Supporting Information

Synthesis of Triazole Linked Fluorescent Amino Acid and Carbohydrate Bio-Conjugates: A Highly Sensitive and Skeleton Selective Multi-Responsive Chemosensor for Cu(II) and Pb(II)/Hg(II) Ion

Arunabha Thakur, Pranab Deb, Dipendu Mandal, Bijan Mondal and Sundargopal Ghosh* Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India. Phone: (+91) 44 2257 4230; Fax: (+91) 44 2257 4202 Email: sghosh@iitm.ac.in

Table of contents

Page No

¹ H, ¹³ C and I	ESI-mass spectrum of 3-6	S3-S10
Figure S1.	Job's plot of 4 with Cu^{2+} in CH_3CN indicating the formation of 1: 1 complex species.	S11
Figure S2.	Electospray mass spectrum of $[3.\mathrm{Cu}^{2+}]$.	S12
Figure S3.	Electospray mass spectrum of $[4.Cu^{2+}]$.	S13
Figure S4.	Electospray mass spectrum of $[5.Hg^{2+}]$.	S14
Figure S5.	Electospray mass spectrum of $[5.Pb^{2+}]$.	S15
Figure S6.	Electospray mass spectrum of $[6.Hg^{2+}]$.	S16
Figure S7.	Electospray mass spectrum of $[6.Pb^{2+}]$.	S17
Figure S8.	Fluorescence intensity of 3 or 4 at each concentration of Cu^{2+} added (top), and of 6 at each concentration of Pb^{2+} (bottom) normalized between the minimum fluorescence intensity and the maximum fluorescence intensity.	S18

Figure S9.	Fluorescene emission changes of 4 (1.5×10^{-10} M) upon addition of	
	several cations upto 1 equivalent in CH_3CN/H_2O (2:8) solution.	S19
Figure S10.	Quantitative binding data (Benesi-Hildebrand plot) for 3 and 4 with Cu^{2+} and 6 with Pb^{2+} and Hg^{2+} ion.	S20
Figure S11.	Quantitative binding data (Benesi-Hildebrand plot) for 5 with Hg^{2+} and Pb^{2+} ion.	S21
Figure S12.	Changes in the absorption spectra of 3 (1 x 10^{-5} M) in CH ₃ CN/H ₂ O (2:8) upon addition of several metal cations tested.	S22
Figure S13.	Fluorescene emission changes of 3 (1.5 $\times 10^{-10}$ M) upon addition of several cations upto 1 equivalent in CH ₃ CN/H ₂ O (2:8) solution.	S23
Figure S14.	Changes in the absorption spectra of 4 (1 x 10^{-5} M) in CH ₃ CN/H ₂ O (2:8) upon addition of several metal cations tested.	S24
Figure S15.	Changes in the absorption spectra of 5 (1 x 10^{-5} M) in CH ₃ CN/H ₂ O (2:8) upon addition of several metal cations tested.	S25
Figure S16.	Changes in the absorption spectra of 6 (1 x 10^{-5} M) in CH ₃ CN/H ₂ O (2:8) upon addition of several metal cations tested.	S26
Figure S17	Calculated (cam-B3LYP/6–31G*/LANL2DZecp) structure of 4.	S29
Figure S18	Calculated (cam-B3LYP/6–31G*/LANL2DZecp) structure of [4.Cu ²⁺]	S31
Figure S19	Calculated (cam-B3LYP/6–31G*/LANL2DZecp) structure of 6.	S33
Figure S20	Calculated (cam-B3LYP/6–31G*/LANL2DZecp) structure of [6.Hg ²⁺]	S38
Figure S21	Calculated (cam-B3LYP/6–31G*/LANL2DZecp) structure of [6. Pb ²⁺]	S40
Table S1	Distance of metal to donor center and Weiberg Bond Indices (WBI) of all the model complexes	S42

¹H NMR spectra of 3 (CDCl₃)

¹³C NMR spectra of 3 (CDCl₃)

¹H NMR spectra of 4 (CDCl₃)

¹³C NMR spectra of 4 (CDCl₃)

— 169.050 — 165.374 165.374 165.374 121.20 131.421 131.729 131.729 131.729 131.729 121.376 122.299 123.334 123.334					
---	--	--	--	--	--

¹³C NMR spectra of 6 (CDCl₃)

Electospray mass spectrum of **3**.

Electospray mass spectrum of 4.

Electospray mass spectrum of 5

Electospray mass spectrum of 6.

Figure S1. Job's plot of **4** with Cu^{2+} in CH_3CN indicating the formation of 1:1 complex species.

Figure S2. Electospray mass spectrum of [**3**.Cu²⁺]

Figure S3. Electospray mass spectrum of $[4.Cu^{2+}]$

Figure S4. Electospray mass spectrum of $[5.Hg^{2+}]$

Figure S5. Electospray mass spectrum of [**5.**Pb²⁺]

Figure S6. Electospray mass spectrum of $[6.Hg^{2+}]$

Figure S7. Electospray mass spectrum of [6.Pb²⁺]

Figure S8. Fluorescence intensity of **3** or **4** at each concentration of Cu^{2+} added (top), and of **6** at each concentration of Pb^{2+} (bottom) normalized between the minimum fluorescence intensity and the maximum fluorescence intensity.

Figure S9. Fluorescene emission changes of **4** (1.5 $\times 10^{-10}$ M) upon addition of several cations upto 1 equivalent in CH₃CN/H₂O (2:8) solution.

Figure S10. Quantitative binding data (Benesi-Hildebrand plot) for **3** and **4** with Cu^{2+} and **6** with Pb²⁺ and Hg²⁺ion.

Figure S11. Quantitative binding data (Benesi-Hildebrand plot) for **5** with Hg^{2+} and Pb^{2+} ion.

Figure S12: Changes in the absorption spectra of **3** $(1 \times 10^{-5} \text{ M})$ in CH₃CN/H₂O (2:8) upon addition of several metal cations tested.

Figure S13. Fluorescene emission changes of **3** (1.5 $\times 10^{-10}$ M) upon addition of several cations upto 1 equivalent in CH₃CN/H₂O (2:8) solution.

Figure S14. Changes in the absorption spectra of **4** (1 x 10^{-5} M) in CH₃CN/H₂O (2:8) upon addition of several metal cations tested.

Figure S15. Changes in the absorption spectra of **5** $(1 \times 10^{-5} \text{ M})$ in CH₃CN/H₂O (2:8) upon addition of several metal cations tested.

Figure S16. Changes in the absorption spectra of **6** $(1 \times 10^{-5} \text{ M})$ in CH₃CN/H₂O (2:8) upon addition of several metal cations tested.

