxane (0.4 mL, 0.5 M). ^{*e*} Neat reaction

Studies with isotopically labeled compounds

To an oven dried test tube were added [Cp*RhCl₂]₂ (2.9 mg, 2 mol %), AgSbF₆ (5.5 mg, 8 mol %), Cu(OAc)₂ (36.3 mg, 0.2 mmol), Ag₂CO₃ (55.5 mg, 0.2 mmol) and dimethyl(*o*-tolyl)phosphine oxide (**1b**, 0.1 mmol) in 1,4-dioxane/D₂O (0.7 mL/0.07 mL). The resulting mixture was stirred under nitrogen at 120 °C (bath temperature) for 12 h. After celite filtration and evaporation of the solvent *in vacuo*, product was purified by column chromatography (methanol:dichloromethane = 1:20) on silica gel.

To an oven dried test tube were added [Cp*RhCl₂]₂ (2.9 mg, 2 mol %), AgSbF₆ (5.5 mg, 8 mol %), Cu(OAc)₂ (36.3 mg, 0.2 mmol), Ag₂CO₃ (55.5 mg, 0.2 mmol), dimethyl(*o*-tolyl)phosphine oxide (**1b**, 0.1 mmol), dimethyl(*tetra*-deuterio-*o*-tolyl)phosphine oxide (**[D₄]-1b**, 0.1 mmol) and *n*-butyl acrylate (0.4 mmol) in 1,4-dioxane (0.8 mL). The resulting mixture was stirred under nitrogen at 120 °C (bath temperature) for 2 h. After celite filtration and evaporation of the solvent *in vacuo*, [**3c** + [**D₃]-3c**] (27%) was purified by column chromatography (methanol:dichloromethane = 1:20) on silica gel.

Preparation of arylphosphine oxide 1a.^{1, 2}

To a solution of phenylphosphonic dichloride (0.7 mL, 5.0 mmols) in dry THF (25 mL) was added methylmagnesium chloride (3.0 M solution in THF, 4.17 mL, 12.5 mmol) under nitrogen atmosphere at 0 °C, The mixture was stirred at 0 °C for 1 h. When the reaction was complete, the solution was quenched with ammonium chloride at 0 °C. The aqueous layer was separated and extracted with CH_2Cl_2 (10 mL x 3) and the organic fraction was dried with MgSO₄, filtered, and concentrated by rotary evaporation. The resulting product was then purified by flash column chromatography (methanol : dichloromethane = 1 : 20) on silica gel.

Dimethylphenyl phosphine oxide (1a)¹ : White solid. Melting point = 116-118 °C; $R_f = 0.3$ (methanol : dichloromethane = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 7.77-7.72 (m, 2H), 7.53-7.50 (m, 3H), 1.74 (d, J = 12.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 134.8 (d, $J_{CP} = 98.0$ Hz), 131.6, 129.5(2C), 128.6(2C), 18.1 (d, $J_{CP} = 70.0$ Hz, 2C); ³¹P NMR (161 MHz, CDCl₃) δ 33.80; IR (film) : 3056, 2984, 2913, 1659, 1437, 1294, 1176, 1118, 935, 865 cm⁻¹. HRMS (EI) calcd For C₈H₁₁OP : 154.0548; found : 154.0548.

To a solution of tris(dibenzylideneacetone)dipalladium(0) (18.3 mg, 2 mol %), 4,5-*bis*(diphenylphosphino)-9,9-dimethylxanthene (23.1 mg, 4 mol %) in dry 1,4-dioxane (10.0 mL) was added aryl halide (2.0 mmol), dimethyl phosphite (0.4 mL, 3.0 mmol), Et₃N (0.4 mL, 3.0 mmol) under nitrogen atmosphere. When the reaction was complete, the solution was quenched with water. The aqueous layer

was separated and extracted with CH_2Cl_2 (10 mL x 3) and the organic fraction was dried with MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography. The corresponding diethyl phenylphosphonate (2.0 mmol), phosphoryl chloride (2.1 mmol), and phosphorous pentachloride (2.3 mmol) were reflux 4 h. The reaction solution was celite filtered and extracted with Et₂O (10 mL x 3) and concentrated under reduced pressure. The residue was diluted with THF (0.2 M) and dropwise arylmagnesium chloride (3.0 mmol) under nitrogen atmosphere at 0 °C The mixture was stirred at 0 °C for 1 h. When the reaction was complete, the solution was quenched with ammonium chloride at 0 °C. The aqueous layer was separated and extracted with CH₂Cl₂ (10 mL x 3) and the organic fraction was dried with MgSO₄, filtered, and concentrated by rotary evaporation. The resulting product was then purified by flash column chromatography (methanol : dichloromethane = 1 : 20) on silica gel.

Dimethyl(*o*-tolyl)phosphine oxide (1b)³: White solid. Melting point = 79-81 °C; $R_f = 0.3$ (methanol : dichloromethane = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.64 (m, 1H), 7.44-7.39 (m, 1H), 7.31-7.26 (m, 2H), 2.67 (s, 3H), 1.80 (d, J = 12.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.7, 132.6 (d, $J_{CP} = 92.6$ Hz), 131.9, 131.7(2C), 130.7, 21.4, 18.2 (d, $J_{CP} = 71.3$ Hz, 2C); ³¹P NMR (161 MHz, CDCl₃) δ 35.09; IR (pellet) : 3056, 917, 1647, 1592, 1421, 1294, 1161, 1132, 932 cm⁻¹. HRMS (EI) calcd. For C₉H₁₃OP : 168.0704; found : 168.0704.

Dimethyl(*m*-tolyl)phosphine oxide (1c)³: White solid. Melting Point = 44-46 °C; R_f = 0.3 (methanol : dichloromethane = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 12.2 Hz, 1H), 7.49 (dd, J = 11.6 Hz, 7.2 Hz, 1H), 7.40-7.33 (m, 2H), 2.42 (s, 3H), 1.73 (d, J = 13.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 134.6 (d, J_{CP} = 98.4 Hz), 132.4, 130.2, 128.6, 126.5, 21.4, 18.1 (d, J_{CP} = 71.4 Hz, 2C); ³¹P NMR (161 MHz, CDCl₃) δ 33.90; IR (pellet) : 2983, 2917, 1648, 1420 ,1294, 1159, 938, 867, 785 cm⁻¹. HRMS (EI) calcd. For C₉H₁₃OP : 168.0704; found : 168.0706.

