Supporting Information

Terminal Effects on Gelation by Low Molecular Weight Chiral Gelators

Hisako Sato^{a*}, Emiko Nogami^b, Tomoko Yajima^b and Akihiko Yamagishi^c

^a Department of Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan, Fax:

^b Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, 112-8610, Japan

^c Department of Chemistry, Toho University, Funabashi, Chiba 274-8510, Japan

1) Reagents: Tetrahydrofuran (THF) was distilled in the presence of sodium salt of benzophenone ketyl radical anion and stored under nitrogen atmosphere. Triethylamine was distilled in the presence of CaH₂. Other reagents were used as received without further purification.

2) Synthesis of C7Br: 7-Bromoheptanoic acid (Tokyo Chemical Industry, Japan) and oxalyl chloride (Wako, Japan) reacted at 1:4 ratio in benzene at 60 ° C for 6 hrs. The solvent and excess oxalyl chloride were evaporated in vacuum and the residue (the corresponding acid chloride) was used as it was. THF solution containing trans(1*R*, 2*R*)- or trans(1*S*, 2*S*)-1,2-diaminocyclohexane (0.57 g, 5.0 mmol, Wako, Japan), triethylamine (2 mL, Wako, Japan) and 7-bromoheptanoyl chloride (2.0 g, 10 mmol) was refluxed for 6 hours under nitrogen atmosphere. After filtering out triethylammonium chloride from the reactant solution, the filtrate was evaporated to dryness. The residue was washed with an aqueous HCl solution (1 M) several times and thereafter dried in air. The compounds were identified by ¹H NMR and mass spectra. Other gelator molecules (CnBr's: n = 5 ~ 12) were synthesized in the similar way by using the following reagents:

C5Br: 5-brompentanoic acid (Aldrich):

C6Br: 6-bromhexanoic acid (Aldrich)

C7Br: 7-bromoheptanoic acid (Tokyo Chemical Industry, Japan)

C8Br: 8-bromooctanoic acid (Aldrich)

C9Br: 9-bromononanoic acid (Tokyo Chemical Industry Co, Ltd., Japan)

C10Br: 10-bromodecanoic acid (Aldrich)

^{+81-89-927-9599;} Tel: +81-89-927-9599; E-mail: sato.hisako.my@ehime-u.ac.jp,

C11Br:11-bromoundecanoic acid (Aldrich) C12Br: 12-bromododecamoic acid (Aldrich)

3) ¹**H NMR data of synthesized gelators:** ¹H NMR spectra were recorded on a JEOL ESX-500 (500 MHz) spectrometer with CDCl₃ as the solvent and tetramethylsilane as an internal standard. ¹³C NMR spectra were recorded on the instruments operating at 125.8 MHz with CDCl₃ as the solvent and internal standard. Mass spectra (ESI) were obtained on a Thermo Exactive (Thermo Scientific).

*RR***-C5Br** (yield 83%) and *SS***-C5Br** (yield 81%): ¹H NMR δ 5.95 (m, 2H), 3.65 (m, 2H), 3.40 (t, J = 6.5 Hz, 4H), 2.17 (m, 4H), 2.03 (d, J = 13.0 Hz, 2H), 1.87 (m, 4H), 1.75 (m, 6H), 1.32 (m, 2H), 1.23 (m, 2H); ¹³C NMR δ 172.9, 53.7, 35.7, 33.1, 32.4, 32.1, 24.6, 24.2; HRMS (ESI⁺) *m/z* calcd for C₁₆H₂₈O₂N₂Br₂Na [M+Na] 461.0410, found 461.0402.

