# **Supplementary Information for**

# A brisk and flexible synthetic approach to enureas (alkenyl ureas) via Pdcatalyzed C-N coupling reaction of alkenyl tosylates and mesylates

Jignesh P. Dalvadi, Poojan K. Patel and Kishor H. Chikhalia<sup>\*</sup>

Department of Chemistry, School of Science,

Gujarat University, Ahmedabad 380009, Gujarat, India

#### Chikhalia\_kh@yahoo.com

| 1. Reagent and Instrumental                                          | 2  |
|----------------------------------------------------------------------|----|
| 2. Preparation of Ligand, alkenyl tosylates and mesylates substrates | 2  |
| 3. General procedure of reaction conditions screening                | 3  |
| 4. General procedures coupling reactions                             | 5  |
| 5. Charecterization of coupling yields                               | 5  |
| 6. <sup>1</sup> H and <sup>13</sup> C NMR Spectra                    | 18 |
| 7. Refrences                                                         | 29 |

## 1. Reagents

All reactions were carried out under a nitrogen atmosphere. Air- and moisture-sensitive solvents and solutions were transferred via syringe or stainless steel cannula. All chemicals were purchased from sigma Aldrich, merck and fluka. Solvents used were of analytical grade. Anhydrous potassium carbonate was stored in a nitrogen-filled glovebox, ground and was taken out in small quantities and stored in a desiccator. Aryl ureas were prepared by known methods<sup>1</sup>. All reactions were routinely checked by TLC. TLC was performed on aluminum-backed silica gel plates (silica gel 60  $F_{254}$  grade, Merck DC) with spots visualized by UV light. Column chromatography was performed on silica gel LC 60A (70-200 micron).

## Instrumental

All compounds were characterized by 1H NMR, 13C NMR as well as elemental analysis. Melting points were determined in open capillaries on a Veego electronic apparatus VMP-D (Veego Instrument Corporation, Mumbai, India) and are uncorrected. <sup>1</sup>HNMR and <sup>13</sup>C NMR spectra were recorded on a Bruker400 MHzmodel spectrometer usingDMSO-d6 as a solvent and TMS as internal standard with 1H resonant frequency of 400 MHz and <sup>13</sup>C resonant frequency of 100 MHz. The <sup>1</sup>H NMR, <sup>13</sup>C NMR chemical shifts were reported as parts per million (ppm) downfield from TMS (Me4Si). The splitting patterns are designated as follows; s, singlet; d, doublet; t, triplet; m, multiplet. Elemental analyses (C, H, N) were performed using a Heraeus CarloErba 1180 CHN analyzer (Hanau, Germany).

#### 2. Preparation of Ligand, alkenyl tosylates and mesylates substrates

Ferrocene based triazine ligand **L** were synthesised according to the literature method without modification.<sup>2</sup> Pyronyl tosylates and mesylates were prepared from their corresponding precursors with TsCl or MsCl in the presence of triethylamine in  $CH_2Cl_2$  according to the literature method without modifications.<sup>3</sup> Other alkeny tosylates and mesylates were prepared from their corresponding species according to the literature method without modifications.<sup>4</sup>

#### 4. General procedure of reaction conditions screening

To an oven dried flat-bottomed flask which was equipped with a magnetic stir bar, was charged with phenyl urea(1.0mmol), base (1.4 mmol), ligand (5 mol %), Pd (1.6 mol %), and alkeny tosylate **2** (1.0 mmol) in solvent (5.0 ml). The reaction was sparged with nitrogen for 15 minutes, stirred and heated to 60 °C for 10 hours. After complaition of reaction, the reaction mixture was cooled to room temperature and filtered through a pad of Celite eluting with ethyl acetate. The filtrate was concentrated and purification of the residue by silica gel column chromatography



 Table 1. Screening of ligands<sup>a</sup>

| Entry | Ligand                            | Yield <sup>b</sup> (%) |
|-------|-----------------------------------|------------------------|
| 1     | Xphos                             | 44                     |
| 2     | Sphos                             | 50                     |
| 3     | Ruphos                            | 55                     |
| 4     | Dppf                              | 38                     |
| 5     | Xantphos                          | 49                     |
| 6     | DPEphos                           | 35                     |
| 7     | Josiphos                          | 78                     |
| 8     | Ligand L                          | 93                     |
|       | (ferrocene based triazine ligand) |                        |

<sup>a</sup> Pd<sub>2</sub>(dba)<sub>3</sub>: 1.6 mol %, Ligand: 5 mol %, Phenyl Urea: 1.0 mmol, alkenyl tosylate:1.0 mmol, K<sub>2</sub>CO<sub>3</sub>: 1.4 mmol,

toluene: 5 ml per mmol.