Computational details

Calculated geometries were fully optimized in the gas-phase with tight convergence criteria at the DFT level with the Gaussian 09 package¹ using the Cam-B3LYP² functional to produce a better performance where weak interactions are involved, such as those between ligands and heavy metals. The 6–31G* basis set was used in the optimizations for all atoms and the LANL2DZ³ basis set with effective core potentials for Pb, Hg and Cu. The LANL2DZ basis set uses the effective core potentials of Hay and Wadt. The nature of the optimized stationary points was confirmed by analytic computation of harmonic force constants at the aforementioned DFT level. From these gas-phase optimized geometries, all reported data were obtained by means of single point (SP) calculations, at the same level of theory. Bond orders were characterized by the Wiberg bond index (WBI)⁴ and calculated with the Natural Bond Orbital (NBO) population analysis, as the sum of squares of the off-diagonal density matrix elements between atoms.

Cartesian coordinates for the calculated structure of ligand 3 (in Å).

С	-2.61011800	4.05303800	0.80185300	Н	-1.43449600	-2.06542100	2.56094300
С	-3.73617300	3.79894600	0.08320600	Н	-2.09319700	-3.29568600	1.47305500
С	-4.26308700	2.47469200	-0.01491000	С	-0.19755300	-2.52660600	0.87293600
С	-3.60155700	1.40134900	0.66534400	С	0.50269000	-1.66593300	0.06840300
С	-2.41073500	1.71412700	1.39684100	Ν	1.65325300	-2.32830100	-0.18870700
С	-1.93557500	2.98868500	1.46248800	Н	0.29543200	-0.67839900	-0.30591800
С	-5.40915500	2.20535600	-0.75747300	Ν	0.54662000	-3.64736700	1.06216700
С	-4.12702400	0.09624200	0.59603100	Ν	1.66615100	-3.52720100	0.42091200
С	-5.26138500	-0.16921300	-0.19402600	С	2.77922900	-1.94475900	-1.00487700
С	-5.91654000	0.91569600	-0.87248900	Н	3.46699700	-2.79153900	-0.98801500
С	-7.08166900	0.65530100	-1.65889800	Н	2.45177400	-1.78663700	-2.03810700
Н	-7.56123200	1.49494900	-2.15431700	С	3.42909900	-0.65208200	-0.51532900
С	-7.57443100	-0.60388800	-1.79086200	0	2.76930000	0.29254400	-0.11581400
С	-6.92022700	-1.68800200	-1.14168600	Ν	4.77486800	-0.61770400	-0.61803400
С	-5.81442400	-1.47977900	-0.37594700	Н	5.32514900	-1.42209300	-0.89074400
Н	-5.91605900	3.02144300	-1.26667700	С	5.51632700	0.56149500	-0.25299300
Н	-2.21582800	5.06218900	0.86851500	Н	5.21736500	1.42499800	-0.85705200
Н	-4.25773600	4.59854600	-0.43553700	Н	5.33836900	0.83975100	0.79189300
Н	-1.85851900	0.91301700	1.87161700	С	6.98764700	0.28384400	-0.45738600
Н	-1.02505600	3.19677100	2.01572000	О	7.42606200	-0.77578100	-0.84335800
Н	-8.45821100	-0.79079300	-2.39257600	О	7.72830200	1.34634400	-0.15733900
Н	-7.30718600	-2.69477700	-1.26518800	С	9.15465200	1.18886900	-0.30997400
Н	-5.33230900	-2.33313300	0.08412200	Н	9.48320000	0.36705500	0.33144500
С	-3.45416800	-0.98882100	1.39681600	Н	9.36378600	0.90776600	-1.34529500
Н	-4.08794400	-1.87744800	1.48571000	С	9.79620100	2.50318500	0.06842500
Н	-3.27603100	-0.63514200	2.42384700	Н	9.56361900	2.76675700	1.10340800
0	-2.22080500	-1.33433500	0.79358900	Н	10.88246400	2.42686900	-0.03241300
С	-1.53848700	-2.34584700	1.49976100	Н	9.44531200	3.30940000	-0.58094300

Figure S17. Calculated (cam-B3LYP/6–31G*/LANL2DZecp) structure of 4.

Cartesian coordinates for the calculated structure of 4 (in Å).

Ν	2.54512200	3.26999000	-1.11437100
Ν	1.55618300	3.86585200	-0.52595700
Ν	2.38111600	1.94711700	-0.93491300
С	0.74638700	2.93262100	0.03882100
С	1.26486800	1.68981700	-0.21623500
С	3.33443200	1.03639400	-1.52208600
С	-0.47485300	3.30135700	0.81107100
Н	0.95966100	0.69542400	0.05946400
Н	2.83303100	0.39776500	-2.25732600
Н	4.06220800	1.65788400	-2.04586100
С	3.97960400	0.12913900	-0.47667800
Н	-0.98396200	4.14492500	0.32079500
Н	-0.20606900	3.63524600	1.82635700
0	-1.30998500	2.16744300	0.87976200
0	3.33523900	-0.37146300	0.42980200
Ν	5.29210800	-0.12046200	-0.67000700
С	-2.47319900	2.39515400	1.65148000
Н	5.83914200	0.34015100	-1.38607400
С	6.01307900	-1.01059400	0.20270300
С	-3.31545000	1.14896800	1.69672400
Н	-2.19395000	2.69007400	2.67382200
Н	-3.04290000	3.23343200	1.21869900
Н	5.57962200	-2.01654300	0.19422800
Н	5.97741000	-0.66846700	1.24313500

С	7.45064000	-1.07310100	-0.25885700
С	-3.91337300	0.62942700	0.53315700
С	-3.53038500	0.51571700	2.91604300
0	7.88469500	-0.44594500	-1.19816400
0	8.16767400	-1.89781300	0.49817700
С	-4.74097300	-0.52069700	0.63113900
С	-3.72496700	1.22488400	-0.76453500
С	-4.33028700	-0.61283900	3.01835700
Н	-3.05991000	0.91860700	3.80848100
С	9.56197200	-2.02833800	0.15001400
С	-5.37443300	-1.05211400	-0.53339300
С	-4.94854600	-1.14691400	1.88892500
С	-4.32920200	0.72220500	-1.86475700
Н	-3.05671800	2.07253800	-0.85189500
Н	-4.48109500	-1.08782300	3.98348300
Н	9.63025600	-2.37702800	-0.88365100
Н	10.02575200	-1.03983200	0.19974100
С	10.18057500	-3.00179600	1.12572200
С	-5.17943400	-0.43297500	-1.79421300
С	-6.20415400	-2.20010800	-0.43474500
С	-5.79144900	-2.31064800	1.95779900
Н	-4.17178900	1.18525300	-2.83492000
Н	9.69431000	-3.97871600	1.06282600
Н	11.24245700	-3.12949600	0.89755800

Н	10.08978300 -2.63577400	2.15164000	С	-6.62048300	-2.08693800	-2.81733100
С	-5.81046200 -0.96525800	-2.92206400	Н	-5.65867200	-0.48895900	-3.88657300
С	-6.81593100 -2.69974100	-1.58625000	Н	-7.45085700	-3.57786800	-1.50885600
С	-6.38813000 -2.81154800	0.85430100	Н	-7.02312500	-3.69054900	0.92018100
Н	-5.93818500 -2.77965200	2.92664400	Н	-7.10416000	-2.48828600	-3.70246600

Cartesian coordinates for the calculated structure of $3.Cu(ClO_4)_2$.

