Supporting Information

Ultrasmall PEGylated Mn_xFe_{3-x}O₄ (x=0-0.34) Nanoparticles: Effects

of Mn(II) Doping on T_1 - and T_2 -Weighted Magnetic Resonance

Imaging

Lijing Wang,^a Qiong Wu,^a Su Tang,^a Jianfeng Zeng,^b Ruirui Qiao,^b Pan Zhao,^a Yuan Zhang,^a Fengqin Hu*^a and Mingyuan Gao^b

^a College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China. E-mail: fqhu@bnu.edu.cn ^b Institute of Chemistry, CAS, Bei Yi Jie 2, Beijing 100190, People's Republic of China.

Fig. S1 (a) TEM image and (b) electron diffraction patterns of the Mn_{0.30}Fe_{2.70}O₄ NPs

synthesized through hot injection method.

Fig. S2 Hydrodynamic size distribution of the $Mn_{0.34}Fe_{2.66}O_4$ NPs freshly dispersed in PBS.

Fig. S3 TGA of the $Mn_{0.34}Fe_{2.66}O_4$ NPs.