<sup>b</sup>Isolated yields.

## Table 2. Screening of the Pd-Catalysts<sup>a</sup>

| Entry | Pd Catalyst       | Yield <sup>b</sup> (%) |
|-------|-------------------|------------------------|
| 1     | $Pd_2(dba)_3$     | 93                     |
| 2     | $Pd(OAC)_2$       | 60                     |
| 3     | $Pd(dppf)Cl_2$    | 52                     |
| 4     | $Pd(Ph_3P)_2Cl_2$ | 33                     |

<sup>a</sup> Pd: 1.6 mol %, ligand L: 5 mol %, Phenyl Urea: alkenyl tosylate:1.0 mmol, , K<sub>2</sub>CO<sub>3</sub>: 1.4 mmol, toluene: 5 ml per

mmol.

<sup>b</sup>Isolated yields.

# Table 3. Screening of bases<sup>a</sup>

| Entry | Base                            | Yield <sup>b</sup> (%) |
|-------|---------------------------------|------------------------|
| 1     | Cs <sub>2</sub> CO <sub>3</sub> | 67                     |
| 2     | NaO <i>t</i> Bu                 | 33                     |
| 3     | $K_2CO_3$                       | 93                     |
| 4     | $K_3PO_4$                       | 56                     |
| 5     | $N(C_2H_5)_3$                   | 0                      |

<sup>a</sup> Pd<sub>2</sub>(dba)<sub>3</sub>: 1.6 mol %, ligand L : 5 mol %, Phenyl Urea: 1.0 mmol, alkenyl tosylate:1.0 mmol, Base: 1.4 mmol,

toluene: 5 ml per mmol.

<sup>b</sup>Isolated yields.

# Table 4. Screening of solvents<sup>a</sup>

| Entry | Solvent     | Yield <sup>b</sup> (%) |
|-------|-------------|------------------------|
| 1     | 1,4-dioxane | 75                     |
| 2     | THF         | 80                     |
| 3     | Toluene     | 93                     |
| 4     | DMF         | 39                     |
| 5     | t-BuOH      | 30                     |

<sup>a</sup> Pd<sub>2</sub>(dba)<sub>3</sub>: 1.6 mol %, ligand L: 5 mol %, Phenyl Urea: 1.0 mmol, alkenyl tosylate:1.0 mmol, K<sub>2</sub>CO<sub>3</sub>: 1.4 mmol, solvent: 5 ml per mmol.

<sup>b</sup>Isolated yields.

#### 5. General procedures coupling reactions

To an oven dried flat-bottomed flask which was equipped with a magnetic stir bar, was charged with urea (1.0mmol),  $K_2CO_3$  (1.4 mmol), ligand L (5 mol %),  $Pd_2(dba)_3$  (3.3 mol %), and alkenyl tosylate or mesylate (1.0 mmol) in Toluene (5.0 ml). The reaction was sparged with nitrogen for 15 minutes, stirred and heated to 60 °C (reactions were carried out at room temreture for the synthesis of tosyloxycoumarin, tosyloxyquinolinone, tosyloxypyranone and tosyloxyfuranone with different ureas) for 10 hours. The reaction mixture was cooled to room temperature and filtered through a pad of Celite eluting with ethyl acetate. The filtrate was concentrated and purification of the residue by silica gel column chromatography gave the desired product

6. Charecterization of coupling yield



<sup>1</sup>**H NMR** (400 MHz, DMSO-d6) δ ppm : 9. 44 ( s, 1H), 8.05 ( s, 1H), 7.39-7.22 (m, 14H), 7.10 (m, 1H), 2.10 (s, 3H), <sup>13</sup>**C NMR** (100 MHZ, DMSO-d6) δ ppm : 156.55, 143.50, 141.08, 137.77,

129.02, 128.73, 128.35, 127.10, 122.21, 121.45, 118.19, 23.00 Anal. Calcd. For  $C_{22}H_{20}N_2O$ : C, 80.46; H, 6.14; N, 8.53 Found: C, 80.50; H, 6.22; N, 8.44. mp 130°C.



