Electronic Supplementary Information

The synergy effect on Li storage of LiFePO₄ with activated carbon modifications

Bo Wang,^{ab} Qiuming Wang,^a Binghui Xu,^b Tiefeng Liu,^a Dianlong Wang^{*a} and George Zhao^{*b}

^a Harbin Institute of Technology, School of Chemical Engineering and Technology, Xidazhi Street, 150001 Harbin, China.Fax:86 45186413721; Tel: 86 451 86413751; E-mail: <u>wangdianlongwbhit@163.com</u>

^b The University of Queensland, Faculty of Engineering, Architecture and Information Technology, School of Chemical Engineering, St Lucia, Brisbane, QLD 4072, Australia. Fax: 61 7 33654199; Tex: 61 7 33469997; E-mail:

george.zhao@uq.edu.au

Fig. S1[†] XRD patterns of LFP, 5%LAC and standard LFP (JCPDS Card No. 40-1499).

Fig. S2[†] The nitrogen adsorption/desorption isotherms and pore-size distributions of (a) AC; (b) LFP; (c) 5%LAC.

Fig. S3† R_1 of electrodes LFP and 5%LAC at different SOCs.

Fig. S4[†] FESEM images of LFP particles (a, b), AC bulks (c), LFP electrode (e), and 5%LAC electrode (g). EDX spectrum of AC (d). HRTEM images of LFP electrode (f) and 5%LAC electrode (h).

Fig. S5† D_{Li} of electrodes LFP and 5%LAC at different SOCs.

	AC	LFP	5%LAC
BET surface area $(m^2 \cdot g^{-1})$	1241.6	9.3	66.4
Electric conductivity $(S \cdot cm^{-1})$	4.62 × 10 ⁻³	1.56 × 10 ⁻⁸	6.28 × 10 ⁻⁶

Table S1† The BET surface areas and electric conductivities of AC, LFP and 5%LAC