Biocatalytic Promiscuity of HRP in Resveratrol Oxidation: A Function Guided Design with Metal Binding

Chang Li, Xiaofei Xu, Jing Lu, Lin Wang and Yuanjiang Pan*

Department of Chemistry, Zhejiang University, Hangzhou 310027, China

panyuanjiang@zju.edu.cn

Supporting information

Table of contents	Page
I. HPLC yields of the products in HRP catalyzed resveratrol oxidation.	2
II. UV spectra of synthesized resveratrol dimers 2, 3&4 and 5.	3
III. Characterization of HRP-metal complex's conformation with circular d	ichroism
spectrometer.	4
IV. Determination of the HRP-metal complex constitution with Atomic At	osorption
Spectrometer (AAS).	5
V. NMR Spectra of Synthesized Compounds	6
NMR Spectra of 2 (1H, 13C and DEPT-135)	7-9
NMR Spectra of 3&4 (1H, 13C and DEPT-135)	10-12
NMR Spectra of 5 (1H, 13C and DEPT-135)	13-15
NMR Spectra of 6 (1H and 13C)	16-17
NMR Spectra of 7 (1H and 13C)	18-19

Enzyme used	conversion of 1 (%)	Yield of 2 (%)	Yield of 3&4 (%)	Yield of 5 (%)	Yield of 6 (%)	Yield of 7 (%)
native HRP	95.9	52.5	35.7	7.7	-	-
HRP-Zn ²⁺	96.7	67.6	23.1	6.1	-	-
HRP-Ni ²⁺	96.3	61.7	27.4	7.2	-	-
HRP-Co ²⁺	94.1	51.2	34.2	8.8	-	-
HRP-Ca ²⁺	57.1	34.0	19.8	3.3	-	-
HRP-Cu ²⁺	>99	-	-	-	70.5ª	48.2ª
HRP-Fe ²⁺	>99	-	-	-	74.2ª	51.6ª
HRP-Mn ²⁺	>99	94.0 (91.2ª)	-	-	-	-

I. HPLC yields of the products in HRP catalyzed resveratrol oxidation.

Table S1. HPLC yields of the products in HRP catalyzed resveratrol oxidation

^a isolated yields.

II. UV spectra of synthesized resveratrol dimers 2, 3&4 and 5.

1, 2, 3&4, and 5 were prepared as 0.001 M acetone solution, and their spectra were recorded using a Shimadzu. Spectra were recorded in the range of 200 - 400 nm. The spectra were shown in Figure S1.

Figure S1. UV spectra of 1, 2, 3&4 and 5 (0.001 M acetone solution)

III. Characterization of HRP-metal complex's conformation with circular

dichroism spectrometer.

Figure S2. CD spectra of native HRP, [HRP-Ca], [HRP-Mn], [HRP-Fe] and [HRP-Cu]

enzyme/complex	α -helix	β –sheet	β– turn	random
native HRP	0.0	82.8	0.0	17.2
[HRP-Ca]	0.0	82.0	0.0	18.0
[HRP-Cu]	0.0	82.5	0.0	17.5
[HRP-Fe]	0.0	82.7	0.0	17.3
[HRP-Mn]	0.0	82.1	0.0	17.9

 Table S2. Prediction of secondary structure constitution by Yang's method

III. Determination of the HRP-metal complex constitution with Atomic

Sample	Concentration of Fe (ppm)	Concentration of binded metal (ppm)	Number of binded metal
Native HRP	13.5564	-	-
HRP-Cu	13.5782	83.1007	6.12
HRP-Fe	52.4633	52.4633	2.87
HRP-Mn	13.5773	150.5723	11.09

Absorption Spectrometer (AAS)

Table S3. AAS suggested concentration of Fe and binded metals in 2 mg/mL native HRP, [HRP-Cu], [HRP-Fe] and [HRP-Mn]

III. NMR Spectra of Synthesized Compounds

NMR Spectra of 2 (1H, 13C and DEPT-135)						
NMR Spectra of 3&4 (1H, 13C and DEPT-135)	10-12					
NMR Spectra of 5 (1H, 13C and DEPT-135)	13-15					
NMR Spectra of 6 (1H and 13C)	16-17					
NMR Spectra of 7 (1H and 13C)	18-19					

8

-57.79-55.40

9.0

Electronic Supplementary Material (ESI) for RSC Advances This journal is o The Royal Society of Chemistry 2013

155

145

150

$66 \\ 53 \\ 49 \\ 05 \\ 05 \\ 05 \\ 05 \\ 05 \\ 05 \\ 05 \\ 0$	86 82 49 4	$ \begin{array}{c} 42 \\ 24 \\ 559 \\ 28 $	8 93 20	2 %
28.28.	14.	05. 05. 01. 00. 00.	. 90° 51 20° 51 20° 51	1. 7 1. C
	ててフラ			9,9
			γ	71

-58.21

55.1854.76

Electronic Supplementary Material (ESI) for RSC Advances This journal is o The Royal Society of Chemistry 2013

0.0

Electronic Supplementary Material (ESI) for RSC Advances This journal is o The Royal Society of Chemistry 2013

-		\sim	9	0	2	∞	6 4
9.	5.	0.	.7	.63	33.	5.	2.33
-1-22	15	.15	.13	.12	.12	.11	.10
							57

--60.3

-53.8

14

		1	1	· 1	1	1		1 1	1 1		1	1 1		1	1	- 1	·		
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	
									fl (ppi	n)									

f1 (ppm)

6 4-hydroxylbenzylaldehyde proton spectrum in DMSO, 500 MHz

f1 (ppm)

