Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

Stereoselective Synthesis of the Macrocyclic Core (C7-C19) of Carolacton

Gangavaram V. M. Sharma* and Sheri Venkata Reddy*

Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology

Hyderabad-500 007, India.

Contents

P. No.

S2-S7

1. Experimental details

2. ¹H and ¹³C Spectra of compounds **2-23**

3. HPLC Spectra of compounds 11, 14, 19, 20

S8-S12, S14-S19, S21-S32, S34, S35, S37-S41

S13, S20, S33, S36

((2R,3R)-3-(4-(tert.-Butyldiphenylsilyloxy)butyl)oxiran-2-yl)methanol (10)

To a stirred mixture of (-)-DIPT (1.24 g, 5.32 mmol) in CH₂Cl₂ (30 mL) at -20 °C containing molecular seives 4 Å (2.0 g), Ti(OⁱPr)₄ (0.76 mL, 2.66 mmol) and cumene hydroperoxide (4.90 mL, 31.90 mmol) were sequentially added and stirred for 20 min. A solution of allylic alcohol **9a** (9.0 g, 26.62 mmol) in CH₂Cl₂ (60 mL) was added and stirred for 5 h at -20 °C. The reaction mixture was quenched with 10% NaOH in brine solution (45 mL) and stirred for 3 h. It was filtered through a pad of celite and washed with CH₂Cl₂ (200 mL). The organic layer was dried (Na₂SO₄), evaporated and purified the residue by column chromatography (60-120 mesh Silica gel, 12% ethyl acetate in pet. ether) to furnish **10** (8.2 g, 87%) as a yellow oil. $[\alpha]_D^{25}$ +38.1 (*c* 0.73, CHCl₃); IR (neat): 3450, 3073, 2932, 2859, 1585, 1472, 1427, 1109, 824, 704 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.65-7.59 (m, 4H), 7.39-7.30 (m, 6H), 3.88-3.80 (m, 1H), 3.68-3.61 (m, 2H), 3.60-3.51 (m, 1H), 2.90-2.85 (m, 1H), 2.83-2.79 (m, 1H), 1.62-1.47 (m, 6H), 1.04 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 135.5, 133.9, 129.5, 127.6, 63.5, 61.6, 58.4, 55.9, 32.1, 31.6, 31.2, 26.8, 22.2; HRMS (ESI): *m/z* calculated for C₂₃H₃₂O₃NaSi (M+Na)⁺ 407.2018, found 407.2011.

(2S,3S)-7-(tert.-Butyldiphenylsilyloxy)-3-methylheptane-1,2-diol (11)

To a stirred solution of **10** (8.0 g, 22.47 mmol) in dry hexane (80 mL), Me₃Al (33.7 mL, 67.4 mmol, 2 M in toluene) was added at 0 °C and allowed to stir for 10 min. Reaction mixture was quenched with sat. NH₄Cl solution (15 mL) and extracted with EtOAc (2 x 100 mL). The combined organic layers were washed with brine (50 mL) and dried (Na₂SO₄). Solvent was evaporated and purified the residue by column chromatography (60-120 mesh Silica gel, 15% ethyl acetate in pet. ether) to afford **11** (6.70 g, 80%) as a colourless oil. $[\alpha]_D^{25}$ -11.6 (*c* 0.25, CHCl₃); IR (neat): 3393, 3071, 2932, 2863, 1462, 1427, 1248, 1109, 824, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.66-7.59 (m, 4H), 7.39-7.30 (m, 6H), 3.67-3.60 (m, 3H), 3.46-3.40 (m, 2H), 2.39-2.04 (bs, 2H), 1.63-1.41 (m, 6H), 1.33-1.23 (m, 1H), 1.04 (s, 9H), 0.86 (d, 3H, *J* = 6.8 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 135.5, 134.0, 129.5, 127.5, 64.5, 63.8, 35.0, 32.7, 32.0, 26.8, 23.1, 19.2, 15.1; HRMS (ESI): *m/z* calculated for C₂₄H₃₇O₃Si (M+H)⁺ 401.2511, found 401.2508. The diastereomeric ratio was measured by HPLC {column: XDB-C 18, 20% water in acetonitrile, flow rate: 1 mL/min, 254 nm, tr (major) = 6.367 min, tr (minor) = 7.261 min}.