(2-Methoxyphenyl)dimethylphosphine oxide (1d)³ : White solid. Melting point = 64-66 °C; R_f = 0.3 (methanol : dichloromethane = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.94 (m, 1H), 7.52 (t, *J* = 7.7 Hz, 1H), 7.13-7.09 (m, 1H), 6.95-6.92 (m, 1H), 3.89 (s, 3H), 1.75 (d, *J* = 13.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 133.8 (d, *J*_{CP} = 2.7 Hz), 133.7, 121.9 (d, *J*_{CP} = 95.0 Hz), 121.1 (d, *J*_{CP} = 10.8 Hz), 110.4 (d, *J*_{CP} = 3.0 Hz), 55.3 (d, *J*_{CP} = 2.9 Hz), 17.6 (d, *J*_{CP} = 72.2 Hz, 2C); ³¹P NMR (161 MHz, CDCl₃) δ 32.59; IR (pellet) : 3069, 2980, 2943, 2840, 1650, 1590, 1479, 1274, 1243, 1162, 1079, 1018 cm⁻¹. HRMS (EI) calcd. For C₉H₁₃O₂P : 184.0653; found : 184.0650.

(3-Methoxyphenyl)dimethylphosphine oxide (1e)³ : Colorless oil. $R_f = 0.3$ (methanol : dichloromethane = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.37 (m, 1H), 7.32 (d, J = 13.0 Hz, 1H), 7.25-7.19 (m, 1H), 7.06-7.04 (m, 1H), 3.85 (s, 3H), 1.73 (d, J = 13.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 136.2 (d, $J_{CP} = 97.6$ Hz), 130.0, 121.4, 117.7, 114.7, 55.5, 18.1 (d, $J_{CP} = 71.4$ Hz, 2C); ³¹P NMR (161 MHz, CDCl₃) δ 34.13; IR (film) : 3064, 2979, 2913, 2837, 1652, 1591, 1576, 1485, 1416, 1288, 1242, 1167 cm⁻¹. HRMS (EI) calcd. For C₉H₁₃O₂P : 184.0653; found : 184.0650.

Dimethyl(2-(trifluoromethyl)phenyl)phosphine oxide (1f)³ : Colorless oil. $R_f = 0.3$ (methanol : dichloromethane = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.49 (dd, J = 13.1 Hz, 7.7 Hz, 1H), 7.81-7.79 (m, 1H), 7.76-7.72 (m, 1H), 7.69-7.65 (m, 1H), 1.86 (d, J = 13.5 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 135.0 (d, $J_{CP} = 5.9$ Hz), 133.2 (d, $J_{CP} = 85.6$ Hz), 132.1 (d, $J_{CP} = 10.1$ Hz), 131.8 (d, $J_{CP} = 2.5$ Hz), 130.5-130.2 (m, 1C), 127.1-126.9 (m, 1C), 124.0 (d, $J_{CF} = 270$ Hz), 18.8 (d, $J_{CP} = 70$ Hz, 2C); ³¹P NMR (161 MHz, CDCl₃) δ 34.26; IR (film) : 3074, 2922, 1654, 1437, 1312, 1262, 1171, 1121, 1037, 935 cm⁻¹. HRMS (EI) calcd. For C₉H₁₀F₃OP : 222.0421; found : 222.0423.

(2,3-Dimethylphenyl)dimethylphosphine oxide (1g) : White solid. Melting point = 108-110 °C; R_f = 0.3 (methanol : dichloromethane = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 7.48 (dd, J = 13.0 Hz, 7.7 Hz, 1H), 7.31 (d, J = 7.5 Hz, 1H), 7.21-7.17 (m, 1H), 2.60 (s, 3H), 2.60 (s, 3H), 1.81 (d, J = 12.7 Hz, 6H); ¹³C

NMR (100 MHz, CDCl₃) δ 131.6, 131.5, 131.3, 129.5 (d, $J_{CP} = 85.1$ Hz), 128.3, 128.2, 25.2 (d, $J_{CP} = 67.1$ Hz, 2C), 16.0 (d, $J_{CP} = 2.0$ Hz), 14.9 (d, $J_{CP} = 3.1$ Hz); ³¹P NMR (161 MHz, CDCl₃) δ 36.00; IR (pellet) : 2978, 2916, 1647, 1448, 1421, 1294, 1187, 1167, 1145, 934 cm⁻¹. HRMS (EI) calcd. For C₁₀H₁₅OP : 182.0861; found : 182.0860.

(3,4-Dichlorophenyl)dimethylphosphine oxide (1h) : White solid. Melting point = 80-82 °C; R_f = 0.3 (methanol : dichloromethane = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, J = 11.4 Hz, 1.7 Hz, 1H), 7.59-7.55 (m, 2H), 1.75 (d, J = 13.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 136.5 (d, J_{CP} = 3.0 Hz), 135.1 (d, J_{CP} = 96.1), 133.6 (d, J_{CP} = 15.5 Hz), 131.8 (d, J_{CP} = 11.1 Hz), 131.0 (d, J_{CP} = 12.7 Hz), 128.8 (d, J_{CP} = 9.6), 18.1 (d, J_{CP} = 72 Hz, 2C); ³¹P NMR (161 MHz, CDCl₃) δ 32.66; IR (pellet) : 2984, 2913, 1655, 1465, 1364, 1295, 1174, 1032, 937 cm⁻¹. HRMS (EI) calcd. For C₈H₉Cl₂OP : 221.9768; found : 221.9765.

Dimethyl(thiophen-2-yl)phosphine oxide (1i) : White solid. Melting point = 100-102 °C; $R_f = 0.3$ (methanol : dichloromethane = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.68 (m, 1H), 7.59-7.56 (m, 1H), 7.22-7.19 (m, 1H), 1.81 (d, J = 13.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 135.6 (d, $J_{CP} = 104.8$ Hz), 133.9 (d, $J_{CP} = 9.5$ Hz), 132.3 (d, $J_{CP} = 4.6$ Hz), 128.4 (d, $J_{CP} = 13.2$ Hz), 19.7 (d, $J_{CP} = 75.2$ Hz, 2C); ³¹P NMR (161 MHz, CDCl₃) δ 29.18; IR (pellet) : 3050, 2979, 2912, 1653, 1407, 1295, 1226, 1164, 1093 cm⁻¹. HRMS (EI) calcd. For C₆H₉OPS : 160.0112; found : 160.0112.