RR-C6Br (yield 81%) and **SS-C6Br** (yield 74%): ¹H NMR δ 5.99 (m, 2H), 3.65 (m, 2H), 3.40 (t, J = 6.5 Hz, 4H), 2.12 (m, 4H), 1.96 (m, 2H), 1.86 (m, 4H), 1.75 (m, 2H), 1.60 (m, 4H), 1.45 (m, 4H), 1.28 (m, 4H); ¹³C NMR δ 173.8, 53.1, 36.4, 33.5, 32.3, 30.9, 27.6, 24.8, 24.7; HRMS (ESI⁺) *m/z* calcd for C₁₈H₃₂O₂N₂Br₂Na [M+Na] 489.0723, found 489.0724.

*RR***-C7Br** (yield 89%) and *SS***-C7Br** (yield 88%): ¹H NMR δ 6.56 (m, 2H), 3.61 (m, 2H), 3.41 (t, J = 6.5 Hz, 4H), 2.14 (m, 4H), 2.02 (d, J = 13.0 Hz, 2H), 1.85 (m, 4H), 1.75 (d, J = 8.0 Hz, 2H), 1.59 (m, 4H), 1.44 (m, 4H), 1.33 (m, 6H), 1.24 (m, 2H); ¹³C NMR δ 173.6, 53.7, 36.7, 33.8, 32.5, 32.4, 28.3, 27.8, 25.5, 24.7; HRMS (ESI⁺) m/z calcd for C₂₀H₃₆O₂N₂Br₂Na [M+Na] 517.1036, found 517.1034.

*RR***-C8Br** (yield 88%) and *SS***-C8Br** (yield 58%): ¹H NMR δ 5.90 (m, 2H), 3.65 (m, 2H), 3.40 (t, J = 6.5 Hz, 4H), 2.13 (m, 4H), 2.02 (d, J = 13.0 Hz, 2H), 1.84 (m, 4H), 1.75 (d, J = 8.0 Hz, 2H), 1.58 (m, 4H), 1.42 (m, 4H), 1.32 (m, 10H), 1.24 (m, 2H); ¹³C NMR δ 173.7, 53.7, 36.8, 33.9, 32.7, 32.4, 29.1, 28.5, 28.0, 25.6, 24.7; HRMS (ESI+) m/z calcd for C₂₂H₄₀O₂N₂Br₂Na [M+Na] 545.1349, found 545.1351.

*RR***-C9Br** (yield 82%) and *SS***-C9Br** (yield 84%): ¹H NMR δ 5.93 (m, 2H), 3.65 (m, 2H), 3.41 (t, J = 6.5 Hz, 4H), 2.11 (m, 4H), 2.02 (d, J = 13.0 Hz, 2H), 1.85 (m, 4H), 1.75 (d, J = 8.0 Hz, 2H), 1.57 (m, 4H), 1.42 (m, 4H), 1.30 (m, 14H), 1.24 (m, 2H); ¹³C NMR δ 173.8, 53.6, 36.9, 34.0, 32.7, 32.4, 30.9, 29.1, 28.6, 28.1, 25.7, 24.7; HRMS (ESI⁺) *m/z* calcd for C₂₄H₄₄O₂N₂Br₂Na [M+Na] 573.1662, found 573.1657.

*RR***-C10Br** (yield 83%) and *SS***-C10Br** (yield 84%): ¹H NMR δ 5.89 (m, 2H), 3.65 (m, 2H), 3.41 (t, J = 6.5 Hz, 4H), 2.12 (m, 4H), 2.02 (d, J = 13.0 Hz, 2H), 1.85 (m, 4H), 1.75 (d, J = 8.0 Hz, 2H), 1.57 (m, 4H), 1.41 (m, 4H), 1.28 (m, 18H), 1.22 (m, 2H); ¹³C NMR δ 173.8, 53.6, 36.9, 34.0, 32.8, 32.4, 29.27, 29.25, 29.2, 28.7, 28.1, 25.7, 24.7; HRMS (ESI⁺) m/z calcd for C₂₆H₄₈O₂N₂Br₂Na [M+Na] 601.1975, found 601.1947.

