Diversity Oriented Approach to Triazole Based Peptidiomimetics by Click Chemistry as Mammalian Sterile 20 Kinase Inhibitors

S.Kotha ${ }^{1}{ }^{\text {* }}$, D.Goyal ${ }^{1}$, A.Bitra ${ }^{1}$, N.Thota ${ }^{1}$, G.Kruger ${ }^{2}$, R.Anand ${ }^{1 *}$
1. Department of Chemistry, IIT Bombay, Powai, Mumbai, India.
2. Department of Chemistry, University of KwaZulu-Natal, Durban, South Africa.
Supporting Information

Table of Contents

1. General Experimental
2. Prepration of Compounds $2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20$
3. Table S1
4. Figure S1
5. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $2,3,4,5,6,7,8,9,11,12,13,14,15,16,17$, 18, 19, 20

General Experimental:

All the reactions were monitored by employing TLC technique using appropriate solvent system for development. Reactions involving air/oxygen sensitive reagents or catalysts were performed in degassed solvents. Transfer of moisture sensitive materials were carried out in a glove box, using standard syringe-septum techniques and the reactions were maintained under nitrogen atmosphere until the work up. Yields reported are isolated yields of the materials. All the commercial reagents were used as such without further purification. Infrared (IR) spectra were recorded on Nicolet Impact-400 FT IR spectrometer in KBr. Proton Nuclear Magnetic Resonance ($400 \mathrm{MHz},{ }^{1} \mathrm{H} \mathrm{NMR}$) spectra and Carbon Nuclear Magnetic Resonance (100 MHz , ${ }^{13}$ C NMR) spectra were recorded on Bruker/ Varian spectrometers. The high-resolution mass measurements were carried out using Micromass Q-Tof spectrometer. Melting points were recorded on Buchi B-545.

Preparation of compound (2)

According to the general procedure, alkyne $\mathbf{1 a}(50 \mathrm{mg}, 0.16 \mathrm{mmol})$, phenylazide (18.2 mg , $0.16 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(3.2 \mathrm{mg}, 0.02 \mathrm{mmol})$ and sodium ascorbate $(6.26 \mathrm{mg}, 0.03 \mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3: 3 \mathrm{~mL})$ was stirred at rt for 23 h . The crude mixture was purified by column
chromatography (100% ethyl acetate) to give the desired compound $2(66 \mathrm{mg}, 97 \%$) as a white solid.
$\mathbf{R}_{f}: 0.20$ (80% ethyl acetate/ petroleum ether) .
Mp:176-178 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta=2.01(\mathrm{~s}, 3 \mathrm{H}), 3.01-3.29(\mathrm{~m}, 3 \mathrm{H}), 3.31-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}$, $3 \mathrm{H}), 4.73-4.86(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.18-7.29 (m, 3H), 7.41-7.43 (m, 1H), 7.55-7.64 (m, 2H), 7.67-7.70 (m, 2H), 7.77 (s, 1H) ppm.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=23.4,27.5,37.8,52.4,52.8,53.3,120.6,121.1,127.3,128.7$, $128.9,129.4,129.9,135.9,137.1,144.2,170.6,170.9,171.7 \mathrm{ppm}$.
I.R. (KBr): $1542.4,1648.2,1735.4,2926.5,3306.2 \mathrm{~cm}^{-1}$.

HRMS (Q-Tof) $\boldsymbol{m} / \boldsymbol{z}$: Calcd. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 436.1985$, found: 436.1976.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{25}$: - $10.0\left(\mathrm{c}=0.15, \mathrm{CHCl}_{3}\right)$.

Preparation of compound (3)

According to the general procedure, alkyne $\mathbf{1 a}$ ($20 \mathrm{mg}, 0.06 \mathrm{mmol}$), o-nitrophenylazide ($9.8 \mathrm{mg}, 0.06 \mathrm{mmol}$), $\mathrm{Cu}(\mathrm{OAc})_{2}(1.2 \mathrm{mg}, 0.006 \mathrm{mmol})$ and sodium ascorbate $(2.4 \mathrm{mg}, 0.01$ $\mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3: 3 \mathrm{~mL})$ was stirred at rt for 20 h . The crude mixture was purified by column chromatography (50% ethyl acetate/ petroleum ether) to give the compound $\mathbf{3}$ (25.2 mg , 82%) as a white solid.
$\mathbf{R}_{f}: 0.65$ (80\% ethyl acetate/ petroleum ether).
Mp: 197-199 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta=2.02(\mathrm{~s}, 3 \mathrm{H}), 3.02-3.15(\mathrm{~m}, 3 \mathrm{H}), 3.32-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}$, $3 \mathrm{H}), 4.74-4.79(\mathrm{~m}, 1 \mathrm{H}), 4.81-4.85(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.09-7.19 (m, 2H), 7.20-7.28 (m, 3H), 7.62-7.64 (m, 2H), $7.67(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.81(\mathrm{~m}, 1 \mathrm{H}), 8.07-$ 8.09 (m, 1H) ppm.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}+\mathbf{C D}_{\mathbf{3}} \mathbf{O D}\right): \delta=22.5,27.7,37.5,52.4,53.5,124.3,125.5,127.1$, $127.9,128.7,129.2,130.0,130.9,133.9,136.0,143.6,144.4,170.7,171.5,171.9 \mathrm{ppm}$.
I.R. (KBr): $1263.7,1656.7,1736.5,2930.0,3291.8 \mathrm{~cm}^{-1}$.

