RSC Advances

Supporting Information:

Highly sensitive salicylic fluorophore for visual detection of

picomole amount of Cu²⁺

Nakorn Niamnont,^a Nattaporn Kimpitak,^b Gamolwan Tumcharern,^c Paitoon Rashatasakhon,^d and Mongkol Sukwattanasinitt,^{d*}

 ^aDepartment of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand 10440
^bProgram of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 10330
^c National Nanotechology Center, National Science and Technology Development agency, Pathumthani, Thailand 10330
^d Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 10330

smongkol@chula.ac.th

Contents

	Page
1. Synthesis scheme	S2
2. Synthetic procedures	S3
3. Absorption and emission spectra	S6
4. Spectroscopic data	S7

1. Synthesis scheme

Scheme S1 Synthesis of F2-F5.

The synthesis of fluorophores F2-F5 bearing salicylic acid terminal groups started with the preparation of the acetylenic salicylate by the Sonogashira coupling of methyl 4-iodo-2hydroxybenzoate with trimethylsilylacetylene and then followed by desilylation to give methyl 4-ethynyl-2-hydroxybenzoate. The homocoupling of methyl 4-ethynyl-2-hydroxybenzoate afforded compound 1 which was hydrolyzed to give F3. The fluorophore F2 was obtained from a base hydrolysis of compound 2 which was prepared from the coupling between two equivalents of methyl 4-ethynyl-2-hydroxybenzoate and 4,7-dibromo-2,1,3-benzothidiazole. The palladium coupling reaction of two equivalents of the terminal salicylate with triiodotriphenylamine yielded the trisubstitution (3) and disubstitution (4) products. The ester hydrolysis of 3 provided F4 while compound 4 was used in the synthesis of F5 via a series of reactions. The Sonogashira coupling of 4 with trimethylsilylacetylene gave 5 followed by desilylation to afford 6. The homocoupling of 6 gave 7 which was hydrolyzed to eventually provide the desired F5.

2. Synthetic procedures

Methyl 2-hydroxy-4-((trimethylsilyl)ethynyl)benzoate

A mixture of methyl 2-hydroxy-4-iodobenzoate (2.00 g, 7.2 mmol), $PdCl_2(PPh_3)_2$ (0.14 g, 0.2 mmol), CuI (0.04 g, 0.2 mmol) and trimethylsilylacetylene (0.85 g, 8.6 mmol) in toluene (10 mL) was added with DBU (1 mL) and the mixture was stirred at room temperature for 3 h. The reaction mixture was then filtered and the solid was washed with toluene (3 × 15 mL). The filtrate was evaporated and the residue was eluted through a silica gel column by gradient solvents starting from pure hexane to dichloromethane/hexane (1/2 v/v) as an eluent to afford methyl 2-hydroxy-4-((trimethylsilyl)ethynyl)benzoate as a white solid (1.21 g, 68% yield). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 10.73 (s, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.06 (d, *J* = 8.0 Hz).

1H) 6.94 (d, J = 8.0 Hz, 1H), 3.94 (s, 3H), 0.25 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 170.2, 161.2, 130.4, 129.9, 122.8, 120.9, 112.4, 103.8, 98.1, 52.6, 0.1.

Methyl 4-ethynyl-2-hydroxybenzoate

A mixture of methyl 2-hydroxy-4-iodobenzoate (1.00 g, 4.03 mmol) and K₂CO₃ (0.055 g, 0.40 mmol) in dichloromethane (15 mL) and methanol (15 mL) was stirred at room temperature for 24 h. The organic layer was separated and the aqueous phase was extracted with dichloromethane (2 x 50 mL) and was then dried over anhydrous MgSO₄. The solvent was evaporated and the residue was eluted through a silica gel column by gradient solvents starting from pure hexane to dichloromethane/hexane (1/4 v/v) as an eluent to afford methyl 4-ethynyl-2-hydroxybenzoate as a white solid (0.65 g, 92% yield). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 10.76 (s, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.10 (s, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 3.95 (s, 3H), 3.21 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 170.2, 161.3, 130.0, 129.4, 122.9, 121.3, 112.8, 82.7, 80.3, 52.6.

