Supporting Information

Incorporation of Chromophores into Dendrigraft Polybutadiene: Effect of Dendrigraft Matrix on the Fluorescent Properties

Yu Zhang, ^{*a,b*} Kaihua Shen, ^{*a,b*} Fang Guo, ^{*a,b*} Yifan Wang, ^{*a,b*} Yanshai Wang, ^{*a,b*} Yurong Wang ^{*a,b*} and Yang Li^{* *a,b*}

^a State Key Laboratory of Fine Chemicals, Department of Polymer Science and Enginerring, School of Chemica 1 Engineering, Dalian University of Techonology, Dalian Liaoning 116024, China, +86-411-84986289, FAX: + 86-411-84986002, E-mail: liyang@dlut.edu.cn^b Liaoning Key Laboratory of Polymer Science and Engineerin g, Dalian Liaoning 116024, China, +86-411-84986289, FAX: +86-411-84986002, E-mail: liyang@dlut.edu.cn

Table SI. Modification Efficiency of Dendrigraft PB Matrix				
polymer	E-PB	PB-OH	PB-Br	PB-N ₃
	E.F. ^{<i>a</i>}	E.F. ^{<i>b</i>}	E.F. ^{<i>c</i>}	$\mathrm{E.F.}^{d}$
	(%)	(%)	(%)	(%)
LC-PB	15	100	93	100
SC-PB	14	100	95	100

T 11 C1 14 11C / 0.0 . . 0 DD 14 · ·

^{*a*} E.F. was the efficiency of epoxidation degree, determined by ¹H NMR. ^{*b*} E.F. was the efficiency of hydroxyl degree, determined by ¹H NMR. ^c E.F. was the efficiency of brominated degree, determined by Mohr precipitation titration method. ^d E.F. was the efficiency of azide degree, determined by ¹H NMR, E.F.^c = A(1.47)/3A(3.5-4.1), A(1.47) and A(3.5-4.1) represents the area of integral areas at 1.47 ppm and 3.5-4.1 ppm, respectively.

Figure S1. UV-vis standard curve of Cou-Alk in THF.

Figure S2. FT-IR spectra of (a) EPB, (b) PB-Br, (c) PB-N₃.

Figure S3. FT-IR spectra of (a) PB-N₃, (b) PB-Cou, (c) Cou-Alk.

Figure S4. ¹H NMR spectra of PB-N₃ and PB-Br.