(S,E)-Ethyl 8-(*tert*.-butyldiphenylsilyloxy)-2,4-dimethyloct-2-enoate (12)

To a cooled (0 $^{\circ}$ C) solution of **11** (6.70 g, 18.01 mmol) in H₂O:acetone (1:9, 35 mL), NaIO₄ (5.89 g, 27.02 mmol) was added and stirred at room temperature for 1 h. Acetone was removed under reduced pressure below 30 $^{\circ}$ C and extracted with CH₂Cl₂ (2 x 75 mL). It was washed with water (50 mL), brine (50 mL) and dried (Na₂SO₄). Solvent was evaporated under reduced pressure to give aldehyde, which was used as such for further reaction.

To a solution of the above aldehyde (6.0 g, 16.21 mmol) in dry toluene (30 mL) at reflux, Ph₃P=C(Me)CO₂Me (6.45 g, 17.83 mmol) was added and stirred at reflux for 1.5 h. The reaction mixture was cooled to room temperature and filtered through a pad of Celite using EtOAc (100 mL), solvent was evaporated and purified the residue by column chromatography (60-120 mesh Silica gel, 3% ethyl acetate in pet. ether) to furnish ester **12** (6.5 g, 88%) as a yellow oil. $[\alpha]_D^{25}$ +22.7 (*c* 0.57, CHCl₃); IR (neat): 3073, 2953, 2932, 2863, 1711, 1649, 1460, 1427, 1387, 1370, 1248, 1190, 1109, 1030, 824, 737 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.65-7.58 (m, 4H), 7.41-7.29 (m, 6H), 6.46 (d, 1H, *J* = 10.0 Hz), 4.16 (q, 2H, *J* = 7.2, 14.4 Hz), 3.61 (t, 2H, *J* = 6.4 Hz), 2.51-2.39 (m, 1H), 1.81 (s, 3H), 1.58-1.46 (m, 2H), 1.36-1.23 (m, 7H), 1.03 (s, 9H), 0.99 (d, 3H, *J* = 6.6 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 168.5, 148.5, 147.9, 135.5, 134.0, 129.5, 127.6, 63.7, 60.4, 36.5, 33.2, 32.6, 26.8, 23.7, 20.0, 19.2, 14.3, 12.5; HRMS (ESI): *m/z* calculated for C₂₈H₄₁O₃Si (M+H)⁺ 453.2819, found 453.2820.

(S,E)-8-(tert.-Butyldiphenylsilyloxy)-2,4-dimethyloct-2-en-1-ol (13)

To a stirred solution of **12** (6.5 g, 14.31 mmol) in dry CH₂Cl₂ (50 mL), DIBAL-H (20.3 mL, 28.63 mmol, 20% solution in hexane) was added at 0 °C and stirred at the same temperature for 2 h. Methanol (10 mL) was added to the reaction mixture at this temperature and stirred for 10 min. The reaction mixture was diluted with EtOAc (20 mL), aq. potassium sodium tartarate (5 mL) and stirred vigorously at room temperature for an additional 1 h. It was filterd through celite and the filtrate dried (Na₂SO₄). Solvent was evaporated and purified the residue by column chromatography (60-120 mesh Silica gel, 7% ethyl acetate in pet. ether) to furnish **13** (5.0 g, 85%) as colourless syrup. $[\alpha]_D^{25}$ +17.6 (*c* 0.62,

CHCl₃); IR (neat): 2938, 2861, 1649, 1462, 1427, 1111, 1015, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.66-7.59 (m, 4H), 7.41-7.30 (m, 6H), 5.11 (d, 1H, *J* = 10.6 Hz), 3.93 (s, 2H), 3.62 (t, 2H, *J* = 6.4 Hz), 2.40-2.27 (m, 1H), 1.64 (s, 3H), 1.59-1.46 (m, 2H), 1.38-1.15 (m, 4H), 1.03 (s, 9H), 0.91 (d, 3H, *J* = 6.8 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 135.5, 134.1, 132.8, 129.5, 127.5, 69.0, 63.9, 37.2, 32.7, 32.0, 26.8, 23.7, 21.0, 19.2, 13.8; HRMS (ESI): *m/z* calculated for C₂₆H₃₉O₂Si (M+H)⁺ 411.27138, found 411.27133.

tert.-Butyl((5S,6S)-6-(4-methoxybenzyloxy)-5,7-dimethyloct-7-enyloxy)diphenyl-silane (16)