Compound 1

A mixture of methyl 4-ethynyl-2-hydroxybenzoate (0.50 g, 2.84 mmol), $PdCl_2(PPh_3)_2$ (0.11 g, 0.16 mmol), CuI (0.03 g, 0.16 mmol) in toluene (15 mL) was added DBU (1.0 mL) and the mixture was stirred at RT for 24 h. After the combined filtrate was evaporated, the residue was eluted through a silica gel column by gradient solvents from pure hexane to methylene chloride/hexane (3/1 v/v) as an eluent. **1** was obtained as a light-yellow solid (0.44 g, 88% yield), ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 10.81 (s, 2H), 7.86 (d, *J* = 8.0 Hz, 2H), 7.83 (s, 2H), 7.28 (s, 2H), 7.18 (d, *J* = 12.0 Hz, 2H), 3.98 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 170.2, 161.4, 130.1, 129.9, 122.8, 122.7, 120.8, 112.7, 91.3, 52.6; MALDI-TOF m/z Calcd for C₂₀H₁₄O₆, 350.079; Found, 350.367.

Compound 2

A mixture of 2BrDZ (133.5 mg, 0.45 mmol), PdCl₂(PPh₃)₂ (28 mg, 0.04 mmol), CuI (8.0 mg, 0.04 mmol) and methyl 4-ethynyl-2-hydroxybenzoate (179.6 mg, 1.02 mmol) in toluene (15 mL) was added with DBU (0.5 mL) and the mixture was stirred at 70°C for 12 h. After the combined filtrate was evaporated, the residue was eluted through a silica gel column by gradient solvents from pure hexane to methylene chloride/hexane (1/1 v/v) as an eluent to afford **2** was obtained as a yellow green solid (139.5 mg, 64% yield). ¹H NMR (CDCl₃, 400 MHz) : δ (ppm) 10.81 (s, 2H), 7.86 (d, *J* = 8.0 Hz, 2H), 7.83 (s, 2H), 7.28 (s, 2H), 7.18 (d, *J* = 12.0 Hz, 2H), 3.98 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz) : δ (ppm) 170.2, 161.4, 154.4, 133.0, 130.1, 130.0, 122.8, 121.0, 117.3, 113.0, 96.6, 88.0, 52.6.

Compound 3

A mixture of T3I (2.00 g, 3.21 mmol), $PdCl_2(PPh_3)_2$ (0.11 g, 0.16 mmol), CuI (0.03 g, 0.16 mmol), methyl 4-ethynyl-2-hydroxybenzoate (1.24 g, 7.06 mmol) in toluene (30 mL) was added DBU (2.0 mL) and the mixture was stirred at RT for 24 h. After the combined filtrate was evaporated and the residue was eluted through a silica gel column by gradient solvents from pure hexane to methylene chloride/hexane (3/1 v/v) as an eluent. The fractions were combined and the solvents were removed to afford the desired product as a yellow-orange solid (0.32 g, 13% yield). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 10.78 (s, 3H), 7.80 (d, *J* = 8.0 Hz, 3H), 7.45 (d, *J* = 8.0 Hz, 6H), 7.08-7.12 (m, 9H), 7.00-7.03 (m, 3H), 3.96 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ

(ppm) 170.3, 161.4, 147.2, 133.3, 130.8, 130.0, 124.2, 122.5, 120.3, 117.6, 112.1, 92.6, 88.7, 52.5. MALDI-TOF m/z Calcd for C₄₈H₃₃NO₉, 767.216; Found, 766.807.

Compound 4

A mixture of **T3I** (2.00 g, 3.21 mmol), PdCl₂(PPh₃)₂ (0.11 g, 0.16 mmol), CuI (0.03 g, 0.16 mmol), methyl 4-ethynyl-2-hydroxybenzoate (1.24 g, 7.06 mmol) in toluene (30 mL) was added DBU (2.0 mL) and the mixture was stirred at RT for 24 h. After the combined filtrate was evaporated and the residue was eluted through a silica gel column by gradient solvents from pure hexane to methylene chloride/hexane (2/1 v/v) as an eluent. The fractions were combined and the solvents were removed to afford the desired product as a dark yellow solid (0.76 g, 33% yield), ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 10.78 (s, 2H), 7.80 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 4H), 7.11 (d, *J* = 8.0 Hz, 2H), 7.00-7.06 (m, 6H), 6.89 (d, *J* = 8.0 Hz, 2H), 3.96 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 170.2, 161.3, 147.1, 146.4, 138.6, 133.1, 130.7, 129.8, 127.0, 123.6, 122.3, 120.2, 117.2, 111.9, 92.5, 88.5, 87.5, 52.4.