N	0.70661800	-1.30095800	0.21626500	Н	7.11834100	5.89523600	-2.60983700
Ν	-0.27276600	-2.09569100	-0.06959000	Н	7.55061400	7.12212100	-1.40432500
Ν	0.22091000	-0.07616900	0.47090800	Н	7.95393400	5.41871300	-1.11911800
С	-1.42180400	-1.39613500	0.01142700	Cu	2.71445000	-1.63059000	-0.05523700
С	-1.12229100	-0.09876900	0.35935500	Cl	4.70511100	-0.67226200	1.80197900
С	1.08091100	1.00772600	0.91175300	0	5.21953300	0.65656300	1.44412600
С	-2.76435100	-1.99318100	-0.24960100	0	5.54044500	-1.34177000	2.78088200
Н	-1.75021600	0.76002700	0.53180500	0	3.28707400	-0.55835800	2.26385900
Н	0.46799000	1.90679200	0.98365000	0	4.63260300	-1.53053400	0.53217900
Н	1.49333000	0.76851200	1.89687500	Cl	2.64156200	-4.03417200	-1.36467700
С	2.26533700	1.21256300	-0.01748200	0	3.82257700	-4.85556500	-1.55588600
Н	-2.95160300	-2.82110700	0.45118000	0	2.75216300	-2.71824000	-2.08085400
Н	-2.79873500	-2.41481300	-1.26535600	0	1.40732600	-4.72505600	-1.69612700
0	-3.70342600	-0.96067100	-0.08864200	0	2.57990400	-3.57012600	0.12102000
0	2.80694600	0.26168300	-0.61181000	С	-5.97728800	-0.22872200	-0.08816800
Ν	2.73760000	2.44056300	-0.12692900	С	-6.24829300	0.20227200	1.22556900
С	-5.04300200	-1.39292100	-0.28333100	С	-6.57320000	0.42036500	-1.18651500
Н	2.32247600	3.23319500	0.35544400	С	-7.18697400	1.26213900	1.44795600
С	4.00723500	2.72323400	-0.77021600	С	-5.61763100	-0.37468300	2.37498200
Н	-5.14677500	-1.83410100	-1.27965400	С	-7.51251500	1.48249600	-0.95058800
Н	-5.27704300	-2.19077900	0.43526000	С	-6.29373800	0.08865000	-2.55332400
Н	3.95642500	2.53845300	-1.84719300	С	-7.47589800	1.67685500	2.78450800
Н	4.78702300	2.07857800	-0.35238500	С	-7.80131800	1.86713400	0.35483500
С	4.31771700	4.18009300	-0.50587700	С	-5.91599700	0.05046700	3.63439300
0	3.58506800	4.90412700	0.13356800	Н	-4.86593900	-1.14198500	2.23697900
0	5.46318600	4.54156700	-1.05569000	С	-8.13741600	2.13219200	-2.06036600
С	5.87218500	5.91324600	-0.84835800	С	-6.90301600	0.73787700	-3.58344400
Н	5.09824000	6.56775800	-1.25713300	Н	-5.56647300	-0.68048200	-2.78174300
Н	5.93287200	6.09338400	0.22760900	С	-6.86498900	1.08922900	3.84814500
С	7.20369100	6.09376100	-1.53838500	Н	-8.19654800	2.47675400	2.92922600

Н	-8.51982700	2.66510500	0.52489100	Н	-6.66383000	0.46609200	-4.60681500
Н	-5.42120300	-0.40217700	4.48812200	Н	-7.09086600	1.41052100	4.85986500
Н	-8.84986600	2.92557200	-1.85290100	Н	-8.32630100	2.27390500	-4.17464200
С	-7.84772600	1.77379000	-3.33887500				

Figure S18. Calculated (cam-B3LYP/6–31G*/LANL2DZecp) structure for 4.Cu(ClO₄)₂.

Cartesian coordinates for the calculated structure of $4.Cu(ClO_4)_2$.

Ν	1.52754100	-1.25534200	0.31260900	Ν	3.60492100	2.45928800	-0.02612600
Ν	0.52530300	-2.02670000	0.04443800	С	-4.22641600	-1.28509700	-0.04355300
Ν	1.07255200	-0.03073500	0.61673700	Н	3.22150100	3.24704600	0.48947600
С	-0.60924600	-1.31281200	0.18877700	С	4.85520000	2.73732800	-0.70837500
С	-0.27459000	-0.03014700	0.55808500	С	-5.16748800	-0.10780100	-0.11642500
С	1.96752800	1.02960500	1.04602000	Н	-4.37176100	-1.94413600	-0.91480300
С	-1.96451400	-1.90015100	-0.02421300	Н	-4.43472800	-1.89036500	0.85212700
Н	-0.87635800	0.83620100	0.77859600	Н	4.76250900	2.58041100	-1.78698300
Н	1.37341100	1.93663500	1.16184800	Н	5.63839800	2.07013300	-0.33479200
Н	2.41478800	0.76123400	2.00815400	C	5.19926700	4.18211400	-0.41972700
С	3.11817700	1.23636400	0.07542200	C	-6.55523800	-0.30909300	0.00116800
Н	-2.18328800	-2.62901500	0.77115800	С	-4.67309400	1.17585400	-0.31486600
Н	-1.99171700	-2.44317900	-0.97987800	0	4.50016600	4.90190800	0.26086000
0	-2.88737300	-0.84184000	-0.00388500	0	6.33206600	4.53803300	-0.99809500
0	3.62171400	0.29031500	-0.55878900	С	-7.42839000	0.80928900	-0.07198200

