## **Supporting Information for:**

## New organometallic ruthenium(II) complexes containing chelidonic acid (4-oxo-4*H*-pyran-2,6-dicarboxylic acid): Synthesis, structure and in vitro biological activity

Thangavel Sathiya Kamatchi,<sup>a</sup> Palaniappan Kalaivani,<sup>a</sup> Paramasivan Poornima,<sup>b</sup> Viswanadha Vijaya Padma,<sup>b</sup> Frank R. Fronczek,<sup>c</sup> Karuppannan Natarajan<sup>\*a</sup>

<sup>a</sup>Department of Chemistry, Bharathiar University, Coimbatore 641046, India. E-mail: k\_natraj6@yahoo.com; Tel.: +91 422 2428319; Fax: +91 422 2422387.

<sup>b</sup>Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India.

<sup>c</sup>Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.

## **Table of Contents**

- (1) **Fig. S1** ORTEP diagram of **3** with hydrogen bonding interaction
- (2) Fig. S2 Packing diagram of the unit cell for complex 3
- (3) **Table S1** Selected bond lengths (Å) and angles (°) for 3
- (4) Fig. S3 The emission spectra of the DNA-EB system in the presence of H<sup>2</sup>L and complexes 1-4
- (5) Fig. S4 Synchronous spectra of BSA in the presence of increasing amounts of H<sup>2</sup>L and complexes 1-4
- (6) Fig. S5 Plausible mechanisms for DPPH radical scavenging activity



Fig. S1 ORTEP diagram of 3 with hydrogen bonding



Fig. S2 Packing diagram of the unit cell for complex 3

| Complex 3                 |            |  |  |  |
|---------------------------|------------|--|--|--|
| Interatomic distances (Å) |            |  |  |  |
| Ru(1)–C(2)                | 2.033(2)   |  |  |  |
| Ru(1)–O(1)                | 2.143(2)   |  |  |  |
| Ru(1)–C(8)                | 1.845(2)   |  |  |  |
| Ru(1)-N(1)                | 2.119(2)   |  |  |  |
| Ru(1) - P(1)              | 2.3897(3)  |  |  |  |
| C(5) - C(4)               | 1.351(3)   |  |  |  |
| C(1) - C(2)               | 1.359(3)   |  |  |  |
| C(3) –O(6)                | 1.244(3)   |  |  |  |
| Bond angles(°)            |            |  |  |  |
|                           |            |  |  |  |
| C(8)-Ru(1)-N(1)           | 94.53(9)   |  |  |  |
| C(8)-Ru(1)-P(1)           | 91.71(7)   |  |  |  |
| C(8)-Ru(1)-O(1)           | 174.35(8)  |  |  |  |
| C(8)-Ru(1)-C(2)           | 95.83(10)0 |  |  |  |
| C(2)-Ru(1)-O(1)           | 78.52(7)   |  |  |  |
| C(2)-Ru(1)-P(1)           | 91.30(6)   |  |  |  |
| C(2)-Ru(1)-N(1)           | 169.65(8)  |  |  |  |
| O(1)-Ru(1)-P(1)           | 88.45(5)   |  |  |  |
| O(1)-Ru(1)-N(1)           | 91.13(7)   |  |  |  |
| N(1)-Ru(1)-P(1)           | 88.39(6)   |  |  |  |
| P(1)-Ru(1)-P'(1)          | 175.48(2)  |  |  |  |

Table S1 Selected bond lengths (Å) and angles (°) for  ${\bf 3}$ 

Hydrogen-bonding distances (Å) and angles (°) for **3** 

| Complex | D-HA                            | D-H      | НА       | DA        | D-HA    |
|---------|---------------------------------|----------|----------|-----------|---------|
| 3       | $O5$ — $H5$ ··· $O2^{i}$        | 0.85     | 1.79     | 2.639 (2) | 180     |
|         | O1 <i>W</i> —H1 <i>W</i> ····O4 | 0.94 (5) | 1.91 (5) | 2.832 (3) | 170 (4) |
|         | O1 <i>W</i> —H2 <i>W</i> ···O2  | 1.03 (5) | 1.85 (5) | 2.867 (3) | 167 (4) |
| a .     | 1 (1) 1/0                       |          |          |           |         |

Symmetry code: (i) -*x*, -*y*, *z*-1/2.



**Fig. S3** The emission spectra of the DNA–EB system ( $\lambda_{exc} = 515 \text{ nm}$ ,  $\lambda_{em} = 530-750 \text{ nm}$ ), in the presence of **H**<sup>2</sup>**L** and complexes **1-4**. [DNA] = 10  $\mu$ M, [Complex] = 0–50  $\mu$ M, [EB] = 10  $\mu$ M. The arrow shows the emission intensity changes upon increasing complex concentration.



**Fig. S4** Synchronous spectra of BSA (1  $\mu$ M) in the presence of increasing amounts of  $H^2L$  and complexes **1-4** (0 – 40  $\mu$ M) for a wavelength difference of  $\Delta\lambda = 15$  nm. The arrow shows the emission intensity changes upon increasing concentration of compound



Fig. S5 Plausible mechanisms for DPPH radical scavenging activity