Compound 5

A mixture of **I2SA⁰** (4) (2.00 g, 2.78 mmol), PdCl₂(PPh₃)₂ (0.06 g, 0.08 mmol), CuI (0.02g, 0.08 mmol) and trimethylsilylacetylene (0.33 g, 3.3 mmol) in toluene (10 mL) was added with DBU (1 mL) and the mixture was stirred at room temperature for 3 h. The reaction mixture was then filtered and the solid was washed with toluene (3 × 15 ml). The filtrate was evaporated and the residue was eluted through a silica gel column by gradient solvents starting from pure hexane to dichloromethane/hexane (1/4 v/v) as an eluent to afford **5** as a yellow solid (0.81 g, 42% yield). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 10.78 (s, 2H), 7.80 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0, 8.0 Hz, 6H), 7.11 (s, 2H) 7.03 (dd, 8H), 3.96 (s, 6H), 0.25 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 170.2, 161.3, 147.1, 133.1, 130.7, 129.8, 123.9, 122.3, 120.2, 117.2, 111.9, 104.8, 94.2, 92.5, 88.5, 52.4, 0.0.

Compound 6

A mixture of **5** (1.00 g, 1.45 mmol) and K₂CO₃ (0.059 g, 0.15 mmol) in dichloromethane (15 mL) and methanol (15 mL) was stirred at room temperature for 24 h. The organic layer was separated and the aqueous phase was extracted with dichloromethane (2 x 50 mL) and was then dried over anhydrous MgSO₄. The solvent was evaporated and the residue was eluted through a silica gel column by gradient solvents starting from pure hexane to dichloromethane/hexane (1/4 v/v) as an eluent to afford H2SA⁰ as a brown solid (0.74 g, 83% yield). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 10.79 (s, 2H), 7.80 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 8.0 Hz, 1.5H) 7.43 (d, *J* = 8.0 Hz, 4.5H), 7.00-7.12 (m, 8.5H), 6.89 (d, *J* = 8.0 Hz, 1.5H), 3.96 (s, 6H), 3.08 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 170.3, 161.4, 147.2, 133.6, 133.3, 130.0, 124.4, 124.1, 122.5, 120.3, 117.5, 112.1, 92.6, 88.7, 83.5, 52.5.

Compound 7

A mixture of **6** (0.50 g, 0.41 mmol), $PdCl_2(PPh_3)_2$ (0.02 g, 0.02 mmol), CuI (0.004 g, 0.02 mmol) in toluene (15 mL) was added DBU (1.0 mL) and the mixture was stirred at rt for 24 h. After the combined filtrate was evaporated and the residue was eluted through a silica gel column by gradient solvents from pure hexane to methylene chloride/hexane (3/1 v/v) as an eluent. 7 was obtained as a dark yellow solid (0.33 g, 65% yield). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 10.79 (s, 4H), 7.80 (d, J = 8.0 Hz, 4H), 7.45 (d, J = 8.0 Hz, 12H), 7.01-7.12 (m, 20H), 3.96 (s, 12H).

 13 C NMR (CDCl₃, 100 MHz): δ (ppm) 170.3, 161.4, 147.0, 133.3, 130.8, 130.0, 124.4, 122.5, 120.4, 117.8, 116.6, 112.1, 92.5, 88.8, 81.9, 74.3, 52.5. MALDI-TOF m/z Calcd for $C_{80}H_{52}N_2O_{12}$, 1232.352; Found, 1232.357.