Diisopropyl(phenyl)phosphine oxide (1j) : White solid. Melting point = 46-49 °C; R_f = 0.3 (methanol : dichloromethane = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.67 (m, 2H), 7.55-7.46 (m, 3H), 2.38-2.25 (m, 2H), 1.20 (dd, J = 14.8 Hz, 7.1 Hz, 6H), 1.06 (dd, J = 15.8 Hz, 7.2 Hz, 6H) ; ¹³C NMR (100 MHz, CDCl₃) δ 131.6, 131.5, 131.4, 129.5 (d, J_{CP} = 84.3 Hz), 128., 128.2, 25.5, 24.9, 16.0(2C), 14.9(2C); ³¹P NMR (161 MHz, CDCl₃) δ 50.74; IR (pellet) : 3056, 2966, 2935, 2874, 1640, 1466, 1173, 1150, 1110 cm⁻¹. HRMS (EI) calcd. For C12H19OP : 210.1174; found : 210.1174.

Rh-catalyzed oxidative ortho-alkenylation of arylphosphine oxide with arylates.

To an oven dried test tube were added $[Cp*RhCl_2]_2$ (2.9 mg, 2 mol %), AgSbF₆ (5.5 mg, 8 mol %), Cu(OAc)_2 (36.3 mg, 0.2 mmol), Ag₂CO₃ (55.5 mg, 0.2 mmol), aryl phosphine oxide (0.2 mmol) and acrylate (0.4 mmol) in 1,4-dioxane (0.8 mL). The resulting mixture was stirred under nitrogen at 120 °C (bath temperature) for 12 h. After celite filtration and evaporation of the solvent *in vacuo*, product was purified by column chromatography on silica gel.

(*E*)-Butyl 3-(2-(dimethylphosphoryl)phenyl)acrylate (3a) : Yellow oil. $R_f = 0.4$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 15.7 Hz, 1H), 7.91-7.86 (m, 1H), 7.69-7.67 (m, 1H), 7.57-7.48 (m, 2H), 6.38 (d, J = 15.7 Hz, 1H), 4.23 (t, J = 6.7 Hz, 2H), 1.83 (d, J = 12.9 Hz, 6H), 1.74-1.67 (m, 2H), 1.49-1.40 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 142.1 (d, $J_{CP} = 5.1$ Hz), 137.2 (d, $J_{CP} = 8.0$ Hz), 133.8 (d, $J_{CP} = 92.8$ Hz), 132.1 (d, $J_{CP} = 2.6$ Hz), 131.6 (d, $J_{CP} = 9.0$ Hz), 129.5 (d, $J_{CP} = 11.2$ Hz), 127.7 (d, $J_{CP} = 9.5$ Hz), 122.1, 64.7, 30.7, 19.2 (d, $J_{CP} = 16.4$ Hz, 2C), 18.6, 13.7; ³¹P NMR (161 MHz, CDCl₃) δ 33.93; IR (film) : 2959, 2934, 2873, 1712, 1634, 1468, 1313, 1267, 1178, 999, 933 cm⁻¹. HRMS (EI) calcd. For C₁₅H₂₁O₃P : 280.1228; found : 280.1232.

(*E*)-Methyl 3-(2-(dimethylphosphoryl)-3-methylphenyl)acrylate (3b) : Yellow solid. Melting point = 67-71 °C; $R_f = 0.4$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 15.7 Hz, 1H), 7.42-7.33 (m, 2H), 7.28-7.26 (m, 1H), 6.16 (d, J = 15.7 Hz, 1H), 3.81 (s, 3H), 2.67 (s, 3H), 1.89 (d, J = 12.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 146.0 (d, $J_{CP} = 4.8$ Hz), 142.0 (d, $J_{CP} = 9.0$ Hz), 139.3 (d, $J_{CP} = 9.0$ Hz), 133.5 (d, $J_{CP} = 10.4$ Hz), 131.5 (d, $J_{CP} = 90.0$ Hz), 131.4 (d, $J_{CP} = 2.3$ Hz), 127.1 (d, $J_{CP} = 9.7$ Hz), 120.6, 51.9, 23.2 (d, $J_{CP} = 3.8$ Hz), 21.1 (d, $J_{CP} = 70.0$ Hz, 2C); ³¹P NMR (161 MHz, CDCl₃) δ 37.14; IR (pellet) : 3054, 2987, 2952, 1632, 1580, 1451, 1436, 1313, 1221, 1168, 930 cm⁻¹. HRMS (EI) calcd. For C₁₃H₁₇O₃P : 252.0915; found : 252.0916.

(*E*)-Butyl 3-(2-(dimethylphosphoryl)-3-methylphenyl)acrylate (3c) : Yellow oil. $R_f = 0.4$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 15.6 Hz, 1H), 7.41-7.33 (m, 2H), 7.27-7.25 (m, 1H), 6.18 (d, J = 15.6 Hz, 1H), 4.21 (t, J = 6.7 Hz, 2H), 2.71 (s, 3H), 1.89 (d, J = 12.8 Hz, 6H), 1.73-1.66 (m, 2H), 1.48-1.39 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 145.5 (d, $J_{CP} = 5.0$ Hz), 142.7 (d, $J_{CP} = 8.6$ Hz), 138.8 (d, $J_{CP} = 9.3$ Hz), 133.6 (d, $J_{CP} = 10.3$ Hz), 131.6 (d, $J_{CP} = 90.1$ Hz), 131.3 (d, $J_{CP} = 2.6$ Hz), 127.0 (d, $J_{CP} = 9.6$ Hz), 121.2, 64.6, 30.7, 23.2 (d, $J_{CP} = 3.5$ Hz), 21.2 (d, $J_{CP} = 70.1$ Hz, 2C), 19.2, 13.7; ³¹P NMR (121 MHz, CDCl₃) δ 37.01; IR (film) : 2959, 2934, 2873, 1633, 1452, 1308, 1168, 1063, 930 cm⁻¹. HRMS (EI) calcd. For C₁₆H₂₃O₃P : 294.1385; found : 294.1387.

(*E*)-*tert*-Butyl 3-(2-(dimethylphosphoryl)-3-methylphenyl)acrylate (3d) : Red oil. $R_f = 0.4$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 15.5 Hz, 1H), 7.40-7.33 (m, 2H), 7.28-7.25 (m, 1H), 6.12 (d, J = 15.5 Hz, 1H), 2.73 (s, 3H), 1.93 (d, J = 12.8 Hz, 6H), 1.53 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 144.1 (d, $J_{CP} = 5.1$ Hz), 143.2 (d, $J_{CP} = 8.2$ Hz), 138.5 (d, $J_{CP} = 10.0$ Hz), 133.6 (d, $J_{CP} = 10.3$ Hz), 131.0 (d, $J_{CP} = 91.9$ Hz), 131.4 (d, $J_{CP} = 2.0$ Hz), 126.9 (d, $J_{CP} = 9.7$ Hz), 123.2, 81.0, 28.2(3C), 23.3 (d, $J_{CP} = 3.4$ Hz), 21.0 (d, $J_{CP} = 69.9$ Hz, 2C); ³¹P NMR (161 MHz, CDCl₃) δ 39.07; IR (film) : 2975, 2918, 2850, 1707, 1632, 1365, 1316, 1153, 930 cm⁻¹. HRMS (EI) calcd. For C₁₆H₂₃O₃P : 294.1385; found : 294.1382.

