Electronic Supplementary Information

Surfactant less synthesis of anisotropic gold nanostructures: Can dicarboxylic acids alone act as shape directing agents?

D. V. Ravi Kumar¹, S. R. Kumavat¹, V. N. Chamundeswari¹, Partha Pratim Patra³, A. A. Kulkarni² and B. L.V. Prasad^{1*}

¹Physical & Materials Chemistry Division, National Chemical Laboratory,

Pune - 411 008, India.

Ph: +91 20 2590 2013, Fax: +91 20 2590 2636

²Chemical Engineering Division, National Chemical Laboratory, Pune - 411008, India

³ Photonics and Optical Nanoscopy Laboratory, Department of Physics and Chemistry, Indian Institute of Science Education and Research, Pune – 411 008, India.

E-mail: pl.bhagavatula@ncl.res.in

Oxalic acid to HAuCl₄ ratio	Colour	рН		
		Before adding	After adding	
		oxalic acid to	oxalic acid to	
		HAuCl₄	HAuCl₄	
		solution	solution	
1:1	Bluish	2.86	2.73	
2.5:1	Greenish	2.84	2.68	
5:1	Bluish violet	2.83	2.61	
10:1	Light blue	2.82	2.54	
20:1	Faint blue	2.82	2.44	

 Table ESI-1: Colour of the colloidal dispersion and pH of the reaction mixture at different molar

 ratios of oxalic acid to HAuCl₄.

Dicarboxylic acid		COL	OR			рН		
to HAuCl ₄ molar								
ratio	Malonic	Succinic	Glutaric	Adipic	Malonic acid	Succinic	Glutaric	Adipic
	acid	acid	acid	acid		acid	acid	acid
1:1	No color	No color	No color	No color	2.99	3.01	2.99	2.85
2.5:1	No color	No color	No color	-	2.80	2.90	2.93	-
5:1	No color	Light purple	No color	-	2.72	2.86	2.89	-
10:1	Light brown	Bluish	No color	-	2.63	2.81	2.83	-
20:1	Brownish	Purple	No color	No color	2.58	2.73	2.74	2.77

Table ESI-2: Colour of the colloidal dispersion and pH of the reaction mixture at different molar ratios of dicarboxylic acids to HAuCl₄.

Name of the dicarboxylic acid	pKa ¹	Distance between the dicarboxylic groups (A°) ²
Oxalic acid	1.23, 4.19	2.69
Malonic acid	2.83, 5.69	2.68
Succinic acid	4.19, 5.48	2.78
Glutaric acid	4.34, 5.42	3.26
Adipic acid	4.42, 5.41	2.87

Table ESI-3: pKa and distance between the carboxylic groups of different dicarboxylic acids used in the experiments.

Figure ESI-4: UV-Vis- NIR of the samples synthesized using (A) glutaric acid and (B) adipic acid.

Figure ESI-5: Photographs of the samples synthesized at different molar ratios of (A) Oxalic acid, (B) malonic acid and (C) succinic acid to HAuCl₄.

ESI-6 Texture Coefficient:

Degree of orientation of crystallographic plane can be characterized from texture coefficient, if it is greater than 1 for a particular plane indicates the preferred orientation of that specific plane. For (hkl) plane the texture coefficient can be expressed as³

$$C_{(hkl)} = \frac{\frac{I_{(hkl)i}}{I_{o(hkl)i}}}{\frac{1}{n} \sum_{n} \frac{I_{(hkl)n}}{I_{(hkl)n}}}$$

 $C_{(hkl)}$ is the texture coefficient of the facet $\{hkl\}$ $I_{(hkl)}$ is the intensity of the (hkl) reflection of the sample under analysis $I_{o(hkl)}$ is the intensity of the (hkl) reflection of a polycrystalline bulk sample 'n' is the number of reflections taken into account

Di carboxylic acid to HAuCl4 molar ratio	Texture Coefficient of (111) plane		
	Oxalic acid	Malonic Acid	Succinic acid
1:1	1.90		
2.5:1	1.98		
5:1	1.964		1.678
10:1	1.956		1.664
20:1	1.961	2	1.605

Figure ESI-7: TEM images of kite like Au nanostructures synthesized with oxalic acid using $[OA]/[Au^{+3}] - 1:1$.

Figure ESI-8: Synthesis of Au nanostructures synthesized using oxalic acid at [OA]/[Au⁺³] ratios (A-B) 2.5:1; (C-D) 5:1; (E-F) 10:1; and (G-H) at 20:1 respectively.

Figure ESI-9: SEM images of Au nanostructures synthesized using oxalic acid at [OA]/[Au⁺³] - 1:1(figure A& B); [OA]/[Au⁺³] -2.5:1 (Figure C &D); [OA]/[Au⁺³] -5:1 (Figure E &F); [OA]/[Au⁺³] - 10:1(figure G & H) respectively.

Figure ESI-10: TEM images of Au nanostructures synthesized using succinic acid at [SA]/[Au⁺³]

at 10:1.

Figure ESI-11: (A) TEM image of Au nanostructures synthesized using succinic acid at [SA]/[Au⁺³] at 20:1 (B-D) HRTEM images of twinned nanocrystals. Inset of C and D shows the FFT of corresponding nanocrystals.

Figure ESI-12: SERS spectra of 2 Napthalenethiol (2 NAT) molecule with Au nanostructures synthesized from oxalic acid and trisodium citrate.

ESI -13: Analytical enhancement factor (AEF):

Analytical enhancement factor⁴ of Au nanostructures synthesized from different carboxylic acids was calculated for the ring stretching Raman mode (at ~1428 cm⁻¹) of 2- Napthalenethiol molecule (1 μ M) at excitation wavelength of 785 nm.

Sample	AEF
[OA]/[Au ⁺³] – 1:1	7.4 × 10 ⁹
[OA]/[Au ⁺³] – 5:1	1.26 × 10 ⁹
[MA]/[Au ⁺³] – 20:1	2.9 × 10 ⁸
[SA]/[Au ⁺³] – 5:1	2.6 × 10 ⁷
[SA]/[Au ⁺³] – 20:1	6.4 × 10 ⁶
Citrate reduced Au NP	5.5 × 10 ⁶

Analytical enhancement factor = $(I_{SERS}/I_{Raman})^* (C_{SERS}/C_{Raman})$

References:

1. E. Stenhagen, Braude, Nachod, *Determination of organic structures by physical methods*. Academic Press, 1955.

2. Q. Zhang, N. Li, J. Goebl, Z. Lu, Y. Yin, J. Am. Chem. Soc. **2011**, *1*33, 18931-18939.

3. S. Karim, M.Toimil-Molares, F. Maurer, G. Miehe, W. Ensinger, J. Liu, T. Cornelius, R. Neumann, *App. Phys. A: Materials Science & Processing* **2006**, *84*, 403-407.

4. P. P. Patra, G. V. P. Kumar, J. Phys. Chem. Lett. **2013**,*4*,1167-1171