HRMS (Q-Tof) $\boldsymbol{m} / \boldsymbol{z}: \quad$ Calcd. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 481.1836$, found: 481.1830.
$[\alpha]_{\mathrm{D}}{ }^{25}$: -9.900 (c = 0.12, $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$.

Preparation of compound (4)

According to the general procedure, alkyne 1a' $(20.0 \mathrm{mg}, 0.06 \mathrm{mmol})$, o-nitrophenylazide $(9.8 \mathrm{mg}, 0.06 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(1.2 \mathrm{mg}, 0.006 \mathrm{mmol})$ and sodium ascorbate $(2.4 \mathrm{mg}, 0.01$ $\mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3: 3 \mathrm{~mL})$ was stirred at rt for 20 h . The crude mixture was purified by column chromatography (50% ethyl acetate/ petroleum ether) to give the compound 4 (27.1 mg , 88%) as a white solid.
$\mathbf{R}_{f}: 0.50$ (60% ethyl acetate/ petroleum ether).
Mp: $175-177^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D}_{\mathbf{3}} \mathbf{O D}\right): \delta=1.93(\mathrm{~s}, 3 \mathrm{H}), 2.99-3.27(\mathrm{~m}, 4 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 4.65-4.69(\mathrm{~m}$, $1 \mathrm{H}), 4.74-4.78(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.91(\mathrm{~m}$, $1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 8.13-8.15(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=22.6,28.9,38.4,52.8,54.0,55.4,125.9,126.7,128.0$, 128.9 , 129.6, 130.4, 131.3, 132.4, 135.3, 138.0, 145.2, 146.1, 172.8, 173.3, 173.3 ppm.
I.R. (KBr): $1449.5,1663.3,1742.6,2942.2,3403.8 \mathrm{~cm}^{-1}$.

HRMS (Q-Tof) $\boldsymbol{m} / \boldsymbol{z}: \quad$ Calcd. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 481.1836$, found: 481.1826 .
$[\alpha]_{\mathrm{D}}{ }^{25}$: -4.043 ($\left.\mathrm{c}=0.14, \mathrm{CH}_{3} \mathrm{OH}\right)$.

Preparation of compound (5)

According to the general procedure, alkyne 1a' $(20 \mathrm{mg}, 0.06 \mathrm{mmol})$, m-nitrophenylazide ($9.8 \mathrm{mg}, 0.06 \mathrm{mmol}$), $\mathrm{Cu}(\mathrm{OAc})_{2}(1.2 \mathrm{mg}, 0.006 \mathrm{mmol})$ and sodium ascorbate $(2.4 \mathrm{mg}, 0.01$ $\mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3: 3 \mathrm{~mL})$ was stirred at rt for 24 h . The crude mixture was purified by column chromatography (70% ethyl acetate/ petroleum ether) to give the compound 5 (22.3 mg , 72%) as a white solid.
$\mathbf{R}_{f}: 0.50$ (80% ethyl acetate/ petroleum ether).
Mp: 193-195 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO): $\delta=1.81(\mathrm{~s}, 3 \mathrm{H}), 2.90-3.02(\mathrm{~m}, 3 \mathrm{H}), 3.03-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~s}$, $3 \mathrm{H}), 4.42-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.63-4.68(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.89(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.16-8.18$ $(\mathrm{m}, 1 \mathrm{H}), 8.30-8.36(\mathrm{~m}, 2 \mathrm{H}), 8.50-8.52(\mathrm{~m}, 1 \mathrm{H}), 8.64-8.68(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, DMSO): $\delta=22.5,28.2,36.5,51.8,51.9,53.7,114.5,121.7,122.7,125.9$, $126.6,128.2,128.3,19.1,129.2,131.7,137.0,137.3,144.5,148.6,169.3,170.8,171.8$ ppm.
I.R. (KBr): 1408.3, 1642.4, $2945.0,3398.9 \mathrm{~cm}^{-1}$.

HRMS (Q-Tof) $\boldsymbol{m} / \boldsymbol{z}: \quad$ Calcd. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 481.1836$, found: 481.1851.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 5}}: 2.320(\mathrm{c}=0.17, \mathrm{DMSO})$.

Preparation of compound (6)

According to the general procedure, alkyne 1a' $(11.2 \mathrm{mg}, 0.03 \mathrm{mmol})$, p-nitrophenylazide $(5.8 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(0.7 \mathrm{mg}, 0.003 \mathrm{mmol})$ and sodium ascorbate $(1.4 \mathrm{mg}, 0.006$ $\mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3: 3 \mathrm{~mL})$ was stirred at rt for 22 h . The crude mixture was purified by column chromatography (60% ethyl acetate/ petroleum ether) to give compound 6 (12.3 mg , 70%) as a white solid.
$\mathbf{R}_{f}: 0.32$ (80% ethyl acetate/ petroleum ether).
Mp: $254-256^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO) : $\delta=1.85(\mathrm{~s}, 3 \mathrm{H}), 2.93-3.08(\mathrm{~m}, 3 \mathrm{H}), 3.15-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~s}$, $3 \mathrm{H}), 4.51-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.70-4.73(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.27(\mathrm{~m}, 5 \mathrm{H}), 8.10-8.17(\mathrm{~m}, 4 \mathrm{H}), 8.43(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, DMSO): $\delta=22.4,28.0,36.7,51.7,53.4,53.5,120.1,121.3,125.3,126.4$, $128.1,128.9,136.8,141.0,144.7,146.5,169.5,170.7,171.6 \mathrm{ppm}$.
I.R. (KBr): 1408.1, 1652.6, 1742.1, 2950.5, $3393.0 \mathrm{~cm}^{-1}$.