2-Ethoxy-4-*p***-tolyl-6-cyclohexylmethyl-1,2-oxaphosphorin 2-oxide (3e) :** Yellow oil. $R_f = 0.4$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 15.7 Hz, 1H), 7.74 (dd, J = 13.3 Hz, 0.8 Hz, 1H), 7.59-7.56 (m, 1H), 7.35 (dd, J = 8.0 Hz, 0.5 Hz, 1H), 6.35 (d, J = 15.6 Hz, 1H), 4.28 (q, J = 7.1 Hz, 2H), 2.43 (s, 3H), 1.83 (d, J = 12.9 Hz, 6H), 1.34 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 141.9 (d, $J_{CP} = 5.1$ Hz), 140.1 (d, $J_{CP} = 11.0$ Hz), 134.0, 133.2, 132.8, 132.5 (d, $J_{CP} = 8.7$ Hz), 127.7 (d, $J_{CP} = 10.1$ Hz), 121.1, 60.7, 21.3, 19.1 (d, $J_{CP} = 71.2$ Hz, 2C), 14.3; ³¹P NMR

(161 MHz, CDCl₃) δ 33.49; IR (film) : 2981, 2920, 1711, 1633, 1313, 1266, 1178, 1036, 945 cm⁻¹. HRMS (EI) calcd. For C₁₄H₁₉O₃P : 266.1072; found : 266.1072.

(*E*)-Butyl 3-(2-(dimethylphosphoryl)-4-methylphenyl)acrylate (3f) : White solid. Melting point = 118-122 °C; $R_f = 0.4$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 15.6 Hz, 1H), 7.75 (d, J = 12.6 Hz, 1H), 7.60-7.57 (m, 1H), 7.35 (d, J = 8.0 Hz, 1H), 6.35 (d, J = 15.6 Hz, 1H), 4.22 (t, J = 6.7 Hz, 2H), 2.42 (s, 3H), 1.83 (d, J = 12.9 Hz, 6H), 1.73-1.66 (m, 2H), 1.49-1.39 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 141.9 (d, $J_{CP} = 5.0$ Hz), 140.1 (d, $J_{CP} =$ 11.0 Hz), 133.9 (d, $J_{CP} = 9.5$ Hz), 133.7 (d, $J_{CP} = 91.9$ Hz), 132.8 (d, $J_{CP} = 2.3$ Hz), 132.6 (d, $J_{CP} = 8.6$ Hz), 127.6 (d, $J_{CP} = 10.1$ Hz), 121.1, 64.7, 30.7, 21.4, 19.2, 19.1 (d, $J_{CP} = 71.2$ Hz, 2C), 13.7; ³¹P NMR (161 MHz, CDCl₃) δ 33.36; IR (pellet) : 2959, 2933, 2873, 1711, 1633, 1479, 1311, 1175, 935 cm⁻¹. HRMS (EI) calcd. For C₁₆H₂₃O₃P : 294.1385; found : 294.1384.

(*E*)-Methyl 3-(2-(dimethylphosphoryl)-3-methoxyphenyl)acrylate (3g) : Yellow oil. $R_f = 0.4$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 9.19 (d, J = 15.9 Hz, 1H), 7.49 (t, J = 8.1 Hz, 1H), 7.20 (dd, J = 7.8 Hz, 2.7 Hz, 1H), 6.99-6.95 (m, 1H), 6.16 (d, J = 15.9 Hz, 1H), 3.90 (s, 3H), 3.79 (s, 3H), 1.83 (d, J = 13.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ ; 167.1, 160.0 (d, $J_{CP} = 4.4$ Hz), 144.8, 142.7, 133.1, 121.7 (d, $J_{CP} = 9.3$ Hz), 120.7, 120.3 (d, $J_{CP} = 92.7$ Hz), 111.5 (d, $J_{CP} = 6.0$ Hz), 55.6, 51.7, 19.3 (d, $J_{CP} = 73.0$ Hz, 2C); ³¹P NMR (161 MHz, CDCl₃) δ 39.91; IR (film) : 2950, 2917, 2842, 1716, 1567, 1465, 1258, 1167, 1064, 866 cm⁻¹. HRMS (EI) calcd. For C₁₃H₁₇O₄P : 268.0864; found : 268.0865.

(*E*)-Butyl 3-(2-(dimethylphosphoryl)-3-methoxyphenyl)acrylate (3h) : Yellow oil. $R_f = 0.4$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 9.17 (d, J = 15.9 Hz, 1H), 7.47 (t, J = 8.1 Hz, 1H), 7.20 (dd, J = 7.7 Hz, 2.5 Hz, 1H), 6.98-6.95 (m, 1H), 6.16 (d, J = 15.9 Hz, 1H), 4.18 (t, J = 6.9 Hz,

2H), 3.89 (s, 3H), 1.82 (d, J = 13.8 Hz, 6H), 1.73-1.66 (m, 2H), 1.46-1.37 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 159.9 (d, $J_{CP} = 4.4$ Hz), 144.6 (d, $J_{CP} = 2.6$ Hz), 142.9 (d, $J_{CP} = 4.3$ Hz), 133.0, 121.8 (d, $J_{CP} = 9.2$ Hz), 121.1, 120.6 (d, $J_{CP} = 90.5$ Hz), 111.4 (d, $J_{CP} = 5.9$ Hz), 64.4, 55.5, 30.9, 30.8, 19.5 (d, $J_{CP} = 68.2$ Hz, 2C), 13.8; ³¹P NMR (161 MHz, CDCl₃) δ 38.65; IR (film) : 2959, 2873, 1712, 1566, 1465, 1256, 1168, 1062, 931 cm⁻¹. HRMS (EI) calcd. For C₁₆H₂₃O₄P : 310.1334; found : 310.1335.