С	-7.13805600	-1.61318000	0.18983700	С	-11.08785500	1.54895900	0.10213700
С	-5.52284700	2.27043800	-0.38808500	С	-9.14405800	3.05659400	-0.21747500
Н	-3.60355300	1.31142600	-0.41626600	Н	-7.39106600	4.22039800	-0.48507900
С	6.77173500	5.89727500	-0.77127400	С	-11.60804400	0.27432800	0.28965300
С	-8.83999500	0.62947700	0.04940700	Н	-11.17338400	-1.82051000	0.50290600
С	-6.90274300	2.11397600	-0.26687800	Н	-11.75298600	2.40613000	0.04878500
С	-8.47554400	-1.78170100	0.30305100	Н	-9.81831100	3.90653300	-0.27053400
Н	-6.49116700	-2.48235100	0.23813600	Н	-12.68081400	0.13795900	0.38280200
Н	-5.11326800	3.26463300	-0.54318300	Cu	3.52229100	-1.61143900	-0.03891400
Н	5.99839500	6.57445600	-1.14256800	Cl	5.58362800	-0.71939700	1.77446700
Н	6.86616600	6.05099700	0.30634300	О	6.09731900	0.61328800	1.42982600
С	8.08610200	6.07059600	-1.49509200	О	6.44528200	-1.41843300	2.70874600
С	-9.37974200	-0.66829000	0.23973400	О	4.18300800	-0.60421100	2.28666200
С	-9.71107000	1.74901400	-0.02073000	О	5.46003000	-1.54685300	0.48843800
С	-7.80923000	3.22907200	-0.33525900	Cl	3.36062600	-3.98746300	-1.38629100
Н	-8.89194600	-2.77500900	0.44438400	О	4.52115200	-4.82077100	-1.63984300
Н	7.96690100	5.89854700	-2.56788400	О	3.46173500	-2.65895900	-2.08096300
Н	8.45507900	7.08941100	-1.34772800	0	2.10432200	-4.65461400	-1.68050800
Н	8.83569700	5.37315200	-1.11297700	0	3.36491600	-3.55036700	0.10915200
С	-10.76386900	-0.82499600	0.35748500				

Cartesian coordinates for the calculated structure of 5.

С	2.85163200	-1.33264500	-0.68567500	С	2.12798100	-3.38959100	0.56784100
С	4.08633300	-0.93368200	0.11930300	О	1.72784400	-4.50999600	0.41443400
С	4.40624600	0.55527400	-0.02286200	С	2.30751000	-2.79108300	1.94500400
С	3.13919800	1.38826000	0.18745600	Н	3.36167300	-2.84394200	2.23569200
С	1.68828900	-0.35675500	-0.46209700	Н	1.98392800	-1.75233600	2.02637900
Н	3.97948700	-1.13788000	1.18273200	Н	1.72811700	-3.40186900	2.63641900
Н	3.10519400	-1.25003400	-1.74409900	О	5.16126800	-1.71956300	-0.39258100
Н	2.79910600	1.26086000	1.22708700	С	6.02735700	-2.26558500	0.48898800
Н	1.28149700	-0.43000000	0.55456300	О	5.90490400	-2.16809800	1.68786200
Н	4.85408100	0.75341400	-0.99995000	О	5.31188000	0.93994600	1.01600800
0	2.13289300	0.95417900	-0.70995500	С	6.64532500	0.86578700	0.77130500
С	-0.73047600	-0.59840000	-1.11478100	О	7.10679100	0.55709100	-0.29745700
С	-1.29787200	-0.84944600	-2.33160700	С	7.14668800	-2.95396000	-0.22997500
0	2.47201200	-2.69451600	-0.55410000	Н	7.72639100	-3.54692000	0.47615700

Н	6.75766500	-3.58205900	-1.03390300	Н	-4.45219900	1.78948000	-1.83724200
Н	7.78273100	-2.18615700	-0.68116200	С	-6.62822600	2.91142800	1.17276900
С	7.42432400	1.17418000	2.01519700	С	-7.11293400	0.56230300	1.71357900
Н	7.35441500	0.30905000	2.68228600	С	-7.59009000	-1.76412100	2.32754700
Н	8.46774900	1.35067700	1.75718800	Н	-5.47109400	-3.04103800	-0.65833800
Н	7.00498000	2.03650300	2.53695100	С	-6.66630700	-3.54715300	1.00285100
Ν	0.60320300	-0.63287400	-1.36241800	С	-6.01802100	3.83555500	0.38365000
Ν	0.84101100	-0.87803000	-2.66289000	Н	-4.72968100	4.15650300	-1.33556500
Ν	-0.30312800	-1.01221200	-3.24750700	Н	-7.22433700	3.21680800	2.02821100
Н	-1.15465900	-0.40592500	-0.14310600	Н	-7.70502500	0.89090600	2.56423600
С	-2.74141200	-0.96080400	-2.68766900	С	-7.44547300	-3.09666300	2.10502900
Н	-2.97855900	-1.99002700	-2.99998000	Н	-8.17289900	-1.40086300	3.16938300
Н	-2.97196100	-0.30600500	-3.54229500	Н	-6.53803800	-4.61293700	0.84137800
С	-4.88894500	-0.70713100	-1.76425300	Н	-6.12045200	4.89496700	0.59666200
Н	-5.18511300	-0.06293700	-2.60483900	Н	-7.91313600	-3.82049300	2.76478300
Н	-5.14279600	-1.73094000	-2.05952900	С	3.37430000	2.85767100	-0.07077400
0	-3.49185600	-0.59888900	-1.55213300	Н	4.25911500	3.20582200	0.46607900
С	-5.62541900	-0.29155100	-0.51768600	Н	3.51976800	3.03784500	-1.13941200
С	-5.73105100	1.08211500	-0.22546100	0	2.21853100	3.55716200	0.38832700
С	-6.20852800	-1.24478000	0.33825800	С	2.26978600	4.89943500	0.25907000
С	-5.09035900	2.09001000	-1.01563000	0	3.22711900	5.47753800	-0.19072600
С	-6.50115000	1.51422700	0.90291200	С	0.99685800	5.53651700	0.74132500
С	-6.97668600	-0.80003400	1.46855100	Н	0.15435700	5.18093400	0.14199600
С	-6.07567000	-2.66063300	0.15552100	Н	0.80367600	5.25355200	1.77935200
С	-5.23041700	3.41273100	-0.72338500	Н	1.08058300	6.61916400	0.65835400

Figure S19. Calculated (cam-B3LYP/6–31G*/LANL2DZecp) structure of 6.

Cartesian coordinates for the calculated structure of 6.