HRMS (Q-Tof) $\boldsymbol{m} / \boldsymbol{z}:$ Calcd. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 481.1836$, found: 481.1856 .
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 5}}:-35.444(\mathrm{c}=0.09, \mathrm{DMSO})$.

Preparation of compound (7)

According to the general procedure, alkyne 1b ($40 \mathrm{mg}, 0.09 \mathrm{mmol}$), p-chlorophenylazide $(14.3 \mathrm{mg}, 0.09 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(1.8 \mathrm{mg}, 0.009 \mathrm{mmol})$ and sodium ascorbate $(3.7 \mathrm{mg}, 0.02$ $\mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3: 3 \mathrm{~mL})$ was stirred at rt for 10 h . The crude mixture was purified by column chromatography (100% ethyl acetate) to give the compound $7(53.5 \mathrm{mg}, 100 \%$) as a white solid.
$\mathbf{R}_{f}: 0.29$ (80% ethyl acetate/ petroleum ether).
Mp: $238-240{ }^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta=2.03(\mathrm{~s}, 3 \mathrm{H}), 2.94-3.15(\mathrm{~m}, 3 \mathrm{H}), 3.32-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}$, $3 \mathrm{H}), 4.69-4.71(\mathrm{~m}, 1 \mathrm{H}), 4.78-4.79(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.88$ ($\mathrm{s}, 1 \mathrm{H}$) ppm.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=22.8,27.7,37.1,48.7,48.9,49.2,49.4,49.6,49.8,50.0,52.5$, $52.5,53.4,92.6,120.9,121.7,130.0,131.3,134.7,135.5,135.7,137.7,144.3,170.9,171.3$, 171.6 ppm .
I.R. (KBr): $1540.6,1650.2,1740.5,2930.6,3300.6 \mathrm{~cm}^{-1}$.

HRMS (Q-Tof) $\boldsymbol{m} / \boldsymbol{z}$: Calcd. $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{ClI}[\mathrm{M}+\mathrm{H}]^{+} 596.0562$, found: 596.0566.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 5}}: 35.489\left(\mathrm{c}=0.145, \mathrm{CHCl}_{3}\right)$.

Preparation of compound (8)

According to the general procedure, alkyne $\mathbf{1 b}(20 \mathrm{mg}, 0.05 \mathrm{mmol})$, p-nitrophenylazide ($7.6 \mathrm{mg}, 0.05 \mathrm{mmol}$), $\mathrm{Cu}(\mathrm{OAc})_{2}(1 \mathrm{mg}, 0.005 \mathrm{mmol})$ and sodium ascorbate $(2 \mathrm{mg}, 0.01 \mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3: 3 \mathrm{~mL})$ was stirred at rt for 22 h . The crude mixture was purified by column chromatography (80% ethyl acetate/ petroleum ether) to give the dipeptide $\mathbf{8}(22 \mathrm{mg}, 80 \%$) as a white solid.
$\mathbf{R}_{f}: 0.40$ (100% ethyl acetate)
Mp: 277-279 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO): $\delta=1.75(\mathrm{~s}, 3 \mathrm{H}), 2.78-2.94(\mathrm{~m}, 4 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 4.37-4.42(\mathrm{~m}$, $1 \mathrm{H}), 4.56-4.62(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.10-8.13(\mathrm{~m}, 3 \mathrm{H})$, 8.40-8.45 (m, 3H), $8.60(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO): $\delta=22.4,28.1,35.9,51.8,51.9,53.2,92.5,120.3,121.6,125.6$, $131.6,136.9,140.9,144.6,146.6,169.2,170.7,171.4 \mathrm{ppm}$.
I.R. (KBr): 1437.7, 1652.6, 2824.1, $3429.0 \mathrm{~cm}^{-1}$.

HRMS (Q-Tof) $\boldsymbol{m} / \boldsymbol{z}: \quad$ Calcd. $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{I}[\mathrm{M}+\mathrm{H}]^{+} 607.0802$, found 607.0787.
$[\alpha]_{\mathrm{D}}{ }^{25}: 1.733(\mathrm{c}=0.06, \mathrm{DMSO})$.