(*E*)-methyl 3-(2-(dimethylphosphoryl)-4-methoxyphenyl)acrylate (3i) : Yellow oil. $R_f = 0.4$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 15.6 Hz, 1H), 7.58 (dd, J = 8.6 Hz, 4.0 Hz, 1H), 7.34 (d, J = 14.0 Hz, 1H), 6.99 (d, J = 8.5 Hz, 1H), 6.23 (d, J = 15.6 Hz, 1H), 3.80 (s, 3H), 3.72 (s, 3H), 1.79 (d, J = 12.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 160.6 (d, $J_{CP} = 13.1$ Hz), 141.5, 135.3 (d, $J_{CP} = 90.8$ Hz), 129.4 (d, $J_{CP} = 10.3$ Hz), 128.8 (d, $J_{CP} = 6.3$ Hz), 119.1, 117.7, 117.1 (d, $J_{CP} = 9.0$ Hz), 55.6, 51.8, 18.7 (d, $J_{CP} = 71.2$ Hz, 2C); ³¹P NMR (161 MHz, CDCl₃) δ 37.39; IR (film) : 2953, 2919, 2849, 1713, 1593, 1240, 1172, 1035, 936, 863 cm⁻¹. HRMS (EI) calcd. For C₁₃H₁₇O₄P : 268.0864 ; found : 268.0864.

(*E*)-Methyl 3-(2-(dimethylphosphoryl)-3-(trifluoromethyl)phenyl)acrylate (3j) : Yellow oil. $R_f = 0.4$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, J = 15.7 Hz, 1H), 7.83-7.81 (m, 1H), 7.70-7.62 (m, 2H), 6.09 (d, J = 15.7 Hz, 1H), 3.81 (S, 3H), 1.94 (dd, J = 13.4 Hz, 1.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 146.2 (d, $J_{CP} = 4.2$ Hz), 143.2 (d, $J_{CP} = 5.3$ Hz), 133.7 (d, $J_{CP} = 9.0$ Hz), 132.7 (d, $J_{CP} = 146.7$ Hz), 131.6 (d, $J_{CP} = 2.1$ Hz), 128.0 (d, $J_{CP} = 6.8$ Hz), 125.2, 122.5, 120.5, 51.9, 20.5 (d, $J_{CP} = 71.2$ Hz, 2C); ³¹P NMR (161 MHz, CDCl₃) δ 38.60; IR (film) : 2998, 2954, 2923, 1717, 1437, 1318, 1164, 933, 867 cm⁻¹. HRMS (EI) calcd. For C₁₃H₁₄F₃O₃P : 306.0633; found : 306.0632.

(*E*)-Ethyl 3-(2-(dimethylphosphoryl)-3,4-dimethylphenyl)acrylate (3k) : White solid. Melting point = 96-98 °C; $R_f = 0.4$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, *J* = 15.6 Hz, 1H), 7.29-7.26 (m, 2H), 6.13 (d, *J* = 15.6 Hz, 1H), 4.26 (t, *J* = 14.2 Hz, 2H), 2.58 (s, 3H), 2.32 (s, 3H), 1.91 (d, *J* = 12.7 Hz, 6H), 1.33 (t, *J* = 7.14, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 146.0 (d, *J_{CP}* = 4.5 Hz), 140.8 (d, *J_{CP}* = 8.9 Hz), 140.0 (d, *J_{CP}* = 10.1 Hz), 137.1 (d, *J_{CP}* = 9.3 Hz), 133.1 (d, *J_{CP}* = 2.3 Hz), 131.8 (d, *J_{CP}* = 90.4 Hz), 126.8, 120.0, 60.6, 21.5 (d, *J_{CP}* = 70 Hz, 2C), 20.9, 18.9 (d, *J_{CP}* = 5.0 Hz), 14.3; ³¹P NMR (161 MHz, CDCl₃) δ 37.49; IR (pellet) : 3050, 2980, 2921, 1709, 1630, 1446, 1308, 1225, 1170 cm⁻¹. HRMS (EI) calcd. For C₁₅H₂₁O₃P : 280.1228; found : 280.1229.

(*E*)-Butyl 3-(2-(dimethylphosphoryl)-3,4-dimethylphenyl)acrylate (3l) : Yellow oil. $R_f = 0.4$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 15.6 Hz, 1H), 7.29-7.26 (m, 2H), 6.14 (d, J = 15.6 Hz, 1H), 4.20 (t, J = 6.7 Hz, 2H), 2.59 (s, 3H), 2.32 (s, 3H), 1.90 (d, J = 12.7 Hz, 6H), 1.71-1.67 (m, 2H), 1.46-1.40 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ; 166.7 (d, J_{CP} = 15.6 Hz), 146.0 (d, J_{CP} = 4.9 Hz), 141.0, 140.0 (d, J_{CP} = 8.9 Hz), 136.9 (d, J_{CP} = 9.0 Hz), 133.0, 131.9 (d, J_{CP} = 9.1 Hz), 126.7 (d, J_{CP} = 10.5 Hz), 120.1, 64.5, 30.7, 21.5 (d, J_{CP} = 70 Hz, 2C), 20.9, 19.2, 19.0 (d, J_{CP} = 4.9 Hz), 13.7; ³¹P NMR (161 MHz, CDCl₃) δ 37.48; IR (film) : 2959, 2873, 2873, 1713, 1631, 1456, 1308, 1169, 930 cm⁻¹. HRMS (EI) calcd. For C₁₇H₂₅O₃P : 308.1541; found : 308.1540.

(*E*)-Methyl 3-(4,5-dichloro-2-(dimethylphosphoryl)phenyl)acrylate (3m) : Colorless oil. $R_f = 0.3$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 15.7 Hz, 1H), 7.94 (d, J = 12.7 Hz, 1H), 7.73 (d, J = 3.9 Hz, 1H), 6.38 (d, J = 15.7 Hz, 1H), 3.83 (s, 3H), 1.83 (d, J = 13.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 139.9 (d, $J_{CP} = 4.5$ Hz), 136.7, 134.4, 133.9 (d, $J_{CP} = 102.0$ Hz), 133.7 (d, $J_{CP} = 10.4$ Hz), 129.6 (d, $J_{CP} = 10.3$ Hz), 123.1, 52.2, 18.9 (d, $J_{CP} = 72$ Hz, 2C); ³¹P NMR (161 MHz, CDCl₃) δ 33.08; IR (film) : 2998, 2952, 2918, 1720, 1638, 1436, 1311, 1175, 938 cm⁻¹. HRMS (EI) calcd. For C₁₂H₁₃Cl₂O₃P : 305.9979; found : 305.9976.