F2

A mixture of **2** (0.50 g, 1.03 mmol) in THF (15 mL) and methanol (15 mL) was added with saturated KOH aqueous solution (0.5 mL) and the mixture was heat to 70°C. After 24 h the solution was evaporated and the residue was dissolved in water (20 mL). Approximately 50 g of ice was then added to the aqueous solution. The mixture was acidified and stored in the refrigerator for 1 h. The product was filtered to afford **F2** as a green solid (0.34 g, 72% yield). ¹H NMR (DMSO-d6, 400 MHz) : δ (ppm) 8.00 (s, 2H), 7.85 (d, *J* = 8.0 Hz, 2H), 7.16-7.18 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) : δ (ppm) 171.1, 160.7, 153.5, 133.3, 130.9, 128.1, 122.3, 119.6, 116.0, 114.1, 95.7, 87.8.

F3

A mixture of dimethyl **1** (0.50 g, 1.43 mmol) in THF (15 mL) and methanol (15 mL) was added with saturated KOH aqueous solution (0.5 mL) and the mixture was heat to 70°C. After 24 h the solution was evaporated and the residue was dissolved in water (20 mL). Approximately 50 g of ice was then added to the aqueous solution. The mixture was acidified and stored in the refrigerator for 1 h. The product was filtered to afford 2SA⁻ as a light-yellow solid (0.42 g, 91% yield). ¹H NMR (CD₃OD, 400 MHz): δ (ppm) 7.82 (d, J = 8.0 Hz, 2H), 7.00-7.03 (m, 8H), 7.64; ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 131.9, 131.8, 130.4, 123.7, 123.2, 120.9, 91.5.

F4

A mixture of **3** (0.50 g, 0.41 mmol) in THF (15 mL) and methanol (15 mL) was added with saturated KOH aqueous solution (0.5 mL) and the mixture was heat to 70°C. After 24 h the solution was evaporated and the residue was dissolved in water (20 mL). Approximately 50 g of ice was then added and the aqueous solution was acidified and stored in the refrigerator for 1 h. The product was filtered to afford **F4** as a yellow solid (0.43 g, 92% yield). mp : > 200°C decompose. ¹H NMR (CD₃OD, 400 MHz): δ (ppm) 7.72 (d, *J* = 8.0 Hz, 3H), 7.35 (d, *J* = 8.0 Hz, 6H), 6.84-6.96 (m, 12H). ¹³C NMR (CD₃OD, 100 MHz): δ (ppm) 173.02, 162.82, 148.38, 134.23, 131.62, 131.55, 125.28, 123.14, 120.58, 118.87, 113.77, 92.94, 89.45. MALDI-TOF m/z Calcd for C₄₅H₂₇NO₉, 725.169; Found, 725.210.

F5

A mixture of 7 (0.50 g, 0.41 mmol) in THF (15 mL) and methanol (15 mL) was added with saturated KOH aqueous solution (0.5 mL) and the mixture was heat to 70°C. After 24 h the solution was evaporated and the residue was dissolved in water (20 mL). Approximately 50 g of ice was then added to the aqueous solution, acidified and kept in a refrigerator for 1 h. The product was filtered to afford **F5** as a yellow solid (0.39 g, 82% yield). mp : > 200°C decompose. ¹H NMR (CD₃OD, 400 MHz): δ (ppm) 7.91 (d, 4H), 7.57 (m, 12H), 7.14 (m, 20H); ¹³C NMR (CD₃OD, 100 MHz): δ (ppm) 173.0, 162.7, 148.0, 143.5, 135.2, 134.4, 131.6, 125.4, 123.4, 120.7, 119.0, 113.5, 93.3, 89.9; MS-ES⁻ m/z Calcd for C₇₆H₄₄N₂O₁₂, 1176.2894, 293.07 [M]⁴⁻ Found : 292.83 [M]⁴⁻.

3. Absorption and emission spectra

Fig. S1. Normalized absorption and emission spectra of compound **F2-F5** in 10 mM phosphate buffer saline pH 7.4

4. Spectroscopic data (¹H and ¹³C NMR) ¹H NMR of methyl 2-hydroxy-4-((trimethylsilyl)ethynyl)benzoate

¹³C NMR of methyl 2-hydroxy-4-((trimethylsilyl)ethynyl)benzoate

¹H NMR of methyl 4-ethynyl-2-hydroxybenzoate

¹³C NMR of 4

¹³C NMR of F4

¹³C NMR of 6

¹H NMR of 7

¹³C NMR of 7

¹³C NMR of F5