Preparation of compound (9)

According to the general procedure, alkyne 1b ($20 \mathrm{mg}, 0.05 \mathrm{mmol}$), m-nitrophenylazide $(7.6 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(1 \mathrm{mg}, 0.005 \mathrm{mmol})$ and sodium ascorbate $(2 \mathrm{mg}, 0.01 \mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3: 3 \mathrm{~mL})$ was stirred at rt for 9 h . The crude mixture was purified by column chromatography (50% ethyl acetate/ petroleum ether) to give the compound 9 ($21 \mathrm{mg}, 76 \%$) as a white solid.
$\mathbf{R}_{f}: 0.48$ (60% ethyl acetate/ petroleum ether).
Mp: $148-149{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{D M S O}\right): \delta=1.81(\mathrm{~s}, 3 \mathrm{H}), 2.89-2.98(\mathrm{~m}, 3 \mathrm{H}), 3.07-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~s}$, $3 \mathrm{H}), 4.42-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.62-4.67(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.90(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.31-8.37(\mathrm{~m}, 2 \mathrm{H}), 8.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 8.67-8.68 (m, 2H) ppm.
${ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO): $\delta=22.7,28.3,36.2,52.2,52.3,53.6,92.8,114.8,122.0,123.3$, $126.2,131.9,132.0,137.1,137.3,137.5,144.7,148.8,169.9,171.1,171.8 \mathrm{ppm}$.
I.R. (KBr): 1437.6, $1660.1,3422.1 \mathrm{~cm}^{-1}$.

HRMS (Q-Tof) $\boldsymbol{m} / \boldsymbol{z}: \quad$ Calcd. $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{I}[\mathrm{M}+\mathrm{H}]^{+}$607.0802, found 607.0789.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 5}}: 2.672(\mathrm{c}=0.11, \mathrm{DMSO})$.

Preparation of compound (11)

According to the general procedure, alkyne $\mathbf{1 0}(30 \mathrm{mg}, 0.09 \mathrm{mmol})$, p-methoxyphenyl azide ($27.9 \mathrm{mg}, 0.19 \mathrm{mmol}$) $\mathrm{Cu}(\mathrm{OAc})_{2}(3.7 \mathrm{mg}, 0.02 \mathrm{mmol})$ and sodium ascorbate $(7.4 \mathrm{mg}, 0.04$ $\mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3: 3 \mathrm{~mL})$ was stirred at rt for 24 h . The crude mixture was purified by column chromatography (100% ethyl acetate) to give the compound 11 ($57 \mathrm{mg}, 99 \%$) as a white solid.
$\mathbf{R}_{f}: 0.16$ (100% ethyl acetate).
Mp: 210-213 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=0.88-0.92(\mathrm{~m}, 6 \mathrm{H}), 1.57-1.64(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{bs}, 1 \mathrm{H}), 2.08(\mathrm{~s}$, $3 \mathrm{H}), 3.40-3.68(\mathrm{~m}, 4 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 4.41-4.43(\mathrm{~m}, 1 \mathrm{H}), 7.00-7.02(\mathrm{~m}, 4 \mathrm{H}), 7.35$ (bs, 1H), 7.64-7.70 (m, 4H), $8.04(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) : $\delta=20.8,21.9,22.9,24.6,25.1,30.6,31.1,40.9,51.8,52.3,55.8$, $64.0,114.8,114.9,122.1,122.1,122.5,122.7,130.6,130.7,142.9,142.4,159.9,159.9,172.3$, $172.4,173.6 \mathrm{ppm}$.
I.R. (KBr): 1685.1, 1736.3, 2928.7, $3054.7 \mathrm{~cm}^{-1}$.

HRMS (Q-Tof) $\boldsymbol{m} / \boldsymbol{z}$: Calcd. $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{~N}_{8} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 619.2993$, found: 619.2994.
$[\alpha]{ }_{D}{ }^{\mathbf{2 5}}:-7.494\left(\mathrm{c}=0.17, \mathrm{CHCl}_{3}\right)$.

Preparation of compound (12)

According to the general procedure, alkyne $10(40 \mathrm{mg}, 0.12 \mathrm{mmol})$, p-chlorophenyl azide $(38.5 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(3.7 \mathrm{mg}, 0.02 \mathrm{mmol})$ and sodium ascorbate $(7.4 \mathrm{mg}, 0.04$ $\mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3: 3 \mathrm{~mL})$ was stirred at rt for 24 h . The crude mixture was purified by
column chromatography (80% ethyl acetate/ petroleum ether) to give the compound $\mathbf{1 2}$ (72 mg , 92%) as a white solid.
$\mathbf{R}_{f}: 0.45$ (100% ethyl acetate).
Mp: 243-245 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=0.85-0.94(\mathrm{~m}, 6 \mathrm{H}), 1.25(\mathrm{bs}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.42(\mathrm{~m}$, $2 \mathrm{H}), 3.53(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.39(\mathrm{~m}, 1 \mathrm{H}), 7.29$ (s, 1H), 7.48-7.52 (m, 4H), 7.72 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.25$ $(\mathrm{s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta=21.9,22.9,24.6,25.1,30.5,31.1,40.8,51.8,52.4,63.9$, $121.6,121.7,122.5,122.7,130.0,130.1,134.5,134.7,135.6,135.8,143.2,143.9,172.3,172.4$, 173.8 ppm .
I.R. (KBr): 1409.5, $1654.3,2951.5,3389.3 \mathrm{~cm}^{-1}$.