С	3.78978700	-1.42774900	-0.33142800	Ν	1.76278400	-1.48594000	-2.35453800
С	5.00508600	-0.81591100	0.36131100	Ν	0.62275400	-1.78392400	-2.88377600
С	5.28327500	0.60794500	-0.12382400	Н	-0.23602200	-0.55225800	0.02747900
С	3.99165500	1.43033700	-0.11816300	С	-1.81142100	-1.71354100	-2.32748500
С	2.59694200	-0.46223500	-0.33315500	Н	-2.03659600	-2.78867300	-2.24636000
Н	4.89281600	-0.76935700	1.44261600	Н	-2.02417800	-1.41629400	-3.36491400
Н	4.04679300	-1.58000300	-1.38134400	С	-3.96983600	-1.23994100	-1.54614400
Н	3.64998000	1.54741100	0.92210000	Н	-4.28853700	-1.05054900	-2.58459600
Н	2.19313200	-0.30928000	0.67596400	Н	-4.16463400	-2.30573200	-1.34546900
Н	5.73509400	0.58498900	-1.11870700	Ο	-2.59317200	-0.97898300	-1.41579600
0	3.00100300	0.76667800	-0.88306500	С	4.18978900	2.79946400	-0.72427700
С	0.18682800	-0.93448100	-0.88697400	Н	5.05827000	3.29272200	-0.28295100
С	-0.37537900	-1.46337900	-2.01424200	Н	4.34465700	2.71844700	-1.80366100
0	3.45026500	-2.73478100	0.10686900	Ο	3.01018800	3.55630900	-0.45748600
С	3.12464700	-3.16905800	1.35838200	С	3.02769000	4.82601800	-0.91543900
0	2.76002700	-4.30693900	1.46311700	Ο	3.97714200	5.30288400	-1.48454300
С	3.27947900	-2.26884300	2.56355100	С	1.72915300	5.52357700	-0.62265600
Н	4.33419100	-2.21446200	2.85192200	Н	0.91366100	5.02234600	-1.15136500
Н	2.91651600	-1.25159600	2.40904400	Н	1.50665200	5.47592600	0.44636000
Н	2.72199000	-2.72829300	3.37898400	Н	1.79566700	6.56136500	-0.94602400
0	6.10725900	-1.66608500	0.05037800	С	-4.75988800	-0.37484000	-0.59467200
С	6.98193500	-1.96124100	1.03725800	С	-6.15259000	-0.53961700	-0.48273800
0	6.84538500	-1.58753200	2.17895500	С	-4.11900200	0.59344000	0.16861400
0	6.16673000	1.25242600	0.79867000	С	-6.88076100	0.28266000	0.41781300
С	7.50443800	1.16608900	0.58147200	С	-6.88297500	-1.51473300	-1.25129700
0	7.98556400	0.63060500	-0.38396600	С	-4.82694000	1.39861700	1.04917500
С	8.12839400	-2.76337700	0.50294800	Н	-3.04805000	0.71193900	0.06194800
Н	8.71867200	-3.15532300	1.33012600	С	-8.29457200	0.13063600	0.54914200
Н	7.76658800	-3.57456100	-0.13202000	С	-6.20637200	1.26188500	1.19356200
Н	8.74553200	-2.10301400	-0.11411500	С	-8.22228500	-1.65651000	-1.12713000
С	8.26078200	1.78312300	1.72001600	Н	-6.34708000	-2.14994300	-1.94829700
Н	8.20638100	1.09992400	2.57356700	Н	-4.30409300	2.14845700	1.63640200
Н	9.30190800	1.92330100	1.43220500	С	-8.98185600	-0.84127400	-0.22190400
Н	7.81259100	2.73241900	2.01950500	С	-9.02036500	0.95198200	1.45218600
Ν	1.51994800	-0.97235500	-1.13643300	С	-6.96767700	2.07966100	2.09940500

Н	-8.75124900	-2.39912400	-1.71785900	C ·	-11.06722200	-0.17012700	0.80546200
С	-10.36572900	-0.97584500	-0.07973000	Н	-10.88835800	-1.72144900	-0.67218000
С	-10.40213400	0.78454500	1.56417900	Н	-10.95586500	1.41339000	2.25561100
С	-8.30472500	1.93290100	2.22358600	Н	-8.86814700	2.55678800	2.91159000
Н	-6.43686800	2.82424400	2.68602300	Н	-12.14186100	-0.28594800	0.90577500

Cartesian coordinates for the calculated structure of $5.Hg(ClO_4)_2$.

С	-3.63035100	0.65938500	0.33431200	С	-9.28273700	-0.90933200	0.82351100
С	-5.11034900	0.46593800	0.67019500	Н	-9.22879200	-0.38940600	1.78541900
С	-5.74215200	-0.64597100	-0.17726900	Н	-10.21221200	-0.64584500	0.32004300
С	-4.85576900	-1.89501000	-0.21895100	Н	-9.23681400	-1.98288500	1.01533100
С	-2.93060400	-0.70451700	0.36273000	Ν	-1.52262200	-0.60030100	0.02386900
Н	-5.24490300	0.23425700	1.72878600	Ν	-1.05020800	0.43674600	-0.65374200
Н	-3.54711500	1.04538300	-0.68236200	Ν	0.21811200	0.22499400	-0.80571400
Н	-4.84172600	-2.35583200	0.77938000	Н	-0.72932700	-2.40170200	0.86331200
Н	-2.98697100	-1.15155400	1.35787600	С	2.01701900	-1.39030900	-0.26925200
Н	-5.92615200	-0.26392000	-1.18522600	Н	2.27511900	-1.79935600	-1.25446200
0	-3.53398200	-1.52942700	-0.59633700	Н	2.20181300	-2.15592200	0.48920100
С	-0.54244000	-1.49435700	0.31156400	С	4.22708100	-0.47036000	0.14716200
С	0.58865000	-0.95202400	-0.23227600	Н	4.62695000	-0.79404200	-0.81115400
0	-3.03608800	1.67405100	1.13375900	Н	4.63293100	0.52113600	0.35162500
С	-2.78922700	1.45375200	2.44524600	0	2.80316800	-0.23270100	-0.00778800
0	-3.01379700	0.39816900	2.99133400	С	-5.35453400	-2.90492600	-1.22413300
С	-2.20111900	2.67545100	3.08332400	Н	-6.42043600	-3.09179400	-1.07893800
Н	-1.29808500	2.98311900	2.54805500	Н	-5.20146000	-2.53844900	-2.24318900
Н	-2.91287400	3.50309500	3.01749200	Ο	-4.61530200	-4.10827900	-1.02334700
Н	-1.97341800	2.46390200	4.12712500	С	-4.99105000	-5.14634600	-1.80195300
0	-5.73022400	1.71528300	0.37326300	Ο	-5.89173100	-5.07145900	-2.59895100
С	-6.75590300	2.12143700	1.15832100	С	-4.14242200	-6.35830700	-1.53610400
0	-7.14488100	1.49764300	2.11510500	Н	-3.10367500	-6.14956200	-1.80737700
0	-6.97435400	-1.06277500	0.41038100	Н	-4.16178000	-6.60859000	-0.47230700
С	-8.11747700	-0.45565200	-0.00224300	Н	-4.51440800	-7.19545200	-2.12511900
0	-8.14776000	0.35864400	-0.88993200	Hg	2.00297900	1.69727900	-1.36228100
С	-7.34138700	3.39984400	0.63912700	Cl	3.71494300	0.47613300	-3.55065900
Н	-7.97902100	3.84638700	1.40127800	Ο	4.04465300	0.95260300	-4.88178900
Н	-6.55670400	4.09445000	0.33358200	О	2.21436600	0.33150100	-3.38287500
Н	-7.94215900	3.15835300	-0.24354900	0	4.36681500	-0.79517600	-3.22332800