RR-C11Br (yield 84%) and **SS-C11Br** (yield 75%): ¹H NMR δ 6.08 (m, 2H), 3.65 (m, 2H), 3.41 (t, J = 6.5 Hz, 4H), 2.11 (m, 4H), 2.00 (d, J = 13.0 Hz, 2H), 1.85 (m, 4H), 1.75 (d, J = 8.0 Hz, 2H), 1.56 (m, 4H), 1.41 (m, 4H), 1.27 (m, 22H), 1.20 (m, 2H); ¹³C NMR δ 174.0, 53.4, 36.9, 34.0, 32.8, 32.4, 29.4, 29.34, 29.28, 29.22, 28.7, 28.1, 25.8, 24.7; HRMS (ESI+) *m/z* calcd for C₂₈H₅₂O₂N₂Br₂Na [M+Na] 629.2289, found 629.2277.

RR-C12Br (yield 90%) and **SS-C12Br** (yield 88%): ¹H NMR δ 6.16 (br, 2H), 3.64 (m, 2H), 3.41 (t, J = 6.5 Hz, 4H), 2.11 (m, 4H), 1.99 (d, J = 13.0 Hz, 2H), 1.85 (m, 4H), 1.74 (d, J = 8.0 Hz, 2H), 1.56 (m, 4H), 1.42 (m, 4H), 1.26 (m, 26H), 1.21 (m, 2H); ¹³C NMR δ 174.0, 53.4, 36.9, 34.0, 32.8, 32.4, 29.5, 49.40, 29.38, 29.3, 29.2, 28.7, 28.1, 25.8, 24.7; HRMS (ESI⁺) m/z calcd for C₃₀H₅₆O₂N₂Br₂Na [M+Na] 657.2601, found 657.2615.

4) Melting temperature of gelators: The melting point of the synthesized compounds was obtained from DSC measurements. The results are given in the table below.

Gelators (<i>RR</i> -CnBr)	Temperature (°C)
C5Br	210
C6Br	188
C7Br	180
C8Br	169
C9Br	166
C10Br	168
C1/Br	166
C12Br	168

 Table S1. Melting temperature of enantiomeric gelators

5) ORD of gelators: The optical rotatory dispersion (ORD) of the synthesized gelators was measured for their CH₃OH solutions. The results are given in the table below.

Gelator	Conc.	[α] _D	Gelator	[α] _D
	molL ⁻¹	deg/(molL ⁻¹ cm)		deg/(molL ⁻¹ cm)
		589 nm		589 nm
<i>RR-</i> C6Br	0.0020	43.4	SS-C6Br	-33.4
<i>RR-</i> C7Br	0.0020	36.3	<i>SS</i> -C7Br	-37.5
<i>RR-</i> C8Br	0.0020	33.4	SS-C8Br	-36.8
<i>RR-</i> C9Br	0.0020	35.5	SS-C9Br	-29.0
<i>RR-C10</i> Br	0.0020	40.4	<i>SS-C10</i> Br	-35.7
<i>RR</i> -C11Br	0.0020	28.9	SS-C11Br	-28.4
<i>RR</i> -C12Br	0.0020	37.1	<i>SS</i> -C12Br	-32.8

 Table S2. Specific ORD values of *RR*- or *SS*-C*n*Br

6) The critical gelation concentrations of gelators: The critical gelation concentration was determined for the gels of various solvents formed by enantiomeric *RR*- and *SS*-**C***n***Br** at room temperature.