HRMS (Q-Tof) $\boldsymbol{m} / \boldsymbol{z}$: Calcd. $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{Cl}_{2}[\mathrm{M}+\mathrm{H}]^{+}$627.200, found: 627.201.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{25}:-3.05\left(\mathrm{c}=0.67, \mathrm{CHCl}_{3}\right)$.

Preparation of compound (13)

According to the general procedure, alkyne $10(20 \mathrm{mg}, 0.06 \mathrm{mmol})$, o-nitronitrophenyl azide ($19.7 \mathrm{mg}, 0.12 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(1.8 \mathrm{mg}, 0.01 \mathrm{mmol})$ and sodium ascorbate ($3.6 \mathrm{mg}, 0.02$ $\mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3: 3 \mathrm{~mL})$ was stirred at rt for 24 h . The crude mixture was purified by column chromatography (5% methanol/ chloroform) to give the compound $\mathbf{1 3}$ ($30.2 \mathrm{mg}, 74 \%$) as a white solid.
$\mathbf{R}_{f}: 0.64$ (10% methanol/ chloroform).
Mp: $165-167{ }^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{\mathbf{3}} \mathbf{O D}$): $\delta=0.89(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.57-1.68$ $(\mathrm{m}, 1 \mathrm{H}), 1.71-1.94(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.60(\mathrm{~m}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.72(\mathrm{~m}, 1 \mathrm{H})$, 4.42-4.46 (m, 1H), 7.78-7.89 (m, 4H), 7.90-7.92 (m, 2H), 8.12-8.15 (m, 2H), $8.26(\mathrm{~s}, 1 \mathrm{H}), 8.32$ ($\mathrm{s}, 1 \mathrm{H}$) ppm.
${ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=21.8,23.4,25.8,30.8,31.9,41.3,52.7,52.8,63.8,126.8$, $127.2,128.9,131.2,131.3,132.4,135.2,135.3,143.8,144.5,146.1,173.4,173.9,175.3 \mathrm{ppm}$.
I.R. (KBr): 1537.7, 1667.1, $1743.1,2955.5,3365.6 \mathrm{~cm}^{-1}$.

HRMS (Q-Tof) $m / z:$ Calcd. $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{10} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+} 649.2483$, found: 649.2489.
$[\alpha]_{\mathrm{D}}{ }^{25}:-29.194\left(\mathrm{c}=0.37, \mathrm{CHCl}_{3}\right)$.

Preparation of compound (14)

According to the general procedure, alkyne $10(30 \mathrm{mg}, 0.09 \mathrm{mmol})$, p-nitrophenyl azide $(31.2 \mathrm{mg}, 0.19 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(3.7 \mathrm{mg}, 0.02 \mathrm{mmol})$ and sodium ascorbate $(7.4 \mathrm{mg}, 0.04$ $\mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3: 3 \mathrm{~mL})$ was stirred at rt for 22 h . The crude mixture was purified by column chromatography (5% methanol/ chloroform) to give the compound $\mathbf{1 4}(40 \mathrm{mg}, 66 \%$) as a white solid.
$\mathbf{R}_{f}: 0.74$ (10% methanol/ chloroform).
Mp: $172-174{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathbf{D M S O}+\mathrm{CD}_{3} \mathbf{O D}\right): \delta=0.72(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.37-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.52(\mathrm{~m}, 4 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 4.19-4.22(\mathrm{~m}, 2 \mathrm{H}), 8.15-8.21$ $(\mathrm{m}, 4 \mathrm{H}), 8.31(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.43-8.45(\mathrm{~m}, 4 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 88.69$, $(\mathrm{s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO+CD $\mathbf{3} \mathbf{O D}$): $\delta=22.3,24.2,24.7,25.2,30.3,31.7,34.7,52.3,53.3$, $63.1,111.1,120.3,121.3,123.7,126.3,127.0,128.9,142.2,142.3,144.8,145.2,147.9,148.0$, 171.5, 172.8, 174.9 ppm .
I.R. (KBr): 1663.1, 1736.3, 2917.7, $3422.7 \mathrm{~cm}^{-1}$.

HRMS (Q-Tof) m / z : Calcd. $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{10} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}$649.2483, found: 649.2476.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 5}}: 9.422(\mathrm{c}=0.22, \mathrm{DMSO})$.

Preparation of compound (15)

According to the general procedure, alkyne $\mathbf{1 0}(20 \mathrm{mg}, 0.06 \mathrm{mmol})$, 2-methoxy-4nitrophenyl azide ($23.7 \mathrm{mg}, 0.12 \mathrm{mmol}$), $\mathrm{Cu}(\mathrm{OAc})_{2}(1.8 \mathrm{mg}, 0.01 \mathrm{mmol})$ and sodium ascorbate ($3.6 \mathrm{mg}, 0.02 \mathrm{mmol}$) in ${ }^{\mathrm{t}} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3: 3 \mathrm{~mL})$ was stirred at rt for 24 h . The crude mixture was purified by column chromatography (70% ethyl acetate/ petroleum ether) to give the compound 15 ($32.1 \mathrm{mg}, 85 \%$) as a white solid.
$\mathbf{R}_{f}: 0.36$ (60% ethyl acetate/ petroleum ether).
Mp: 205-207 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=0.86-0.91(\mathrm{~m}, 6 \mathrm{H}), 1.61-1.74(\mathrm{~m}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.71$ $(\mathrm{m}, 4 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{~s}, 6 \mathrm{H}), 4.44-4.48(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{bs}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 2 \mathrm{H}), 8.01-8.08(\mathrm{~m}$, $3 \mathrm{H}), 8.13$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.32(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=21.9,22.9,24.6,25.1,30.8,31.3,41.1,51.5,52.3,56.9,57.0$, $64.1,107.9,108.1,116.8,116.9,125.2,125.3,126.2,126.3,131.1,131.2,142.7,143.1,148.2$, $150.8,151.9,171.9,172.2,173.3 \mathrm{ppm}$.
I.R. (KBr): $1457.7,1525.1,1650.6,2925.1,3399.1 \mathrm{~cm}^{-1}$.