To a cooled (0 °C) solution of **15** (3.7 g, 8.98 mmol) in dry THF (20 mL), NaH (1.08 g, 26.9 mmol, 60% in wax) was added and stirred for 30 min. A solution of PMBBr (1.98 g, 9.87 mmol) [prepared from *p*-methoxybenzylalcohol (1.36 g, 9.85 mmol) with PBr₃ (0.46 mL, 4.90 mmol) in ether] in dry THF (10 mL) was added and stirred at room temperature for 6 h. The reaction mixture was treated with aq. NH₄Cl (10 mL) and extracted with EtOAc (2 x 50 mL). The combined organic layers were washed with water (2 x 30 mL), brine (50 mL) and dried (Na₂SO₄). Solvent was evaporated under reduced pressure and purified the residue by column chromatography (60-120 mesh Silica gel, 3% ethyl acetate in pet. ether) to give **16** (4.2 g, 88%) as a yellow liquid. $[\alpha]_D^{25}$ -55.74 (*c* 0.49, CHCl₃); IR (neat): 3069, 2932, 2857, 1645, 1616, 1514, 1458, 1248, 1109, 824, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.83-7.59 (m, 4H), 7.40-7.29 (m, 6H), 7.15 (d, 2H, *J* = 8.5 Hz), 6.77 (d, 2H, *J* = 8.5 Hz), 4.97 (s, 1H), 4.83 (s, 1H), 4.38 (d, 1H, *J* = 11.5 Hz), 4.08 (d, 1H, *J* = 11.5 Hz), 3.76 (s, 3H), 3.66-3.57 (m, 2H), 3.24 (d, 1H, *J* = 9.07), 1.74-1.46 (m, 2H), 1.65 (s, 3H), 1.31-1.19 (m, 3H), 1.03 (s, 9H), 0.94-0.81 (m. 2H), 0.70 (d, 3H, *J* = 6.8 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 158.9, 143.7, 135.6, 134.2, 131.0, 129.4, 127.5, 114.9, 113.6, 87.8, 69.6, 64.1, 55.2, 34.9, 33.1, 32.5, 26.9, 22.9, 19.2, 16.6, 15.7; HRMS (ESI): *m/z* calculated for C₃₄H₄₆O₃NaSi (M+Na)⁺ 553.3113, found 553.3096.

(5S,6S)-6-(4-Methoxybenzyloxy)-5,7-dimethyloct-7-en-1-ol (8)

To a stirred solution of **16** (4.2 g, 7.89 mmol) in anhydrous THF (4 mL), TBAF (8.7 mL, 8.68 mmol, 1.0 M solution in THF) was added at 0 $^{\circ}$ C and stirred at room temperature for 3 h. The reaction mixture was diluted with water (10 mL) and extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with water (20 mL), brine (20 mL) and dried (Na₂SO₄). Solvent was evaporated and purified the residue

by column chromatography (60-120 mesh Silica gel, 15% ethyl acetate in pet. ether) to afford **8** (2.0 g, 86%) as a colorless oil. $[\alpha]_D^{25}$ -88.76 (*c* 0.93, CHCl₃); IR (neat): 3414, 2936, 1711, 1613, 1514, 1462, 1377, 1300, 1250, 1173, 1069, 1036, 901, 822 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.18 (d, 2H, *J* = 8.7 Hz), 6.81 (d, 2H, *J* = 8.7 Hz), 4.99 (s, 1H), 4.84 (s, 1H), 4.40 (d, 1H, *J* = 11.3 Hz), 4.09 (d, 1H, *J* = 11.3 Hz), 3.78 (s, 3H), 3.62-3.51 (m, 2H), 3.26 (d, 1H, *J* = 9.07), 1.65 (s, 3H), 1.59-1.00 (m, 6H), 0.72 (d, 3H, *J* = 6.8 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 158.9, 143.5, 130.8, 129.4, 115.0, 113.6, 87.6, 69.5, 62.8, 55.2, 34.7, 33.0, 32.4, 22.7, 16.5, 15.7; HRMS (ESI): *m/z* calculated for C₁₈H₂₉O₃ (M+H)⁺ 293.2116, found 293.2126.

(7S,8S,E)-Methyl 8-(4-methoxybenzyloxy)-7,9-dimethyldeca-2,9-dienoate (17)

To a solution of oxalyl chloride (0.92 mL, 7.48 mmol) in dry CH_2Cl_2 (4 mL) at -78 °C, dry DMSO (1.2 mL, 14.96 mmol) was added dropwise and stirred for 10 min. A solution of **8** (2.0 g, 6.80 mmol) in dry CH_2Cl_2 (10 mL) was added and stirred for 3 h at -78 °C. It was quenched with Et_3N (5.7 mL, 40.81 mmol) and diluted with CH_2Cl_2 (20 mL). The reaction mixture was washed with water (10 mL), brine (10mL) and dried (Na₂SO₄). Solvent was evaporated to furnish the corresponding aldehyde (1.9 g) as a pale yellow liquid, which was used directly for the next step without further purification.