solvent	C5Br	C6Br	C7Br	C8Br	C9Br	C10Br	C11Br	C12Br	C11H
benzene	tg(0.016)	tg(0.028)	cg(0.058)	р	cg(0.15)	og(0.10)	cg(0.14)	og(0.14)	cg(0.0108)
toluene	tg(0.016)	tg(0.028)	cg(0.035)	р	cg(0.11)	og(0.085)	cg(0.10)	og(0.14)	cg(0.0086)
o-xylene	tg(0.021)	tg(0.028)	cg(0.026)	р	cg(0.051)	og(0.065)	cg(0.051)	og(0.049)	cg(0.0067)
m-xylene	tg(0.022)	tg(0.021)	cg(0.025)	р	cg(0.051)	og(0.068)	cg(0.050)	og(0.040)	cg(0.0059)
p-xylene	tg(0.014)	tg(0.020)	cg(0.021)	р	cg(0.050)	og(0.068)	cg(0.051)	og(0.046)	cg(0.0057)
mesitylene	tg(0.008)	tg(0.016)	cg(0.019)	р	cg(0.042)	og(0.068)	cg(0.035)	og(0.046)	cg(0.0067)
	i (mol/L	_)							
CQ	3	clear gel							
OĮ	3	opaque ge	el						
tg		turbid gel							
р		precipitate	9						

Table S3 CGC of RR- and SS-CnBr

7) The photographic images of gels

(a) The photographs of gels taken two weeks after preparation (solvent: benzene)
 ((left (upper)) *RR*-CnBr, n=7,9,11, (left (lower)) n=10 and 12, (right) *SS*-C6Br)

(b) The photographs of the gels of *RR*-C7Br taken ten months after the preparation (solvent: benzene): the concentration was (left) 0.15 M and 0.30 M (right). In the right sample, a white solid appeared around the edge region.

8) The dependence of sol-gel transition temperature on the concentration of *RR*-C7Br for various solvents: The temperature of sol-gel transition was determined for various gels formed by *RR*-C7Br as a function of the gelator concentration.

Fig. S1. The dependence of sol-gel transition temperature on the concentration of *RR*-C7Br.

9) The SEM images of dried benzene gels: The SEM measurements were performed on the freeze-dried samples of benzene gels.

Fig. S2(b). The SEM images of benzene gels formed by RR- (left) and SS (right)- C6Br

10) The XRD measurements of toluene gels: The XRD measurements were performed on the samples of toluene gels.

Fig. S3. The XRD patterns of powder (upper) and xerogel (lower) samples prepared from toluene gels

11) Molecular models of gels: The molecular model for the aggregation of gelators was constructed on the basis of the VCD results as shown below: (keys: Br (large dark red), O (small red), N (blue), H (small white) and C (grey)).

12) Vibrational circular dichroism of a turbid gel in case of C6Br

Fig. S4. The observed IR (lower) and VCD (upper) spectra of the turbid C_6D_6 gels of *RR***-C6Br** (black solid line) and *SS***--C6Br** (grey dotted line), respectively.

13) Crystallographic data from single crystal X-ray analyses

Table S4. Crystallographic data

Compound reference	SS-C6Br SS-C8Br		
Chemical formula	C18H32Br2N2O2	C22H40Br2N2O2	
Formula Mass	468.27	524.38	
Crystal system	Orthorhombic	Orthorhombic	
a/Å	4.8656(8)	4.8466(7)	
b/Å	16.426(3)	17.841(3)	
c/Å	25.783(4)	28.081(4)	
α/°	90.00	90.00	
ß/°	90.00	90.00	
γ/°	90.00	90.00	
Unit cell volume/Å ³	2060.6(6)	2428.1(6)	
Temperature/K	296(2)	296(2)	
Space group	P21 21 21	P21 21 21	
No. of formula units per unit cell, 2	Z	4 4	
Radiation type	ΜοΚα	ΜοΚα	
Absorption coefficient, μ /mm ⁻¹	3.946	3.358	
No. of reflections measured	10964	15510	
No. of independent reflections	3639	5612	
Rint	0.0368	0.0417	
Final R_1 values ($I > 2\sigma(I)$)	0.0264	0.0404	
Final wR(F^2) values ($I > 2\sigma(I)$)	0.0499	0.0787	
Final R1 values (all data)	0.0322	0.0552	
Final wR(F ²) values (all data)	0.0513	0.0824	
Goodness of fit on F^2	1.066	1.085	
Flack parameter			
Rogers parameter			
CCDC number	946263	946264	