HRMS (Q-Tof) m/z: Calcd. $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{10} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+} 709.269$, found: 709.272.
$[\alpha]_{\mathrm{D}}{ }^{25}$: - $5.22\left(\mathrm{c}=0.09, \mathrm{CHCl}_{3}\right)$.

Preparation of compound (16)

To a solution of dipeptide $\mathbf{1 0}(267 \mathrm{mg}, 0.83 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ was added 2 N $\mathrm{NaOH}(0.31 \mathrm{~mL})$ and the reaction mixture was stirred at rt for 24 h . Then the reaction mixture was concentrated, diluted with water (6 mL), then acidified with 1 N HCl and extracted with ethyl acetate. Evaporation of the solvent gave 16 ($250 \mathrm{mg}, 98 \%$) as a white solid, which was directly used in the subsequent reaction.
$\mathbf{R}_{f}: 0.32$ (20% methanol/ chloroform).
Mp: $213-215^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta=0.89-0.94(\mathrm{~m}, 6 \mathrm{H}), 1.57-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.36-$
$2.40(\mathrm{~m}, 2 \mathrm{H}), 2.86-3.06(\mathrm{~m}, 4 \mathrm{H}), 4.47-4.90(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta=22.0,22.8,22.9,23.6,25.5,25.7,42.3,52.3,61.9,73.3$, 73.3, 79.4, 79.5 ppm .
I.R. (KBr): 1665.3, 2104.1, $3356.7 \mathrm{~cm}^{-1}$.

HRMS (Q-Tof) $\boldsymbol{m} / \boldsymbol{z}$: Calcd. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$307.1658, found: 307.1652.
$[\alpha]_{\mathrm{D}}{ }^{25}$: - $26.91\left(\mathrm{c}=0.13, \mathrm{CH}_{3} \mathrm{OH}\right)$.

Preparation of compound (17)

To a solution of acid $16(130 \mathrm{mg}, 0.42 \mathrm{mmol})$ and $\mathrm{HOBt}(114.6 \mathrm{mg}, 0.84 \mathrm{mmol})$ in dry THF (10 mL) was added DCC ($103.6 \mathrm{mg}, 0.50 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. Then, H-Leu-OMe. $\mathrm{HCl}(70.3$ $\mathrm{mg}, 0.50 \mathrm{mmol})$ and NMM ($33.9 \mathrm{mg}, 0.33 \mathrm{mmol}$, reaction mixture should have around $p \mathrm{H} 9$) in THF (10 mL) solution was added. The reaction mixture was stirred at rt for 24 h . The solvent was evaporated and the residue was diluted with water. The aqueous layer was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic layer was washed with water, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave the crude product, which was purified by column chromatography (1% methanol/ chloroform) to give the tripeptide 17 ($120.5 \mathrm{mg}, 70 \%$) as a white solid.
$\mathbf{R}_{f}: 0.38$ (5\% methanol/ chloroform).
Mp: $104-106{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=0.92-0.95(\mathrm{~m}, 6 \mathrm{H}), 1.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.52-1.61(\mathrm{~m}$, $1 \mathrm{H}), 1.69-1.78(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-3.22$ $(\mathrm{m}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.47-4.55(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta=17.9,21.6,23.3,23.9,24.8,24.9,25.6,40.6,48.3,52.4,52.5$, $60.9,72.7,73.2,78.7,79.1,170.3,171.3,171.5,173.2 \mathrm{ppm}$.
I.R. (KBr): $1542.0,1650.9,1743.5,2279.1,2950.0,3285.3 \mathrm{~cm}^{-1}$.

HRMS (Q-Tof) $\boldsymbol{m} / \boldsymbol{z}$: Calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$392.2185, found at 392.2167.
$[\alpha]_{\mathrm{D}}{ }^{25}$: $-15.541\left(\mathrm{c}=0.76, \mathrm{CHCl}_{3}\right)$.