A solution of the above aldehyde (1.9 g, 6.50 mmol) in benzene (10 mL) was added to a solution of (methoxycarbonylmethylene)triphenyl phosphorane (2.5 g, 7.21 mmol) in benzene (10 mL) at reflux. After 5 h, solvent was evaporated and purified the residue by column chromatography (60-120 mesh Silica gel, 3% ethyl acetate in pet. ether) to give **17** (2.1 g, 93%) as a colorless oil. $[\alpha]_D^{25}$ -81.3 (*c* 0.755, CHCl₃); IR (neat): 3441, 2944, 1721, 1651, 1607, 1514, 1456, 1437, 1256, 1165, 1032 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.16 (d, 2H, *J* = 8.7 Hz), 6.97-6.86 (m, 1H), 6.80 (d, 2H, *J* = 8.7 Hz), 5.76 (d, 1H, *J* = 15.5 Hz), 4.99 (s, 1H), 4.84 (s, 1H), 4.40 (d, 1H, *J* = 11.3 Hz), 4.08 (d, 1H, *J* = 11.3 Hz), 3.79 (s, 3H), 3.71 (s, 3H), 3.24 (d, 1H, *J* = 9.07), 2.25-2.09 (m, 2H), 1.65 (s, 3H), 1.48-1.24 (m, 4H), 1.17-1.04 (m, 1H), 0.72 (d, 3H, *J* = 6.8 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 167.1, 159.0, 149.8, 143.4, 130.8, 129.5, 120.7, 115.1, 113.6, 87.4, 69.5, 55.2, 51.3, 34.7, 32.6, 32.4, 25.1, 16.5, 15.8; HRMS (ESI): *m/z* calculated for C₂₁H₃₀O₄Na (M+Na)⁺ 369.2041, found 369.2059.

(7*S*,8*S*,*E*)-8-(4-Methoxybenzyloxy)-7,9-dimethyldeca-2,9-dien-1-ol (18)

To a stirred solution of **17** (2.1 g, 6.03 mmol) in dry CH₂Cl₂ (20 mL), DIBAL-H (8.6 mL, 12.06 mmol, 20% solution in hexane) was added at 0 °C and stirred at the same temperature for 4 h. Work up as described for **13** and purification of the residue by column chromatography (60-120 mesh Silica gel, 12% ethyl acetate in pet. ether) afforded **18** (1.8 g, 91%) as colorless syrup. $[\alpha]_D^{25}$ -89.4 (*c* 0.59, CHCl₃); IR (neat): 3437, 2934, 1715, 1612, 1514, 1462, 1250, 1171, 1034, 824 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.18 (d, 2H, *J* = 8.7 Hz), 6.81 (d, 2H, *J* = 8.7 Hz), 5.63-5.55 (m, 2H), 4.99 (s, 1H), 4.83 (s, 1H), 4.39 (d, 1H, *J* = 11.3 Hz), 4.08 (d, 1H, *J* = 11.3 Hz), 4.04-3.99 (m, 2H), 3.79 (s, 3H), 3.25 (d, 1H, *J* = 9.1 Hz), 2.05-1.92 (m, 2H), 1.77-1.54 (m, 1H), 1.65 (s, 3H), 1.46-1.20 (m, 4H), 0.70 (d, 3H, *J* = 6.8 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 158.9, 143.5, 133.4, 130.9, 129.5, 128.8, 115.0, 113.6, 87.6, 69.5, 63.8, 55.2, 34.6, 32.5, 32.2, 26.0, 16.5, 15.8; HRMS (ESI): *m/z* calculated for C₂₀H₃₁O₃ (M+H)⁺ 319.22677, found 319.22675.

