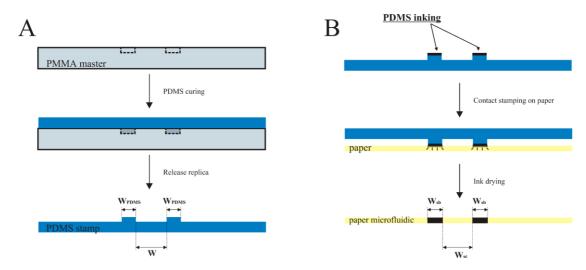

## **Electronic supporting information**

## Fast prototyping of paper-based microfluidic devices by contact stamping using indelible ink


Vincenzo F. Curto, Nuria Lopez-Ruiz, Luis F. Capitan-Vallvey, Alberto J. Palma, Fernando Benito-Lopez, Dermot Diamond



**Figure S1** Picture of the contact stamping apparatus. Rectangular prism made of aluminum and a layer of a black ceramic material (left), stone pad saturated with ink (right).



**Figure S2** Yellowish ring generated from the staining of Whatman grade 1 using Black Noodler's Ink<sup>TM</sup>.



**Figure S3** A) Scheme of the fabrication of the PDMS stamp and B) steps involved on the contact stamping of open straight channels for the experiments describe on Figure 3.  $W_{PDMS}$  represents the width of the PDMS stamp features, while W is the designed channel width. After performing the contact stamping on paper, the generated fluidic structures are characterised by  $W_{sb}$ , which is the stamped border width on the paper (with  $W_{sb} > W_{PDMS}$ ) and  $W_{sc}$ , which is the stamped channel width on the patterned paper (with  $W_{sc} < W$ ).