Preparation of compound (18)

According to the general procedure, alkyne $17(20 \mathrm{mg}, 0.05 \mathrm{mmol})$, 2-methoxy-4nitrophenyl azide ($18.6 \mathrm{mg}, 0.10 \mathrm{mmol}$) , $\mathrm{Cu}(\mathrm{OAc})_{2}(1.8 \mathrm{mg}, 0.01 \mathrm{mmol})$ and sodium ascorbate $(3.6 \mathrm{mg}, 0.02 \mathrm{mmol})$ in ${ }^{\mathrm{t}} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3: 3 \mathrm{~mL})$ was stirred at rt for 10 h . The crude mixture was purified by column chromatography (1% methanol/ chloroform) to give the compound $\mathbf{1 8}$ (32 $\mathrm{mg}, 84 \%$) as a white solid.
$\mathbf{R}_{f}: 0.22$ (5% methanol/ chloroform).
Mp: $135-137{ }^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{\mathbf{3}} \mathbf{O D}$): $\delta=0.86(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.62-1.66(\mathrm{~m}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.64(\mathrm{~m}, 4 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{~s}, 3 \mathrm{H})$, $4.13(\mathrm{~s}, 3 \mathrm{H}), 4.27-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.41-4.47(\mathrm{~m}, 1 \mathrm{H}), 8.07-8.08(\mathrm{~m}, 4 \mathrm{H}), 8.15(\mathrm{bs}, 2 \mathrm{H}), 8.45(\mathrm{~s}$, $1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta=15.6,20.3,22.1,22.2,24.1,28.9,29.3,30.1,39.9,51.3$, $51.9,56.2,62.5,107.8,107.9,115.9,116.0,125.1,125.2,126.1,130.7,130.8,141.9,142.3$, 148.5, 151.4, 151.5, 172.3, 173.2, 173.5 ppm .
I.R. (KBr): 1531.2, $1651.8,2924.3,3389.5 \mathrm{~cm}^{-1}$.

HRMS (Q-Tof) $\boldsymbol{m} / \boldsymbol{z}:$ Calcd. $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{11} \mathrm{O}_{11}[\mathrm{M}+\mathrm{H}]^{+} 780.3065$, found: 780.3046 .
$[\alpha]_{\mathrm{D}}{ }^{\mathbf{2 5}}:-22.05\left(\mathrm{c}=0.08, \mathrm{CHCl}_{3}\right)$.

Preparation of compound (19)

According to the general procedure, alkyne $17(20 \mathrm{mg}, 0.05 \mathrm{mmol})$, p-chloronitrophenyl azide ($15.3 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(1.8 \mathrm{mg}, 0.01 \mathrm{mmol})$ and sodium ascorbate $(3.6 \mathrm{mg}, 0.02$
$\mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3: 3 \mathrm{~mL})$ was stirred at rt for 18 h . The crude mixture was purified by column chromatography (1% methanol/ chloroform) to give the compound 19 ($28.8 \mathrm{mg}, 84 \%$) as a white solid.
$\mathbf{R}_{f}: 0.22$ (80\% ethyl acetate/ petroleum ether).
Mp: 172-174 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta=0.78-0.89(\mathrm{~m}, 6 \mathrm{H}), 1.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.72(\mathrm{~m}$,
$3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.79(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 4.30-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.48(\mathrm{~m}, 1 \mathrm{H}), 7.29$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.69-7.71(\mathrm{~m}, 5 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}$, 1H) ppm.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta=17.7,21.6,23.1,24.6,24.9,30.8,30.9,40.6,48.5,52.5,52.9$, $63.6,121.5,121.6,122.2,122.3,130.1,130.2,134.6,134.8,135.4,135.6,143.4,143.6,172.0$, 172.1, 173.3 ppm .
I.R. (KBr): 1501.8, 1647.2, 1662.5, 1739.3, $2945.0 \mathrm{~cm}^{-1}$.

HRMS (Q-Tof) $\boldsymbol{m} / \boldsymbol{z}$: Calcd. $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{9} \mathrm{O}_{5} \mathrm{Cl}_{2}[\mathrm{M}+\mathrm{H}]^{+}$698.2373, found: 698.2380.
$[\alpha]_{\mathrm{D}}{ }^{\mathbf{2 5}}: 3.814\left(\mathrm{c}=0.14, \mathrm{CH}_{3} \mathrm{OH}\right)$.

Preparation of compound (20)

According to the general procedure, alkyne 17 ($20 \mathrm{mg}, 0.05 \mathrm{mmol}$), p-methoxyphenylazide $(14.6 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(1.8 \mathrm{mg}, ~ 0.01 \mathrm{mmol})$ and sodium ascorbate $(3.6 \mathrm{mg}, 0.02$ $\mathrm{mmol})$ in ${ }^{\mathrm{t}} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3: 3 \mathrm{~mL})$ was stirred at rt for 20 h . The crude mixture was purified by column chromatography (5% methanol/ chloroform) to give the compound $\mathbf{2 0}$ ($29.5 \mathrm{mg}, 85 \%$) as a white solid.
$\mathbf{R}_{f}: 0.45$ (10% methanol/ chloroform).
Mp: $130-132{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=0.78-0.83(\mathrm{~m}, 6 \mathrm{H}), 1.37(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.49-1.58(\mathrm{~m}$, $2 \mathrm{H}), 1.71-1.79(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.87$ $(\mathrm{s}, 6 \mathrm{H}), 4.34-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.48-4.53(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.36-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.51$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.60-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta=17.9,21.6,22.9,23.2,24.7,24.9,30.7,31.2,40.5,48.4,52.5$, $52.8,55.8,63.8,114.9,115.0,122.0,122.2,122.4,130.5,130.7,143.2,159.9,160.1,171.9$, 171.9, 172.2, 173.3 ppm.
I.R. (KBr): $1519.1,1657.1,1743.4,2836.6,2929.4 \mathrm{~cm}^{-1}$.