(*E*)-Ethyl 3-(2-(dimethylphosphoryl)thiophen-3-yl)acrylate (3n) : Red solid. Melting point = 107-110 ^oC; $R_f = 0.4$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.21 (dd, J = 15.9 Hz, 0.5 Hz, 1H), 7.61 (t, J = 1.6 Hz, 1H), 7.43 (dd, J = 5.0 Hz, 2.0 Hz, 1H), 6.36 (d, J = 15.9 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 1.86 (d, J = 13.3 Hz, 6H), 1.33 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 143.2 (d, $J_{CP} = 7.1$ Hz), 135.7 (d, $J_{CP} = 3.4$ Hz), 134.8, 131.2 (d, $J_{CP} = 5.7$ Hz), 127.6 (d, $J_{CP} = 11.2$ Hz), 121.6, 60.8, 20.3 (d, $J_{CP} = 74.9$ Hz, 2C), 14.3; ³¹P NMR (161 MHz, CDCl₃) δ 29.64; IR (pellet) : 3071, 2981, 2911, 1709, 1631, 1408, 1280, 1181, 1038, 862 cm⁻¹. HRMS (EI) calcd. For C₁₁H₁₅O₃PS : 258.0480; found : 258.0477.

(*E*)-Butyl 3-(2-(dimethylphosphoryl)thiophen-3-yl)acrylate (30) : Red solid. Melting point = 60-63 ^oC; $R_f = 0.4$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 15.9 Hz, 1H), 7.60 (t, J = 3.0 Hz, 1H), 7.43 (dd, J = 5.0 Hz, 1.9 Hz, 1H), 6.36 (d, J = 15.9 Hz, 1H), 4.21 (t, J = 6.7 Hz, 2H), 1.86 (d, J = 13.3 Hz, 6H), 1.73-1.66 (m, 2H), 1.48-1.38 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 143.2 (d, $J_{CP} = 7.1$ Hz), 135.7 (d, $J_{CP} = 3.4$ Hz), 134.8, 131.2 (d, $J_{CP} = 5.7$ Hz), 127.6 (d, $J_{CP} = 11.2$ Hz), 121.6, 64.7, 30.7, 20.3 (d, $J_{CP} = 74.9$ Hz, 2C), 19.7, 13.7; ³¹P NMR (161 MHz, CDCl₃) δ 29.60; IR (pellet) : 3070, 2959, 2933, 2873, 1710, 1632, 1409, 1279, 1177, 1037, 862 cm⁻¹. HRMS (EI) calcd. For C₁₃H₁₉O₃PS : 286.0793; found : 286.0793.

(*E*)-Butyl 3-(2-(diisopropylphosphoryl)phenyl)acrylate (3p) : Yellow oil. $R_f = 0.4$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, J = 15.8 Hz, 1H), 7.72-7.68 (m, 2H), 7.55-7.45 (m, 2H), 6.33 (d, J = 15.8 Hz, 1H), 4.22 (t, J = 6.7 Hz, 2H), 2.41-2.32 (m, 2H), 1.74-1.47 (m, 2H), 1.74-1.67 (m, 2H), 1.48-1.39 (m, 2H), 1.30 (d, J = 7.0 Hz, 3H), 1.26 (d, J = 7.0 Hz, 3H), 1.05 (d, J = 7.2 Hz, 3H), 1.00 (d, J = 7.2 Hz, 3H), 0.96 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 143.5 (d, $J_{CP} = 3.0$ Hz), 139.4, 133.0 (d, $J_{CP} = 7.7$ Hz), 131.6 (d, $J_{CP} = 2.4$ Hz), 129.6 (d, $J_{CP} = 78.3$ Hz), 129.0 (d, $J_{CP} = 10.3$ Hz), 127.8 (d, $J_{CP} = 8.8$ Hz), 121.1, 64.6, 30.7, 27.4, 26.7, 19.2, 16.4 (d, $J_{CP} = 2.2$ Hz,

2C), 15.6 (d, J_{CP} = 3.1 Hz, 2C), 13.8; ³¹P NMR (161 MHz, CDCl₃) δ 54.30; IR (film) : 2962, 2930, 2864, 1709, 1630, 1467, 1310, 1254, 1168, 997, 926 cm⁻¹. HRMS (EI) calcd. For C19H29O3P : 336.1854; found : 336.1854.

(2*E*,2'*E*)-Dibutyl 3,3'-(2-(dimethylphosphoryl)-1,3-phenylene)diacrylate (4a) : Yellow oil. $R_f = 0.4$ (methanol : dichloromethane = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 15.6 Hz, 2H), 7.54 (d, *J* = 2.9 Hz, 3H), 6.22 (d, *J* = 15.6 Hz, 2H), 4.22 (t, *J* = 6.7 Hz, 4H), 1.91 (d, *J* = 12.8 Hz, 6H), 1.73-1.66 (m, 4H), 1.48-1.39 (m, 4H), 0.96 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.3(2C), 144.4 (d, *J*_{CP} = 4.7 Hz, 2C), 139.7 (d, *J*_{CP} = 7.9 Hz, 2C), 131.9, 130.0 (d, *J*_{CP} = 9.4 Hz, 2C), 128.3 (d, *J*_{CP} = 51.3 Hz), 122.1(2C), 64.8(2C), 30.7(2C), 21.3 (d, *J*_{CP} = 70.6 Hz, 2C), 19.2(2C), 13.7(2C); ³¹P NMR (161 MHz, CDCl₃) δ 36.77; IR (film) : 2959, 2933, 2873, 1714, 1633, 1452, 1310, 1241, 1169, 863 cm⁻¹. HRMS (EI) calcd. For C₂₂H₃₁O₅P : 406.1909; found : 406.1906.

(2*E*,2'*E*)-Dimethyl 3,3'-(2-(dimethylphosphoryl)-4-methoxy-1,3-phenylene)diacrylate (4b) : Yellow oil. R_f = 0.4 (methanol : dichloromethane = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, *J* = 15.6 Hz, 1H), 7.88 (d, *J* = 16.1 Hz, 1H), 7.56-7.53 (m, 1H), 7.10 (d, *J* = 8.7 Hz, 1H), 6.38 (d, *J* = 16.1 Hz, 1H), 6.13 (d, *J* = 15.6 Hz, 1H), 3.89 (s, 2H), 3.82 (d, *J* = 10.8 Hz, 7H), 1.89 (d, *J* = 12.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 145.0, 139.8(2C), 132.5, 131.0 (d, *J*_{CP} = 11.1 Hz, 2C), 125.1, 121.8 (d, *J*_{CP} = 75.6 Hz), 119.3, 114.0(2C), 56.0, 51.9 (d, *J*_{CP} = 14.5 Hz, 2C), 21.5 (d, *J*_{CP} = 70.7, 2C); ³¹P NMR (121 MHz, CDCl₃) δ 37.36; IR (film) : 2952, 2916, 2844, 1708, 1593, 1488, 1176, 937, 864, 716 cm⁻¹. HRMS (EI) calcd. For C₁₇H₂₁O₆P : 352.1076; found : 352.1076.