((2S,3S)-3-((4S,5S)-5-(4-Methoxybenzyloxy)-4,6-dimethylhept-6-enyl)oxiran-2-yl)methanol (19)

To a stirred mixture of (+)-DIPT (0.26 g, 1.13 mmol) in CH₂Cl₂ (5 mL) at -20 °C containing molecular seives 4 Å (0.5 g), Ti(OⁱPr)₄ (0.16 mL, 0.57 mmol) and cumene hydroperoxide (1.0 mL, 6.75 mmol) were added sequentially and stirred for 20 min. A solution of allylic alcohol **18** (1.8 g, 5.62 mmol) in CH₂Cl₂ (10 mL) was added and stirred for 5 h at -20 °C. Work up as described for **10** and purification of the residue by column chromatography (60-120 mesh Silica gel, 20% ethyl acetate in pet. ether) gave **19** (1.7 g, 90%) as a yellow oil. $[\alpha]_D^{25}$ -119.16 (*c* 0.44, CHCl₃); IR (neat): 3468, 3069, 2934, 2863, 1717, 1649, 1612, 1514, 1460, 1375, 1300, 1248, 1175, 1069, 1036, 897, 820 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.18 (d, 2H, *J* = 8.7 Hz), 6.81 (d, 2H, *J* = 8.7 Hz), 5.00 (s, 1H), 4.84 (s, 1H), 4.40 (d, 1H, *J* = 11.7 Hz), 4.09 (d, 1H, *J* = 11.7 Hz), 3.82-3.75 (m, 1H), 3.79 (s, 3H), 3.59-3.50 (m, 1H), 3.26 (d, 1H, *J* = 9.1 Hz), 2.88-2.78 (m, 2H), 1.80-1.05 (m, 7H), 1.66 (s, 3H), 0.72 (d, 3H, *J* = 6.8 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 158.9, 143.4, 130.8, 129.5, 115.1, 113.6, 87.5, 69.5, 61.7, 58.6, 56.0, 55.2, 34.5, 32.3, 31.7, 22.8, 16.5, 15.7; HRMS (ESI): *m/z* calculated for C₂₀H₃₀O₄Na (M+Na)⁺ 357.2041, found 357.2057. The diastereomeric ratio was measured by HPLC {column: XDB-C 18, 15% water in acetonitrile, flow rate: 1 mL/min, 254 nm, tr(major) = 6.311 min, tr(minor) = 8.014 min}.

(2*R*,3*R*,7*S*,8*S*)-8-(4-Methoxybenzyloxy)-3,7,9-trimethyldec-9-ene-1,2-diol (20)

To a stirred solution of **19** (1.7 g, 5.06 mmol) in dry hexane (20 mL), Me₃Al (7.6 mL, 15.17 mmol, 2 M in toluene) was added at 0 °C and allowed to stir for 10 min. Work up as described for **11** and purification of the residue by column chromatography (60-120 mesh Silica gel, 22% ethyl acetate in pet. ether) furnished **20** (1.4 g, 79%) as a colourless oil. $[\alpha]_{D}^{25}$ -65.0 (*c* 0.63, CHCl₃); IR (neat): 3395, 2921, 2852, 1612, 1514, 1463, 1214, 1037, 822, 752, 668 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.18 (d, 2H, *J* = 8.3 Hz), 6.18 (d, 2H, *J* = 8.3 Hz), 4.99 (s, 1H), 4.84 (s, 1H), 4.40 (d, 1H, *J* = 11.7 Hz), 4.09 (d, 1H, *J* = 11.7 Hz), 3.79 (s, 3H), 3.61 (m, 1H), 3.48-3.38 (m, 2H), 3.26 (d, 1H, *J* = 9.1 Hz), 1.65 (s, 3H), 1.75-1.38 (m, 5H), 1.31-1.23 (m, 1H), 1.18-1.0 (m, 2H), 0.85 (d, 3H, *J* = 6.4 Hz), 0.70 (d, 3H, *J* = 6.4 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 158.9, 143.5, 130.8, 129.5, 115.1, 113.6, 87.7, 76.1, 69.6, 64.5, 55.2, 36.2, 34.7, 33.1, 32.8, 23.9, 16.5, 15.9, 15.2; HRMS (ESI): *m/z* calculated for C₂₁H₃₄O₄Na (M+Na)⁺ 373.2354, found 373.2356. The diastereomeric ratio was measured by HPLC {column: XDB-C 18, 20% water in acetonitrile, flow rate: 1 mL/min, 254 nm, tr (major) = 7.286 min, tr (minor) = 6.878 min}.