0	4.09310800	1.52197900	-2.50560400
Cl	1.61135200	4.11432400	0.40999300
0	2.32550800	5.37836400	0.37253700
0	1.02331600	3.80613700	-0.96858300
0	2.57039500	2.96251900	0.64969200
0	0.54747300	4.09176100	1.41019000
С	4.53523900	-1.42328300	1.26947000
С	5.05180000	-2.70894900	1.00514900
С	4.30579100	-0.99986600	2.59611900
С	5.28314900	-3.22076000	-0.31617500
С	5.36881200	-3.57588400	2.10763200
С	4.62978500	-1.87564100	3.68380400
С	3.75765100	0.28428200	2.91859900
С	5.78289600	-4.47234300	-0.51408200
Н	5.06015100	-2.61313000	-1.18474400

С	5.89655800	-4.88001600	1.85361600
С	5.15442700	-3.13632000	3.40994100
С	4.41118500	-1.44190100	5.02715200
Н	3.47277200	0.96816200	2.12866700
С	3.56584500	0.66139400	4.21424200
С	6.09915000	-5.32027700	0.58397400
Н	5.94613800	-4.82847300	-1.52635900
Н	6.13100500	-5.51122200	2.70610200
Н	5.40131500	-3.79711100	4.23731000
С	3.89670900	-0.21022100	5.28870900
Н	4.66826600	-2.12155400	5.83466100
Н	3.15236600	1.64157000	4.42941300
Н	6.50071200	-6.31157900	0.40039900
Н	3.73537900	0.11322100	6.31204000

Cartesian coordinates for the calculated structure of $5.Pb(ClO_4)_2$.

С	3.55232500	-0.79646800	0.09191300	С	-2.09536500	1.13444400	0.51278500
С	5.02826200	-0.81660400	0.49036400	Н	-2.38162600	2.10360400	0.09301200
С	5.70654500	0.52792900	0.19589800	Н	-2.34953200	1.11065200	1.57385300
С	4.85428800	1.70819800	0.67542200	С	-4.22609500	-0.03844600	0.12057400
С	2.88869400	0.45008600	0.68778500	Н	-4.74730900	0.69292000	-0.49045600
Н	5.14600000	-1.05735800	1.54882500	Н	-4.46760900	-1.03337500	-0.25464600
Н	3.47998700	-0.71317800	-0.99321700	0	-2.79146400	0.08328900	-0.16818500
Н	4.83238500	1.70753400	1.77488800	С	5.40240200	3.02949400	0.19250900
Н	2.93402900	0.43307900	1.77875200	Н	6.46986500	3.10172000	0.41029900
Н	5.90376500	0.59937200	-0.87729600	Н	5.25995400	3.13101100	-0.88718700
0	3.53066100	1.58173700	0.17030200	0	4.69297000	4.06076700	0.87582400
С	0.46694800	1.01039300	1.09209200	С	5.11802900	5.31631400	0.61617300
С	-0.64489100	0.85602300	0.31183600	0	6.03986300	5.55314000	-0.12312700
0	2.90126800	-2.02702100	0.38285200	С	4.29186000	6.33156400	1.35509300
С	2.63320800	-2.36991300	1.66385000	Н	3.26096400	6.30408300	0.99068300
0	2.88804100	-1.65446600	2.60561000	Н	4.27045400	6.09926700	2.42282900
С	1.97268300	-3.71288600	1.72546500	Н	4.71095800	7.32390500	1.19456100
Н	1.01035300	-3.67716300	1.20457700	Cl	-3.44945500	2.27681500	-2.81275000
Н	2.59115300	-4.45666600	1.21664400	0	-3.56029200	3.02249100	-4.05395800
Н	1.82471100	-3.99425500	2.76720900	0	-1.99123500	1.96577500	-2.51174500
0	5.62090400	-1.84458900	-0.30098800	0	-4.01897100	3.00018900	-1.67149600
С	6.61954200	-2.57608500	0.24683500	0	-4.09318900	0.92185400	-2.93366400
0	7.00556300	-2.42689100	1.38023400	Cl	-1.50868400	-3.47969200	-1.18413900
0	6.93562000	0.61803000	0.91642300	0	-1.68848900	-4.71948000	-1.92128400
С	8.07203400	0.20494700	0.29803900	0	-0.44884200	-2.62041000	-1.81127400
0	8.10298200	-0.15930100	-0.85027700	0	-2.76973200	-2.63018200	-1.28256300
С	7.18287700	-3.53441100	-0.75881800	0	-1.19443100	-3.71129900	0.22794700
Н	7.78791000	-4.28436400	-0.25049300	Pb	-1.94237500	-0.52904000	-2.37960400
Н	6.38778800	-4.00527400	-1.33984400	С	-4.56987000	0.08248900	1.58038000
Н	7.81341600	-2.96335900	-1.44781100	С	-5.24216000	1.22585000	2.06628900
С	9.22887200	0.23004800	1.25031900	С	-4.24188800	-0.97870800	2.45224500
Н	9.13787500	-0.64288800	1.90468200	С	-5.56026900	2.36913100	1.25995900
Н	10.16278400	0.17012200	0.69261200	С	-5.63240500	1.27224600	3.44957600
Н	9.20712800	1.12527900	1.87448300	С	-4.62971900	-0.91141000	3.83087000
Ν	1.48390500	0.52652900	0.33315400	С	-3.52097100	-2.13699200	2.02239500
Ν	1.05181200	0.09085400	-0.84042400	С	-6.21732400	3.44283400	1.78149800
Ν	-0.22787500	0.29110300	-0.85061300	Н	-5.26137000	2.40813200	0.22051200
Н	0.61889400	1.39380000	2.08825200	С	-6.32873300	2.41508700	3.95184800

C H C H H H

-5.32229000	0.20623700	4.28800700	Н	-5.62457900	0.25085000	5.33154900
-4.30153100	-1.98994400	4.70798600	С	-3.61724600	-3.07533100	4.25510500
-3.19088900	-2.22004300	0.99640800	Н	-4.61156200	-1.91929500	5.74680000
-3.22031700	-3.14332000	2.89107500	Н	-2.66576500	-4.00273800	2.52883500
-6.61755700	3.47073300	3.14610900	Н	-7.14579800	4.33502000	3.53560900
-6.43628900	4.29330300	1.14360300	Н	-3.37076000	-3.89012300	4.92851800
-6.61848200	2.41703500	4.99885200				

Figure S20. Calculated (cam-B3LYP/6–31G*/LANL2DZecp) structure for 6.Hg(ClO₄)₂.