(2*E*,2'*E*)-Dimethyl 3,3'-(4,5-dichloro-2-(dimethylphosphoryl)-1,3-phenylene)diacrylate (4c) : Colorless oil. R_f = 0.4 (methanol : dichloromethane = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 15.6 Hz, 1H), 7.86 (d, *J* = 16.3 Hz, 1H), 7.64 (d, *J* = 3.3 Hz, 1H), 6.22 (d, *J* = 15.7 Hz, 1H), 6.03 (t, *J* = 16.2 Hz, 1H), 3.84 (d, *J* = 13.3 Hz, 6H), 1.83 (d, *J* = 13.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 165.5, 142.8 (d, *J*_{CP} = 3.8 Hz), 142.4 (d, *J*_{CP} = 3.5 Hz), 139.3 (d, *J*_{CP} = 7.8 Hz), 137.1, 134.3, 132.7 (d, *J*_{CP} = 87.9 Hz), 130.2 (d, *J*_{CP} = 10.3 Hz), 126.8, 122.3, 52.2, 52.1, 21.3 (d, *J*_{CP} = 70.6 Hz, 2C); ³¹P NMR (161 MHz, CDCl₃) δ 37.07; IR (film) : 3024, 2956, 2904, 1714, 1633, 1448, 1321, 1256, 1100, 860, 726 cm⁻¹. HRMS (EI) calcd. For C₁₆H₁₇O₅P : 390.0191; found : 390.0190.

Rh-catalyzed oxidative ortho-alkenylation of arylphosphine oxide with styrene derivatives.

To an oven dried test tube were added $[Cp*RhCl_2]_2$ (2.9 mg, 2 mol %), AgSbF₆ (5.5 mg, 8 mol %), Ag₂CO₃ (55.5 mg, 0.2 mmol), aryl phosphine oxide (0.2 mmol) and styrene (0.6 mmol) in THF (0.8 mL). The resulting mixture was stirred under nitrogen at 90 °C (bath temperature) for 24 h. After celite filtration and evaporation of the solvent *in vacuo*, product was purified by column chromatography on silica gel.

(*E*)-(2,3-Dimethyl-6-styrylphenyl)dimethylphosphine oxide (5a) : Pale yellow solid. Melting point = 156-158 °C; $R_f = 0.4$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 15.9 Hz, 1H), 7.50-7.48 (m, 2H), 7.37-7.33 (m, 3H), 7.29-7.26 (m, 2H), 6.77 (d, *J* = 15.9 Hz, 1H), 2.60 (s, 3H), 2.31 (s, 3H), 1.90 (d, *J* = 12.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.5 (d, *J_{CP}* = 9.2 Hz), 140.1 (d, *J_{CP}* = 9.9 Hz), 137.8 (d, *J_{CP}* = 10.4 Hz), 137.3, 133.0 (d, *J_{CP}* = 2.5 Hz), 130.8, 130.7 (d, *J_{CP}* = 92.4 Hz), 129.8 (d, *J_{CP}* = 4.6 Hz), 128.8(2C), 127.8, 126.6(2C), 126.3 (d, *J_{CP}* = 11.0 Hz), 21.7 (d, *J_{CP}* = 70.7 Hz, 2C), 20.8, 19.1 (d, *J_{CP}* = 5.1 Hz); ³¹P NMR (161 MHz, CDCl₃) δ 38.16; IR (pellet) : 2957, 2919, 2853, 1736, 1626, 1596, 1493, 1430, 1166, 936, 872 cm⁻¹. HRMS (EI) calcd. For C₁₈H₂₁OP : 284.1330; found : 284.1327.

(*E*)-(2,3-Dimethyl-6-(3-methylstyryl)phenyl)dimethylphosphine oxide (5b) : Brown oil. $R_f = 0.3$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 15.7 Hz, 1H), 7.34-7.23 (m, 5H), 7.09 (d, J = 7.4 Hz, 1H), 6.73 (d, J = 16.0 Hz, 1H), 2.61 (s, 3H), 2.37 (s, 3H), 2.31 (s, 3H), 1.90 (d, J = 12.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.6 (d, $J_{CP} = 9.7$ Hz), 140.0 (d, $J_{CP} = 9.8$ Hz), 138.4, 137.8 (d, $J_{CP} = 10.3$ Hz), 137.2, 133.0 (d, $J_{CP} = 2.3$ Hz), 131.1, 130.6 (d, $J_{CP} = 94.9$ Hz), 129.5 (d, $J_{CP} = 4.6$ Hz), 128.7(2C), 127.3, 126.4 (d, $J_{CP} = 11.0$ Hz), 123.8, 21.8 (d, $J_{CP} = 61.9$ Hz, 2C), 21.4, 20.9, 19.1 (d, $J_{CP} = 5.1$ Hz); ³¹P NMR (161 MHz, CDCl₃) δ 38.34; IR (film) : 2919, 2859, 1601, 1452, 1292, 1169, 928, 861 cm⁻¹. HRMS (EI) calcd. For C₁₉H₂₃OP : 298.1487; found : 298.1484.

(*E*)-(6-(4-(tert-Butyl)styryl)-2,3-dimethylphenyl)dimethylphosphine oxide (5c) : Brown solid. $R_f = 0.3$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 16.0 Hz, 1H), 7.44-7.38 (m, 4H), 7.33-7.26 (m, 2H), 6.75 (d, J = 16.0 Hz, 1H), 2.63 (s, 3H), 2.31 (s, 3H), 1.90 (d, J = 12.7 Hz, 6H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 140.9 (d, $J_{CP} = 9.0$ Hz), 139.8 (d, $J_{CP} = 10.1$ Hz), 137.7 (d, $J_{CP} = 10.3$ Hz), 134.4, 133.0 (d, $J_{CP} = 2.7$ Hz), 130.8, 130.6 (d, $J_{CP} = 92.7$ Hz), 128.9 (d, $J_{CP} = 5.0$ Hz), 126.4(2C), 126.2, 125.8(2C), 34.6, 31.3(3C), 21.8 (d, $J_{CP} = 70.2$ Hz, 2C), 20.9, 19.0 (d, $J_{CP} = 5.0$ Hz); ³¹P NMR (161 MHz, CDCl₃) δ 38.27; IR (pellet) : 2961, 2914, 2864, 1511, 1459, 1291, 1170, 928 cm⁻¹. HRMS (EI) calcd. For C₂₂H₂₉OP : 340.1956 ; found : 340.1953.