<sup>1</sup>H NMR (400 MHz, DMSO-d6) δ ppm : 9.42 (s, 1H), 7.80 (s, 1H), 7.32 (m, 8H), 7.05 (m, 1H), 6.83 (m, 1H), 2.19 (t, 2H), 1.91 (t, 2H), 1.69 (m, 4H)
<sup>13</sup>C NMR (400 MHZ, DMSO-d6) δ ppm : 156.55, 140.88, 138.88, 129.06, 128.79, 128.31, 126.23, 126.00, 123.90, 121.15, 118.19, 29.00, 27.20, 24.14, 23.88. Anal.Calcd. For C<sub>19</sub>H<sub>20</sub>N<sub>2</sub>O: C, 78.05; H, 6.89; N, 9.58 Found: C, 78.00; H, 6.81; N, 9.64. mp 151°C.



<sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ ppm : 9.47 (s, 1H), 8.32 (s, 1H), 7.45, (d, *J* = 7.6 Hz, 2H), 7.24 (t, *J* = 7.6 Hz, 2H), 7.12 (m, 3H), 7.07(t, *J* = 7.4 Hz, 1H), 7.00(m, 1H), 5.07 (s, 1H), 3.12 (t, 2H), 2.72 (t, 2H) .<sup>13</sup>**C NMR** (100 MHZ, DMSO-*d*<sub>6</sub>) δ ppm : 156.47, 141.17, 140.11, 136.00, 134.00, 129.04, 128.55, 127.10, 126.70, 126.25, 125.00, 121.78, 118.13, 33.11, 28.00 **Anal. Calcd. For** C<sub>17</sub>H<sub>16</sub>N<sub>2</sub>O: C, 77.25; H, 6.10; N, 10.60. **Found**: C, 77.29; H, 6.14; N, 10.50. mp 143°C.



<sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ ppm : 9.45 ( s, 1H), 9.00 ( s, 1H), 7.49 (d, *J* = 7.6 Hz, 2H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.04 (t, *J* = 7.4 Hz, 1H), 4.20 (m, 2H), 2.62 (t, *J* = 6.2 Hz, 2H), 2.34 (t, *J* = 6.2 Hz, 2H), 1.82 (m, 4H), 1.38 (t, *J* = 5.8 Hz, 3H), <sup>13</sup>**C NMR** (100 MHZ, DMSO-*d*<sub>6</sub>) δ ppm : 171.00, 156.37, 149.11, 140.94, 128.98, 121.00, 118.48, 104.12, 62.00, 28.28, 24.20, 23.05, 22.67, 16.03. **Anal. Calcd. For** C<sub>16</sub>H<sub>20</sub>N<sub>2</sub>O<sub>3</sub>: C, 66.65; H, 6.99; N, 9.72. **Found**: C, 66.60; H, 6.91; N, 9.79. **mp** 171-172°C.



<sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ ppm : 9.44 (s, 1H), 8.07 (s, 1H), 7.46 (d, *J* = 7.6 Hz, 2H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.01 (t, *J* = 7.5 Hz, 1H), 5.30 (tt, *J* = 6.1, 1.0 Hz, 1H), 3.92 (t, *J* = 6.0 Hz, 2H), 3.60 (d, *J* = 6.2 Hz, 2H), 2.22 (t, *J* = 6.0, 2H), 1.50 (s, 9H). <sup>13</sup>**C NMR** (100 MHZ, DMSO-*d*<sub>6</sub>) δ ppm : 156.21, 154.66, 141.00, 129.00, 124.12, 121.34, 118.15, 80.0, 43.57, 41.98, 28.44, 26.51. **Anal. Calcd. For** C<sub>17</sub>H<sub>23</sub>N<sub>3</sub>O<sub>3</sub>: C, 64.33; H, 7.30; N, 13.24 **Found**: C, 64.30; H, 7.37; N, 13.31. **mp** 154°C.



<sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ ppm : 9.49 (s, 1H), 8.35 (s, 1H), 7.64 (m, 2H), 7.40 (m, 3H), 7.21 (t, *J*= 7.5 Hz, 2H), 6.96 (tt, *J* = 7.4, 2.0 Hz, 1H), 6.08 (s, 1H) <sup>13</sup>**C NMR** (100 MHZ, DMSO-*d*<sub>6</sub>) δ ppm : 163.00, 158.12 , 156.55, 154.00, 141.08, 131.10, 129.02, 126.34, 125.00, 121.45, 118.19,117.80, 115.15, 88.05, .**Anal. Calcd.** For C<sub>16</sub>H<sub>12</sub>N<sub>2</sub>O<sub>3</sub>: C, 68.56; H, 4.32; N, 9.99.**Found:** C, 68.60; H, 4.28; N, 9.93. **mp** 149°C.



<sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ ppm : 9.50 (s, 1H), 8.41 (s, 1H), 7.66 (dd, J = 7.6, 5.7 Hz, 1H), 7.23 (m, 5H), 7.00 (td, J = 7.6, 5.8 Hz, 1H), 6.79 (tdd, J = 7.7, 5.7, 2.0 Hz, 1H) 6.10 (s, 1H) <sup>13</sup>**C NMR** (100 MHZ, DMSO-*d*<sub>6</sub>) δ ppm : 163.21, 158.64 , 155.49- 155.31 (m), 154.24, 152.97, 131.36, 130.09 (d, J = 8.4 Hz), 128.99 (d, J = 19.8 Hz), 126.30, 125.95 (d, J = 2.9 Hz), 125.08, 122.71 (d, J = 7.6 Hz), 121.86 (d, J = 19.8 Hz), 117.87, 115.43, 88.09, **Anal. Calcd.** For C<sub>16</sub>H<sub>11</sub>FN<sub>2</sub>O<sub>3</sub> : C, 64.43; H, 3.72; N, 9.39 **Found:** C, 64.36; H, 3.79; N, 9.33 **mp** 178-180°C.



<sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ ppm : 9.52 (s, 1H), 9.46 (s, 1H), 7.87 (dt, *J* = 9.0, 2.0 Hz, 1H), 7.53 (m, 2H), 7. 44 (m, 1H), 7.38 (td, *J* = 7.6, 5.8 Hz, 1H), 7.25 (m, 1H), 6.79 (ddt, *J* = 11.0, 7.8, 2.1 Hz, 2H), 6.20 (s, 1H), 3.50 (s, 3H).<sup>13</sup>**C NMR** (100 MHZ, DMSO-*d*<sub>6</sub>) δ ppm : 164.03, 163.29, 161.51, 158.22 , 156.35, 154.11, 140.93 (d, *J* = 7.6 Hz), 131.27, 130.01(d, *J* = 7.6 Hz), 126.24, 125.78, 117.90, 116.62 (d, *J* = 2.9 Hz), 115.50, 111.48 (d, *J* = 19.8 Hz), 106.60 (d, *J* = 19.8 Hz), 88.02, 31.00 .**Anal. Calcd.** For C<sub>17</sub>H<sub>14</sub>FN<sub>3</sub>O<sub>2</sub>: C, 65.59; H, 4.53; N, 13.50. **Found**: C, 65.52; H, 4.59; N, 13.56 .**mp** 182°C.



<sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ ppm : 9.50 (s, 1H), 8.57 (s, 1H), 7.70 (dd, J = 7.6, 2.0 Hz, 1H), 7. 56 (td, J = 7.5, 2.0 Hz, 1H), 7.30-7.22 (m, 4H), 7.00-7.09 (m, 2H), 6.15 (s, 1H).<sup>13</sup>**C NMR** 

(100 MHZ, DMSO-*d*<sub>6</sub>) δ ppm : 163.30, 161.51, 158.99, 158.19 , 156.63, 154.43, 139.74(d, *J* = 2.9 Hz), 131.17, 126.43, 125.21, 119.60 (d, *J* = 8.4 Hz), 117.74, 115.37, 114.55 & 114.34 (d, *J* = 21 Hz) , 88.18. Anal. Calcd. For C<sub>16</sub>H<sub>11</sub>FN<sub>2</sub>O<sub>3</sub> : C, 64.43; H, 3.72; N, 9.39 Found: C, 64.40; H, 3.77; N, 9.37 mp 175°C.



<sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ ppm : 9.38 (s, 1H), 9.04 (s, 1H), 7.73 (td, *J* = 7.6, 2.0 Hz, 1H), 7.50 (m, 2H), 7.36 (m, 1H), 7.21 (dd, *J* = 7.2, 2.1 Hz, 1H), 7.15-7.10 (m, 2H) 7.00 (dd, *J* = 7.8, 1.9 Hz, 1H), 6.12 (s, 1H), 3.44 (s, 3H), 3.85 (s, 3H). <sup>13</sup>**C NMR** (100 MHZ, DMSO-*d*<sub>6</sub>) δ ppm : 163.03, 158.11, 156.60, 153.90, 153.07, 131.00, 129.41, 126.14, 125.33, 124.96, 124.19, 120.71, 117.43, 113.78, 115.04, 88.00, 56.63, 31.24.**Anal. Calcd.** For C<sub>18</sub>H<sub>17</sub>N<sub>3</sub>O<sub>3</sub>: C, 66.86; H, 5.30; N, 13.00 **Found:** C, 66.90; H, 5.35; N, 13.05.**mp** 158-159°C.



<sup>1</sup>H NMR (400 MHz, DMSO-*d<sub>6</sub>*) δ ppm :9.41 (s, 1H), 8.37 (s, 1H), 7.75 (dd, *J* = 7.6, 2.0 Hz, 1H)
7.48 (m, 2H), 7.37 (m, 2H), 7.22 (t, *J* = 8.0 Hz, 1H), 6.95 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.62 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.13 (s, 1H). 3.88 (s, 3H).<sup>13</sup>C NMR (100 MHZ, DMSO-*d<sub>6</sub>*) δ ppm : 162.98, 159.17, 158.04, 156.58, 153.87, 141.29, 131.00, 129.69, 126.10, 125.04, 117.38, 116. 33, 115.09, 113.16, 107.45, 88.10, 56.57 .Anal. Calcd. For C<sub>17</sub>H<sub>14</sub>N<sub>2</sub>O<sub>4</sub>: C, 65.80; H, 4.55; N, 9.03
. Found: C, 65.84; H, 4.58; N, 9.01 mp 163°C



<sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ ppm : 9.40 (s, 1H), 8.90 (s, 1H), 7.70 (dd, *J* = 7.6, 2.0 Hz, 1H) 7.52 (m, 2H), 7.41 (d, *J* = 7.6 Hz, 2H), 7.27 (m, 1H), 6.83 (d, *J* = 7.6 Hz, 2H), 6.10 (s, 1H), 3.90 (s, 3H), 3.82 (s, 3H).<sup>13</sup>**C NMR** (100 MHZ, DMSO-*d*<sub>6</sub>) δ ppm : 163.06, 159.97, 158.05, 156.68, 154.02, 137.53, 131.05, 126.14, 125.10, 119.54, 117.33, 115.00, 114.36, 88.03, 56.56, 30. 95. **Anal. Calcd.** For C<sub>18</sub>H<sub>17</sub>N<sub>3</sub>O<sub>3</sub>: C, 66.86; H, 5.30; N, 13.00 **Found:** C, 66.89; H, 5.37; N, 13.03. **mp** 167°C.



<sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ ppm : 9. 52 (s, 1H), 8.90 (s, 1H), 8.20 (d, J = 8.6 Hz, 2H), 7.69 (d, J = 8.6 Hz, 2H), 6.07 (s, 1H), 4.32 (m, 1H), 2.91 (ddd J = 12.5, 6.9, 1.0 Hz, 1H), 2.51 (ddd J= 12.5, 6.8, 1.0 Hz, 1H), 1.60 (d, 3H) <sup>13</sup>**C NMR** (100 MHZ, DMSO-*d*<sub>6</sub>) δ ppm : 162.76, 158.10, 156.71, 142.44, 133.30, 119.13, 119.01, 107.68, 90.59, 76.09, 36.00, 22.08, Anal. Calcd. For C<sub>14</sub>H<sub>13</sub>N<sub>3</sub>O<sub>3</sub>: C, 61.99; H, 4.83; N, 15.49 Found: C, 61.94; H, 4.89; N, 15.44 mp 138 °C.



<sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ ppm : 9.44 (s, 1H), 9.00 (s, 1H), 7.33 (d, *J* = 7.8 Hz, 2H), 7.00 (d, *J* = 7.8, 2H), 6. 29 (s, 1H), 6.11 (s, 1H), 2.37 (s, 3H), 2. 16 (s, 3H). <sup>13</sup>**C NMR** (100 MHZ, DMSO-*d*<sub>6</sub>) δ ppm : 163.66, 162.95, 156.63, 152. 27, 139.91, 137.54, 128.74, 118.98, 97.00, 91.00, 22.01, 21.00. **Anal. Calcd.** For C<sub>14</sub>H<sub>14</sub>N<sub>2</sub>O<sub>3</sub>: C, 65.11; H, 5.46; N, 10.85. **Found:** C, 65.16; H, 5.50; N, 10.80 .mp 125°C.



<sup>1</sup>H NMR (400 MHz, DMSO-*d<sub>6</sub>*) δ ppm : 9.69 (s, 1H), 7.96 (s, 1H), 7.30-7.16 (m, 5H), 5.67 (s, 1H), 5.01 (s, 2H), 4.33 (s, 2H).<sup>13</sup>C NMR (100 MHZ, DMSO-*d<sub>6</sub>*) δ ppm : 170.05, 155.53, 154.10, 141.17, 128.37, 128.19, 126.72, 90.00, 67.76, 45.01 Anal. Calcd. For C<sub>12</sub>H<sub>12</sub>N<sub>2</sub>O<sub>3</sub> : C, 62.06; H, 5.21; N, 12.06. Found: C, 62.08; H, 5.28; N, 12.00.mp 134-135°C.



<sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ ppm : 9.73 (s, 2H), 7.30 (dd, *J* = 7.8, 2.0 Hz, 2H), 7.24 (d, *J* = 2.0 Hz, 2H), 7.18 (d, *J* = 7.8, 2H), 5.96 (s, 2H), 2.24 (s, 6H). <sup>13</sup>**C NMR** (100 MHZ, DMSO-*d*<sub>6</sub>) δ ppm : 162.85, 159.00, 156.78. 152.76, 135.00, 131.78, 126.63, 117.20, 115.07, 88.98, 21.51, **Anal. Calcd.** For C<sub>21</sub>H<sub>16</sub>N<sub>2</sub>O<sub>5</sub>: C, 67.02; H, 4.28; N, 7.44 **Found**: C, 67.00; H, 4.34; N, 7.50. **mp** 187°C.



<sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ ppm : 7.18 (d, *J* = 7.8, 2H), 6.95 (d, *J* = 2.0 Hz, 2H), 6.75 (dd, *J* = 7.8, 2.0 Hz, 2H), 6.00 (s, 2H), 4.15 (m, 4H), 3.85 (s, 6H).<sup>13</sup>**C NMR** (100 MHZ, DMSO-*d*<sub>6</sub>) δ ppm : 161.88, 160.68, 157.14, 156.82, 153.00, 128.02, 111.00, 110.00, 103.55, 89.07, 56.23, 42.68. **Anal. Calcd.** For C<sub>23</sub>H<sub>18</sub>N<sub>2</sub>O<sub>7</sub>: C, 63.59; H, 4.18; N, 6.45. **Found:** C, 63.64; H, 4.16; N, 6.40 **.mp** 190°C.



<sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ ppm : 9.48 (s, 1H), 8.43 (s, 1H), 7.73 (m, 2H), 7.62 (m, 3H), 7.44 (m, 2H), 7.31 (m, 2H), 7.09 (tt, *J* = 7.4, 2.0 Hz, 1H), 5.01 (m, 1H), 2.10 (d, 3H). <sup>13</sup>**C NMR** (100 MHZ, DMSO-*d*<sub>6</sub>) δ ppm : 156.50, 141.10, 139.47, 136.67, 129.01, 129.46, 128.48, 127.12, 121.51, 118.23, 107. 10, 12.22. **Anal. Calcd.** For C<sub>16</sub>H<sub>16</sub>N<sub>2</sub>O : C, 76.16; H, 6.39; N, 11.10. **Found:** C, 76.19; H, 6.44; N, 11.14. **mp** 137°C.



<sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ ppm : 9.76 (s, 1H), 9.42 (s, 1H), 8.15 (s, 1H), 7.73 (d, *J* = 7.8 Hz, 2H), 7.58 (d, *J* = 7.8 Hz, 2H), 5.30 (t, *J*= 6.2 Hz, 1H), 3.92 (t, *J*= 5.8 Hz, 2H), 3.60 (d, *J* = 6.2 Hz, 2H), 2.22 (t, J = 5.8 Hz, 2H), 2.11 (s, 3H) 1.50 (s, 9H). <sup>13</sup>**C NMR** (100 MHZ, DMSO-*d*<sub>6</sub>) δ ppm : 170.04, 156.50, 154.66, 139.00, 137.87, 124.12, 119.13, 119.01, 80.0, 43.57, 41.98, 28.44, 26.51 23.51. **Anal. Calcd.** For C<sub>19</sub>H<sub>26</sub>N<sub>4</sub>O<sub>4</sub> : C, 60.95; H, 7.00; N, 14.96. **Found:** C, 60.91; H, 7.07; N, 14.92. **mp** 129°C.



<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) δ ppm : 9.47 (s, 1H), 8.64 (s, 1H), 7.94 (d, 8.2 Hz, 2H), 7.85 (d, 8.2 Hz, 2H), 5.64 (s, 1H), 3.02 (t, *J* = 6.1 Hz, 2H), 2.75 (t, *J* = 6.0 Hz, 2H), 2.60 (s, 3H), 1.79 (m, 2H).
<sup>13</sup>C NMR (100 MHZ, DMSO-*d*<sub>6</sub>) δ ppm : 197.86, 196.83, 156.70, 154.59, 141.54, 135.58, 128.76, 118.61, 108.86, 37.00, 28.44, 25.75, 22.89 Anal. Calcd. For C<sub>15</sub>H<sub>16</sub>N<sub>2</sub>O<sub>3</sub> : C, 66.16; H, 5.92; N, 10.29. Found: C, 66.10; H, 5.99; N, 10.21. mp 122°C.



<sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ ppm : 9.49 (s, 1H), 8.08 (s, 1H), 7.89 (d, J = 8.8 Hz, 2H), 7.55 (d, J = 8.8 Hz, 2H), 5.97 (t, J = 6.2 Hz, 1H), 2.20 (m,2H), 1.87 (m, 2H), 1.60 (m, 1H), 1.52 (tt, J = 8.2, 7.0 Hz, 1H), 1.33 (m, 1H), 1. 17 (s, 9H). <sup>13</sup>**C NMR** (100 MHZ, DMSO-*d*<sub>6</sub>) δ ppm : 156.79, 150.00, 143.44, 132.49, 132.17, 126.75 (m), 124.00, 119.69 (d, J = 2.2 Hz), 102.00, 45.11, 32.13, 28.00, 26.89, 26.26, 22.76. **Anal. Calcd.** For C<sub>18</sub>H<sub>23</sub>F<sub>3</sub>N<sub>2</sub>O : C, 63.51; H, 6.81; N, 8.23 **Found:** C, 63.55; H, 6.77; N, 8.28. **mp** 147°C.



<sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ ppm : 9.51 (s, 1H), 8.70 (s, 1H), 7.73 (d, J = 2.2, 1H), 7.57 (dd, J = 8.0, 2.0 Hz, 1H), 7.40 (d, J = 8.2, 2H), 7.32 (d, J = 7.8, 1H), 7.21 (d, J = 8.2, 2H), 6.07 (s, 1H). <sup>13</sup>**C NMR** (100 MHZ, DMSO-*d*<sub>6</sub>) δ ppm : 162.86, 156.71, 153.83, 151.28, 138.90, 131.15, 130.18, 129.47, 128.35, 127.10, 121.55, 120.13, 117.84, 88.56. **Anal. Calcd.** For C<sub>16</sub>H<sub>10</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>3</sub> : C, 55.04; H, 2.89; N, 8.02. **Found:** C, 55.00; H, 2.94; N, 8.05. **mp** 192-194°C.



<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) δ ppm : 9.43 (s, 1H), 8.76 (s, 1H), 7.62 (m, 2H), 7.50 (d, *J* = 7.6 Hz, 2H), 7.44 (m, 1H), 7.25 (m, 1H), 6.90 (d, *J* = 7.6 Hz, 2H), 6.20 (s, 1H), 3.72 (t, *J* = 4.8 Hz, 4H), 3.50 (s, 3H).
3. 24 (t, *J*= 4.8 Hz, 4H).
<sup>13</sup>C NMR (100 MHZ, DMSO-*d*<sub>6</sub>) δ ppm : 163.08, 158.00, 156.47, 154.09, 151.75, 136.00, 131.10, 126.21, 125.11, 120.56, 118.39, 117.35, 115.01, 88.09, 67.01, 49.79, 31.00. Anal. Calcd. For C<sub>21</sub>H<sub>22</sub>N<sub>4</sub>O<sub>3</sub>: C, 66.65; H, 5.86; N, 14.81 Found: C, 66.71; H, 5.90; N, 14.77. mp 190°C. mp 149°C.



<sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ ppm : 8.88 (s, 1H), 7.67 (d, *J* = 7.6 Hz, 2H), 7.41 (s, 1H), 7.00-7.17 (m, 3H), 4.17 (m, 2H), 2.73 (t, 2H), 2.42 (t, 2H), 2.00 (m, 2H), 1.32(t, 3H). <sup>13</sup>**C NMR** (100 MHZ, DMSO-*d*<sub>6</sub>) δ ppm : 170.79, 152.07, 148.91, 141.00, 133.00, 129.05, 127.50, 105.12, 62.10, 31.24, 29.57, 25.19, 15.81. **Anal. Calcd.** For C<sub>15</sub>H<sub>18</sub>N<sub>2</sub>O<sub>5</sub>S: C, 53.24; H, 5.36; N, 8.28 **Found:** C, 53.31; H, 5.39; N, 8.33. **mp** 118°C.

7. <sup>1</sup>H and <sup>13</sup>C NMR Spectra





| Current Data Parameters<br>NAME 10082012<br>EXPNO 1<br>PROCNO 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F2 - Acquisition Parameteri<br>Date_         20120809           Time         1.47           INSTRUM         spect           PROBHD         5 mm BBO BB/19           PULPROG         100           TD         65536           SOLVENT         DMSO           DS         0           SMH         10000.000 Hz           FIDRES         0.152588 Hz           AQ         3.2768500 set           RG         193.66           DW         50.000 up           DE         6.50 ust           TE         294.0 K           D1         1.0000000 set           TO0         1 |
| PLN1 10.50000000 W<br>SF01 400.1324710 MH:<br>SI 65536<br>SF 400.1300000 MH:<br>NDW EM<br>SSB 0<br>LB 0.30 Hz<br>GB 0                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                       | BRUKER                                                                                                                                                                                                                                  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | Current Data Parameters<br>NAME 10082012<br>RXPNO 1<br>PROCNO 1<br>F2 - Acquisition Parameters<br>Date_ 20120809<br>Time 1.47<br>INSTRUM spect                                                                                          |
| H F                   | PROBHD 5 mm BBO BB/19<br>FULPROG mg30<br>TD 65536<br>SOLVENT DMSO<br>NS 24<br>D5 0<br>SMH 10000.000 Hz<br>FIDRES 0.152588 Hz<br>AQ 3.2765500 sec<br>RG 193.66<br>DW 50.000 use<br>DE 6.50 use<br>TZ 294.0 X<br>01 1.0000000 sec<br>TO 1 |
| I                     | NUC1 IH<br>Pl 14.00 US0<br>PLM1 10.5000000 W<br>SF01 400.1324710 MHz                                                                                                                                                                    |
|                       | P2 - Processing parameters<br>SI 55536<br>SF 400.1300000 MHz<br>NDW EM<br>SSB 0<br>LB 0.30 Hr<br>GB 0<br>PC 1.00                                                                                                                        |
| 2 11 10 9 8 7 6 5 4 3 | 2 1 0 ppm                                                                                                                                                                                                                               |

























any feries where the manufil of the factor of the state o

190 180 170 160 150 140 130 120 110 100 90





rayarabahalan pialah ina si ali yaya na si ali yaya na si kana na kana na kana na si kana na si kana na si kana

60 50 40 30 20 10

70

80

F2 - Processing parameters SI 32768

0

0

SF

SSB LB GB PC

0 ppm

100.6127690 MHz EM

1.00 Hz

1.40

## 8. Refrences

- 1. Kurzer, J. Chem. Soc., 1949, 2292.
- 2. X. P. Hu, H. P. Chen, Z. Zheng, Adv. Synth. Catal. 2005, 347, 541-548.
- 3. J. Kuroda, K. Inamoto, K. Hiroya, T. Doi, Eur. J. Org. Chem. 2009, 2251-2261.
- 4. A. Klapars, K. R. Campos, C. Y. Chen, R. P. Volante. Org. Lett. 2005, 7, 1185-1188.