Cartesian coordinates for the calculated structure of $6.Hg(ClO_4)_2$.

С	-3.92560200	-0.06395000	-0.68407300	С	1.83005500	0.58446400	1.04836500
С	-5.32477400	0.48761400	-0.96735300	Н	1.97419100	0.72533800	2.12817700
С	-5.87309800	1.29341700	0.21728300	Н	2.24053800	1.45502500	0.52606200
С	-4.82436800	2.26470700	0.76660600	С	3.93611900	-0.51692000	0.67628900
С	-3.03761300	1.05909900	-0.13672300	Н	4.23473300	-0.23409100	1.68655500
Н	-5.32417800	1.11677300	-1.85959700	Н	4.26371400	-1.54514800	0.51926400
Н	-4.00017200	-0.82736300	0.09123900	0	2.49378200	-0.59667200	0.63388600
Н	-4.63437800	3.04709400	0.01767300	С	-5.27353400	2.91128700	2.05462800
Н	-2.90718100	1.85043600	-0.87850600	Н	-6.27960100	3.32063400	1.94416300
Н	-6.21016000	0.60254400	0.99496600	Н	-5.28297300	2.17966200	2.86761300
0	-3.62009100	1.55705500	1.03649000	О	-4.35028300	3.95759400	2.35200700
С	-0.58859800	1.32759600	0.36667900	С	-4.66253700	4.70545500	3.43289200
С	0.37784000	0.42819500	0.72438200	0	-5.65069000	4.51409300	4.09536200
0	-3.39988700	-0.76462800	-1.80466000	С	-3.62595800	5.76691800	3.67503800
С	-3.02159300	-0.08812800	-2.91429200	Н	-2.66332400	5.30003600	3.90186100
0	-3.05515500	1.11833700	-2.99462600	Н	-3.49325200	6.37793900	2.77849100
С	-2.55961700	-1.03532000	-3.97871600	Н	-3.93734500	6.39140400	4.51120500
Н	-1.75014200	-1.66433600	-3.59758300	С	4.45430100	0.39506100	-0.40572300
Н	-3.38074800	-1.70060400	-4.25992200	С	5.20487900	1.55800600	-0.14947300
Н	-2.22694400	-0.46836400	-4.84706200	С	4.14095100	0.04671000	-1.72197200
0	-6.14015500	-0.66023900	-1.19367100	С	5.63162800	2.35880000	-1.25059500
С	-7.12945500	-0.56977800	-2.11378600	С	5.57596600	1.99092300	1.17656000
0	-7.33009500	0.41916200	-2.77528200	С	4.55163600	0.82286700	-2.78970900
0	-6.96718400	2.10180800	-0.21465200	Н	3.55913800	-0.85293400	-1.90427400
С	-8.22098600	1.58858400	-0.11243800	С	6.39431200	3.54653300	-1.02817300
0	-8.45656700	0.52166800	0.39562300	С	5.29918600	1.98453800	-2.57814400
С	-7.93715300	-1.83206700	-2.14394100	С	6.29762300	3.11542500	1.38167800
Н	-8.54829400	-1.85385900	-3.04554500	Н	5.28074500	1.39882000	2.03436200
Н	-7.29247900	-2.71127000	-2.09028000	Н	4.29904600	0.52944700	-3.80431700
Н	-8.58700800	-1.83437000	-1.26297800	С	6.73625900	3.93952600	0.29084000
С	-9.21963600	2.50585100	-0.75017800	С	6.81632700	4.34228300	-2.12628600
Н	-9.14174300	2.37676900	-1.83450200	С	5.74031700	2.80801000	-3.67080000
Н	-10.22359900	2.23689200	-0.42377700	Н	6.56496800	3.41408000	2.39133600
Н	-9.00291000	3.54981600	-0.51652600	С	7.48316700	5.10280200	0.49026200
Ν	-1.71048300	0.58023200	0.21143200	С	7.56185500	5.49948100	-1.88407500
Ν	-1.47700100	-0.70113600	0.45271100	С	6.46234500	3.93017400	-3.45673600
Ν	-0.22078000	-0.79255200	0.76020100	Н	5.47808600	2.50250900	-4.67949500
Н	-0.57756100	2.39447600	0.21057900	С	7.89171800	5.87519200	-0.58901500

Н	7.74376400	5.39729000	1.50279800	
Н	7.88375200	6.10537000	-2.72620100	
Н	6.79105800	4.54371500	-4.29058300	
Н	8.47256400	6.77624500	-0.41952700	
Hg	1.19556700	-2.70831000	0.75459600	
Cl	2.79235100	-3.13069500	3.27734700	
0	2.96113100	-4.26591800	4.16675700	
0	1.32233300	-2.75482000	3.16337500	

0	3.56565000	-1.95912700	3.68861400
0	3.17227500	-3.51512700	1.85062500
Cl	0.77501800	-3.89049600	-2.00151300
0	1.42056100	-5.07505500	-2.54032200
0	0.09169800	-4.22671400	-0.67450200
0	1.80440800	-2.84571400	-1.61501300
0	-0.20258700	-3.31080700	-2.91861100

Figure S21. Calculated (cam-B3LYP/6–31G*/LANL2DZecp) structure for 6.Pb(ClO₄)₂.

Cartesian coordinates for the calculated structure of $6.Pb(ClO_4)_2$.