(*E*)-4-(2-(Dimethylphosphoryl)-3,4-dimethylstyryl)phenyl acetate (5d) : colorless oil. $R_f = 0.3$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 16.0 Hz, 1H), 7.50 (d, J = 8.5 Hz, 2H), 7.35-7.27 (m, 2H), 7.07 (d, J = 8.6 Hz, 2H), 6.74 (d, J = 16.0 Hz, 1H), 2.57 (s, 3H), 2.31 (s, 3H), 2.30 (s, 3H), 1.91 (d, J = 12.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 150.2, 140.2 (d, J_{CP} = 9.6 Hz), 140.1 (d, J_{CP} = 9.6 Hz), 137.9 (d, J_{CP} = 10.3 Hz), 135.1 133.1 (d, J_{CP} = 2.4 Hz), 130.0 (d, J_{CP} = 4.7 Hz), 129.7, 127.7 (d, J_{CP} = 94.4 Hz), 127.6, 127.2, 126.4 (d, J_{CP} = 11.0 Hz), 121.9, 115.5 (d, J_{CP} = 20.2 Hz), 21.7 (d, J_{CP} = 70.0 Hz, 2C), 21.3, 20.9 (d, J_{CP} = 1.0 Hz), 19.3 (d, J_{CP} = 5.2 Hz); ³¹P NMR (161

MHz, CDCl₃) δ 38.86; IR (film) : 3005, 2923, 1760, 1601, 1505, 1369, 1195, 1166 cm⁻¹. HRMS (EI) calcd. For C₂₀H₂₃O₃P : 342.1385; found : 342.1386.

(*E*)-(6-(2-Bromostyryl)-2,3-dimethylphenyl)dimethylphosphine oxide (5e) : Brown oil. $R_f = 0.3$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 15.9 Hz, 1H), 7.74 (dd, J = 7.8 Hz, 1.6 Hz, 1H), 7.56 (dd, J = 8.0 Hz, 1.2 Hz, 1H), 7.42-7.39 (m, 1H), 7.32-7.29 (m, 2H), 7.12-7.07 (m, 2H), 2.52 (s, 3H), 2.32 (s, 3H), 1.92 (d, J = 12.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.6 (d, $J_{CP} = 9.1$ Hz), 139.4 (d, $J_{CP} = 9.9$ Hz), 138.0 (d, $J_{CP} = 10.4$ Hz), 137.3, 133.2 (d, $J_{CP} = 2.7$ Hz), 132.9(2C), 130.6 (d, $J_{CP} = 92.2$ Hz), 128.9, 128.8, 127.8, 127.3, 127.0 (d, $J_{CP} = 10.9$ Hz), 123.9, 21.6 (d, $J_{CP} = 70.2$ Hz, 2C), 20.9, 19.4 (d, $J_{CP} = 5.2$ Hz); ³¹P NMR (161 MHz, CDCl₃) δ 38.37; IR (film) : 2917, 2857, 1468, 1436, 1292, 1021, 920 cm⁻¹. HRMS (EI) calcd. For C₁₈H₂₀BrOP : 362.0435; found : 362.0433.

(*E*)-(6-(4-Chlorostyryl)-2,3-dimethylphenyl)dimethylphosphine oxide (5f) : Brown solid. Melting point = 86-90 °C; $R_f = 0.3$ (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 16.0 Hz, 1H), 7.43 (d, J = 8.5 Hz, 2H), 7.37-7.28 (m, 4H), 6.70 (d, J = 16.0 Hz, 1H), 2.53 (s, 3H), 2.31 (s, 3H), 1.91 (d, J = 12.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.4 (d, $J_{CP} = 8.9$ Hz), 139.6 (d, $J_{CP} = 9.9$ Hz), 137.9 (d, $J_{CP} = 10.5$ Hz), 136.0, 133.2, 131.1 (d, $J_{CP} = 2.5$ Hz), 130.7 (d, $J_{CP} = 4.5$ Hz), 130.6 (d, $J_{CP} = 92.2$ Hz), 129.0, 128.9(2C), 127.9(2C), 126.4 (d, $J_{CP} = 11.0$ Hz), 21.7 (d, $J_{CP} = 70.0$ Hz), 20.8, 19.4 (d, $J_{CP} = 5.2$ Hz); ³¹P NMR (161 MHz, CDCl₃) δ 39.0; IR (pellet) : 2919, 2854, 1735, 1589, 1469, 1437, 1292, 1171, 1021 cm⁻¹. HRMS (EI) calcd. For C₁₈H₂₀ClOP : 318.0940; found : 318.0937.

(*E*)-(2,3-Dimethyl-6-(2-(perfluorophenyl)vinyl)phenyl)dimethylphosphine oxide (5g) : Yellow solid. Melting point = 114-116 °C; R_f = 0.35 (methanol : dichloromethan = 1 : 20); ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, *J* = 16.4 Hz, 1H), 7.34 (s, 2H), 6.65 (d, *J* = 16.4 Hz, 1H), 2.54 (s, 3H), 2.33 (s, 3H), 1.92 (d, *J* = 12.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 146.1, 143.6, 140.0 (d, *J_{CP}* = 8.8 Hz), 139.9 (d, *J_{CP}* = 9.6 Hz), 139.0 (d, *J_{CP}* = 10.3 Hz), 138.8, 136.5, 133.2(2C), 131.1 (d, *J_{CP}* = 91.0 Hz), 126.6, 114.2(2C), 112.5, 21.4 (d, *J_{CP}* = 70.0 Hz), 21.7 (d, *J_{CP}* = 70.0 Hz), 20.9, 19.3 (d, *J_{CP}* = 5.2 Hz); ³¹P NMR (161 MHz, CDCl₃) δ 38.2; IR (pellet) : 3056, 2953, 2928, 2842, 1709, 1614, 1410, 1269, 1167, 1028, 906, 732 cm⁻¹. HRMS (EI) calcd. For C₁₈H₁₆F₅OP : 374.0859; found : 374.0857.

References

- 1. S. N. Tverdomed, J. Kolanowski, E. Lock, G-V. Roschenthaler, Tetrahedron, 2011, 67, 3887.
- 2. A. J. Blomfield, S. B. Herzon, Org. Lett., 2012, 14, 4370.
- 3. W-R. Zheng, J-L. Xu, T. Huang, Z-C. Chen, G. Wang, Computational & Theoretical chemistry, 2011, 968, 1.

ppm