HRMS (Q-Tof) $\boldsymbol{m} / \boldsymbol{z}$: Calcd. $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{9} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 690.3364$, found: 690.3385.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}:-10.66\left(\mathrm{c}=0.14, \mathrm{CHCl}_{3}\right)$.

Table S1: List of various triazole based peptides synthesized
Alkyne precussor
contd.....

Alkyne precussor	Azide	Mono-triazole based peptide

contd.....

Alkye precussor	Azide	Di-triazole based peptide

Alkye Precussor

D

Figure S1. Screening of different inhibitors against MST1 kinase. A) with compound 7 B) with compound $\mathbf{8 C}$) with compound 9 D) with compound 12
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and HRMS of compound 2

Elemental Composition Report

Single Mass Analysis (displaying only valid results)
Tolerance $=10.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Isotope cluster parameters: Separation =1.0 Abundance $=1.0 \%$
Monoisotopic Mass, Odd and Even Electron Ions
99 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$) and HRMS of compound 3

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) and HRMS of compound
4

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=10.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Isotope cluster parameters: Separation =1.0 Abundance $=1.0 \%$
Monoisotopic Mass, Odd and Even Electron Ions
169 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

${ }^{1}$ H NMR (400 MHz , DMSO) and ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO) and HRMS of compound 5

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) and ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO) and HRMS of compound 6

${ }_{7}^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and HRMS of compound 7

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) and ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) and HRMS of compound 8

Elemental Composition Report

Single Mass Analysis

Tolerance $=60.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Isotope cluster parameters: Separation =1.0 Abundance $=1.0 \%$
Monoisotopic Mass, Odd and Even Electron Ions
93 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Micromass : Q-Tof micro (YA-105)
Dept. Of Chemistry I.I.T.(B)
27-Sep-201114:03:52
SRK-DB-52-386 38 (0.380) AM (Cen,5, 80.00, Ht,5000.0,556.28,1.00); Sb (5,40.00); Cm (7:52) TOF MS ES + T

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) and ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) and HRMS of compound 9

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and HRMS of compound 11

Elemental Composition Report

Page 1
Single Mass Analysis (displaying only valid results)
Tolerance $=10.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Isotope cluster parameters: Separation =1.0 Abundance $=1.0 \%$
Monoisotopic Mass, Odd and Even Electron Ions
113 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and HRMS of compound 12

Elemental Composition Report

Page 1
Single Mass Analysis (displaying only valid results)
Tolerance $=10.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Isotope cluster parameters: Separation =1.0 Abundance $=1.0 \%$
Monoisotopic Mass, Odd and Even Electron Ions
253 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) and HRMS of compound 13

Elemental Composition Report

Single Mass Analysis (displaying only valid results)
Tolerance $=200.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Isotope cluster parameters: Separation =1.0 Abundance $=1.0 \%$
Monoisotopic Mass, Odd and Even Electron Ions
91 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) and ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) and HRMS of compound
14

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and HRMS of compound 15

Elemental Composition Report

Page 1
Single Mass Analysis (displaying only valid results)
Tolerance $=200.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Isotope cluster parameters: Separation =1.0 Abundance $=1.0 \%$
Monoisotopic Mass, Odd and Even Electron Ions
113 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Micromass : Q-Tof micro (YA-105)
Dept. Of Chemistry I.I.T.(B)
20-Apr-201116:30:48
C31H36N10O10

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) and HRMS of compound 16

Elemental Composition Report

Page 1
Single Mass Analysis (displaying only valid results)
Tolerance $=200.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Isotope cluster parameters: Separation $=1.0$ Abundance $=1.0 \%$
Monoisotopic Mass, Odd and Even Electron Ions
13 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) and HRMS of compound 17

Elemental Composition Report

Single Mass Analysis (displaying only valid results)
Tolerance $=200.0 \mathrm{mDa} /$ DBE: $\min =-1.5, \max =50.0$
Isotope cluster parameters: Separation $=1.0$ Abundance $=1.0 \%$
Monoisotopic Mass, Odd and Even Electron Ions
22 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) and HRMS of compound 18

Elemental Composition Report

Page 1
Single Mass Analysis (displaying only valid results)
Tolerance $=200.0 \mathrm{mDa} /$ DBE: $\min =-1.5, \max =50.0$
Isotope cluster parameters: Separation =1.0 Abundance $=1.0 \%$
Monoisotopic Mass, Odd and Even Electron Ions
135 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and HRMS of compound 19
(

Elemental Composition Report

Single Mass Analysis (displaying only valid results)

Tolerance $=10.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Isotope cluster parameters: Separation $=1.0$ Abundance $=1.0 \%$
Monoisotopic Mass, Odd and Even Electron Ions
663 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Micromass : Q-Tof micro (YA-105)
Dept. Of Chemistry I.I.T.(B)
26-May-201110:26:46

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) and HRMS of compound 20