С	-4.19107800	-0.74606800	-0.65328700
С	-5.64706500	-0.44074400	-1.01226000
С	-6.06560400	0.96231900	-0.55808700
С	-5.00956100	2.00609900	-0.93269200
С	-3.29614000	0.42043200	-1.08545900
Н	-5.81320100	-0.53301100	-2.08705100
Н	-4.10753100	-0.83507600	0.43063400
Н	-4.97733400	2.10600000	-2.02734500
Н	-3.29796200	0.53095600	-2.17191700
Н	-6.24062000	0.95429800	0.52120300
0	-3.73922900	1.58761300	-0.45089900

С	-0.80240400	0.61885800	-1.35335600
С	0.23338000	0.26643500	-0.53279300
0	-3.78638200	-2.02210800	-1.13509700
С	-3.64186900	-2.22879800	-2.46461000
0	-3.76898600	-1.35033000	-3.28700600
С	-3.29202900	-3.65702000	-2.74735200
Н	-2.30233400	-3.86575100	-2.33129300
Н	-4.00649600	-4.32382700	-2.25879900
Н	-3.29161500	-3.82187700	-3.82398700
0	-6.41708100	-1.42608400	-0.32477300
С	-7.53181200	-1.90080600	-0.92748700

0	-7.88495500	-1.56311200	-2.03082400	С	4.50903100	-1.23206100	-0.71793700
0	-7.25999100	1.35274100	-1.23616600	С	6.74584800	0.26052200	-1.46892600
С	-8.45078900	1.08570900	-0.64114000	С	6.04691300	2.14173600	-0.05531000
0	-8.54537300	0.60675100	0.46068100	С	5.43669700	-1.77543300	-1.59310500
С	-8.26029600	-2.84418100	-0.01811400	Н	3.64460700	-1.82295400	-0.43241400
Н	-8.99440300	-3.41046000	-0.59025300	С	7.89782600	1.01106600	-1.85682100
Н	-7.56443100	-3.51350900	0.49110000	С	6.55909400	-1.04765600	-1.98781000
Н	-8.77278100	-2.24624100	0.74224400	С	7.14128100	2.84706300	-0.42152400
С	-9.58597700	1.42563100	-1.55868900	Н	5.35876400	2.58127500	0.65737000
Н	-9.65690600	0.62887300	-2.30609700	Н	5.28991400	-2.78050800	-1.97742100
Н	-10.51389600	1.47396500	-0.98995400	С	8.10742600	2.31472800	-1.33971100
Н	-9.40285900	2.36595500	-2.08187700	С	8.84211200	0.45548000	-2.76069900
N	-1.91418300	0.21402400	-0.68950800	С	7.53202200	-1.58556400	-2.90039800
N	-1.61468000	-0.34577000	0.46837500	Н	7.31012200	3.84028000	-0.01540900
N	-0.32115800	-0.31836200	0.55620500	С	9.23953400	3.03509000	-1.73032500
Н	-0.84727800	1.09869100	-2.31773700	С	9.95976100	1.20923000	-3.12710500
С	1.71608300	0.37856500	-0.67788000	С	8.61720400	-0.87053600	-3.26985300
Н	1.99589800	1.40124700	-0.95316100	Н	7.37133100	-2.58778500	-3.28688900
Н	2.07880300	-0.30432400	-1.45086600	С	10.15554700	2.48624900	-2.61690200
С	3.64105300	0.61459200	0.74923600	Н	9.39616300	4.03263700	-1.33008000
Н	3.53438100	1.69828300	0.66495300	Н	10.68034300	0.78265700	-3.81901300
Н	3.89372300	0.40033100	1.78884700	Н	9.34542200	-1.28709800	-3.95974900
0	2.32226400	0.05321400	0.57199700	Н	11.03045500	3.05685400	-2.91192200
С	-5.30758200	3.35374500	-0.32073600	Cl	1.71937900	1.42884200	3.75444700
Н	-6.33968800	3.64510400	-0.52526100	0	1.39114500	1.80298700	5.11904200
Н	-5.16255600	3.32190300	0.76292100	0	0.47491500	0.89881400	3.04686300
0	-4.40873800	4.29534100	-0.90369100	0	2.26825800	2.54000000	2.97979500
С	-4.60367600	5.57879000	-0.53134600	0	2.66743200	0.26034000	3.72627800
0	-5.48497600	5.91452900	0.21897100	Cl	0.29317700	-3.49392900	-0.04191100
С	-3.58612400	6.48668100	-1.16379300	0	-0.48398000	-2.97199800	-1.17224300
Н	-2.59079600	6.24846500	-0.77771900	0	1.53512200	-2.62422300	0.12307000
Н	-3.56467400	6.33901500	-2.24640100	0	-0.45443300	-3.30583400	1.23954800
Н	-3.83074900	7.52177500	-0.92941300	0	0.67951300	-4.88167200	-0.23611500
С	4.66201200	0.05815100	-0.21398300	Pb	1.08372700	-1.30263200	2.20456500
С	5.79301800	0.81856200	-0.57068500				

	Compound	Distances (Å)	WBI	Compound	Distances (Å)	WBI
d _{M-N}	$3.Cu(ClO_4)_2$	2.05274	0.2596	$5.Pb(ClO_4)_2$	2.43925	0.1556
d _{M-O}		1.97460	0.2674		2.44669	0.1213
$d_{M-O (perchlorate)}$		2.61836	0.0960		2.51054	0.1199
$d_{M-O (perchlorate)}$		2.008	0.2776		2.63201	0.0970
$d_{M-O (perchlorate)}$		1.95217	0.3183		2.49879	0.1152
$d_{M-O (perchlorate)}$		2.29946	0.1738		2.65294	0.0937
d _{M-N}	$4.Cu(ClO_4)_2$	2.05655	0.2575	6 .Hg(ClO ₄) ₂	2.38248	0.2480
d _{M-O}		1.97404	0.3673		2.48172	0.1385
$d_{M-O (perchlorate)}$		2.61904	0.0959		2.41256	0.2196
$d_{M-O (perchlorate)}$		2.00925	0.2774		2.39992	0.2258
$d_{M-O (perchlorate)}$		2.29585	0.1751		2.45043	0.1945
d_{M-O} (perchlorate)		1.95093	0.3193		2.35932	0.2574
d _{M-N}	5 .Hg(ClO ₄) ₂	2.37974	0.2477	6 .Pb(ClO ₄) ₂	2.37899	0.1678
d _{M-O}		2.48994	0.1413		2.45715	0.1118
d _{M-O} (perchlorate)		2.44803	0.1990		2.43444	0.1335
d _{M-O} (perchlorate)		2.38884	0.2567		2.69567	0.0865
d _{M-O} (perchlorate)		2.44353	0.2333		2.50659	0.1112
$d_{M-O \text{ (perchlorate)}}$		2.35839	0.1995		2.70370	0.0856

Table S1. Distance of metal to donor center and Weiberg Bond Indices (WBI) of all the model complexes

References

- Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr. J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc. Wallingford CT, (2010).
- [2] T. Yanai, D. Tew, and N. Handy, Chem. Phys. Lett., 2004, 393, 51.
- [3] P. J. Hay, W. R. Wadt, J. Chem. Phys., 1985, 82, 270.
- [4] K. Wiberg, Tetrahedron, 1968, 24, 1083.