1-Methoxy-4-(((3S,4S,8R)-2,4,8-trimethyldeca-1,9-dien-3-yloxy)methyl)benzene (21)

To a stirred solution of **20** (1.40 g, 3.98 mmol) in dry CH₂Cl₂ (20 mL), Ph₃P (4.17 g, 15.90 mmol), imidazole (1.08 g, 15.90 mmol) and I₂ (3.0 g, 11.93 mmol) were added at 0 °C and allowed to stir for 30 min. The reaction mixture was quenched with sat. NaOH (5 mL) and extracted with CH₂Cl₂ (2 x 20 mL). The combined organic layers were washed with brine (10 mL) and dried (Na₂SO₄). Solvent was evaporated and purified the residue by column chromatography (60-120 mesh Silica gel, 3% ethyl acetate in pet. ether) to give **21** (0.80 g, 63%) as a colourless oil. $[\alpha]_D^{25}$ - 81.12 (*c* 0.32,5 CHCl₃); IR (neat): 3451, 2924, 2856, 1615, 1513, 1456, 1247, 1072, 905, 818, 756 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.20 (d, 2H, *J* = 8.3 Hz), 6.82 (d, 2H, *J* = 8.3 Hz), 5.72-5.58 (m, 1H), 5.03-4.83 (m, 4H), 4.41 (d, 1H, *J* = 11.7 Hz), 4.11 (d, 1H, *J* = 11.7 Hz), 3.80 (s, 3H), 3.26 (d, 1H, *J* = 9.1 Hz), 2.15-2.02 (m, 1H), 1.76-1.55 (m, 6H), 1.35-1.15 (m, 4H), 0.99 (d, 3H, *J* = 6.8 Hz), 0.72 (d, 3H, *J* = 6.8 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 158.9, 145.0, 143.7, 131.0, 129.5, 115.0, 113.6, 112.2, 87.8, 69.6, 55.2, 37.8, 37.1, 34.8, 32.9, 24.3, 20.3, 16.6, 15.8; HRMS (ESI): *m/z* calculated for C₂₁H₃₃O₂Na (M+H)⁺ 314.24751, found 314.24765.

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

Figure 3: ¹H NMR Spectrum of compound **11** (CDCl₃, 300 MHz).

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

Figure 4: ¹³C NMR Spectrum of compound **11** (CDCl₃, 125 MHz).

Figure 4a: HPLC Spectrum of compound 11

Figure 5: ¹H NMR Spectrum of compound **12** (CDCl₃, 300 MHz).

Figure 6: ¹³C NMR Spectrum of compound **12** (CDCl₃, 125 MHz).

Figure 7: ¹H NMR Spectrum of compound **13** (CDCl₃, 300 MHz).

Figure 8: ¹³C NMR Spectrum of compound 13 (CDCl₃, 125 MHz).

Figure 9: ¹H NMR Spectrum of compound 14 (CDCl₃, 300 MHz).

Figure 10: ¹³C NMR Spectrum of compound 14 (CDCl₃, 125 MHz).

Figure 10a: HPLC Spectrum of compound 14

Figure 11: ¹H NMR Spectrum of compound 15 (CDCl₃, 300 MHz).

Figure 13: ¹H NMR Spectrum of compound 16 (CDCl₃, 300 MHz).

Figure 16: ¹³C NMR Spectrum of compound 8 (CDCl₃, 125 MHz).

Figure 17: ¹H NMR Spectrum of compound 17 (CDCl₃, 300 MHz).

Figure 18: ¹³C NMR Spectrum of compound 17 (CDCl₃, 125 MHz).

Figure 19: ¹H NMR Spectrum of compound 18 (CDCl₃, 300 MHz).

Figure 20: ¹³C NMR Spectrum of compound 18 (CDCl₃, 125 MHz).

Figure 21: ¹H NMR Spectrum of compound 19 (CDCl₃, 300 MHz).

Figure 22: ¹³C NMR Spectrum of compound 19 (CDCl₃, 125 MHz).

Figure 22a: HPLC Spectrum of compound 19

Figure 24: ¹³C NMR Spectrum of compound 20 (CDCl₃, 125 MHz).

Figure 24a: HPLC Spectrum of compound 20

Figure 25: ¹H NMR Spectrum of compound 21 (CDCl₃, 300 MHz).

Figure 29: ¹H NMR Spectrum of compound 4 (CDCl₃, 300 MHz).

Figure 31: ¹H NMR Spectrum of compound 23 (CDCl₃, 300 MHz).

Figure 32: ¹³C NMR Spectrum of compound 23 (CDCl₃, 125 MHz).

Figure 33: ¹H NMR Spectrum of compound 2 (CDCl₃, 300 MHz).

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

Figure 34: ¹³C NMR Spectrum of compound 2 (CDCl₃, 125 MHz).