Supporting Information
 For

An operationally simple, palladium catalysed dehydrogenative cross-coupling reaction of pyridine N-oxides and thiazoles "on water".

Nicky J. Willis ${ }^{a}$ and James M. Smith ${ }^{b}$ *
${ }^{a}$ School of Biological and Chemical Sciences, Joseph Priestley Building, Queen Mary, University of London, Mile End Road, E3 4NS;
${ }^{b}$ Cancer Research Technology Ltd., Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, CB22 3AT (UK).
e-mail: n.j.willis@qmul.ac.uk ${ }^{a}$ and jsmith@cancertechnology.com ${ }^{b}$.

Table of Contents:

I. Materials and Instrumentation S2
II. Representative Procedure For Initial Solvent Screen S3
III. Representative Procedure For Calculation of ${ }^{1} \mathrm{H}$ NMR Conversion S4
IV. General Experimental Procedure A S5
V. General Experimental Procedure B S5
VI. Determination of Kinetic Isotope Effect S6
VII. Compound Data S7-11
VIII. NMR Spectra and HRMS Data S12-27
I. Materials and Instrumentation. Unless otherwise stated, commercially available reagents were used as supplied. All reactions requiring anhydrous conditions were conducted in dried apparatus under an atmosphere of nitrogen. Thermal heating was conducted in 10 ml thick walled microwave vials (Biotage) fitted with crimp top teflon seals. Analytical thin-layer chromatography (TLC) was performed on silica gel plates (0.25 mm) precoated with a fluorescent indicator. Standard flash chromatography procedures were performed using Kieselgel $60(40-63 \mu \mathrm{~m})$ or with a TeleDyne Isco CombiFlash Rf automated purification system.

Infrared spectra were recorded in the range $4000-600 \mathrm{~cm}^{-1}$, using a Bruker Tensor 37 FTIR machine equipped with a PIKE MIRacle ATR accessory. ${ }^{1} \mathrm{H}$ NMR spectra recorded during the optimisation study using an Oxford Instruments AS400 9.4 Tesla 400MHz magnet with a 5 mm BBO BB- ${ }^{1} \mathrm{H}$ probe and an AVANCE/DPX400 console and final ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded using a Bruker AV400 NMR. Chemical shifts δ are reported in ppm (relative to $\delta_{\mathrm{H}} \mathrm{CHCl}_{3}$ (7.27) and $\delta_{\mathrm{C}} \mathrm{CDCl}_{3}$ (77.0) unless otherwise stated) and multiplicity of signals are denoted $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet and $\mathrm{m}=$ multiplet respectively, with coupling constants (J) reported in hertz (Hz). Structural interpretations and assignments were made based upon COSY, HSQC, HMQC, DEPT 135, DEPT 90 and NOESY experiments. High resolution mass spectra (HRMS) were obtained by the EPSRC National Mass Service (Swansea) using a double focussing mass spectrometer (Finnigan MAT 95 XP).

II. Representative Procedure For Initial Solvent Screen

Pyridine N-oxide ($285 \mathrm{mg}, 3.00 \mathrm{mmol}$, 4.0 equiv.), 2,4-dimethyl-thiazole ($80 \mu \mathrm{l}, 0.75 \mathrm{mmol}$, 1.0 equiv.), $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ ($476 \mathrm{mg}, 1.73 \mathrm{mmol}, 2.3$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}(16.8 \mathrm{mg}, 10 \mathrm{~mol} \%$), tetrabutylammonium bromide ($48 \mathrm{mg}, 0.15 \mathrm{mmol}, 0.2$ equiv.), Pyridine ($242 \mu \mathrm{l}, 3.00 \mathrm{mmol}$, 4.0 equiv.) and DMF (3.00 ml) were charged into a 10 ml biotage microwave vial containing a magnetic stirrer bar. The vial was then sealed with a "crimp-cap" and the mixture was stirred at $135{ }^{\circ} \mathrm{C}$ (calibrated external temperature) for 22 h .

The mixture was then diluted with EtOAc (25 ml), the organics were then filtered through phase-separating filter paper, washing with further EtOAc ($2 \times 10 \mathrm{ml}$)before concentration under reduced pressure. An internal standard (1,3,5-trimethoxybenzene, $42 \mathrm{mg}, 0.25 \mathrm{mmol}$, 0.33 equiv.) and the crude mixture was dissolved in CDCl_{3} (5 ml) and a ${ }^{1} \mathrm{H}$ NMR was recorded to determine conversion of starting material upon integration of the signals highlighted as in III (overleaf).

III. Representative Procedure For Calculation of ${ }^{\mathbf{1}} \mathrm{H}$ NMR Conversion:

Pyridine N-oxide ($428 \mathrm{mg}, 4.50 \mathrm{mmol}, 6.0$ equiv.), 2,4-dimethyl-thiazole ($80 \mu \mathrm{l}, 0.75 \mathrm{mmol}$, 1.0 equiv.), $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ ($620 \mathrm{mg}, 2.25 \mathrm{mmol}, 3.0$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($4.5 \mathrm{mg}, 2.6 \mathrm{~mol} \%$), and tetrabutylammonium bromide (TBAB, $48 \mathrm{mg}, 0.15 \mathrm{mmol}, 0.2$ equiv.), 2-Dicyclohexylphosphino-2', 4', 6^{\prime}-triisopropylbiphenyl ($36 \mathrm{mg}, 0.075 \mathrm{mmol}, 10 \mathrm{~mol} \%$), Pyridine ($116 \mu \mathrm{l}, 1.50 \mathrm{mmol}, 2.0$ equiv.) and distilled de-ionised water ($1.00 \mathrm{ml}, 55.55 \mathrm{mmol}$) were charged into a 10 ml biotage microwave vial. The vial was then sealed with a "crimpcap" and the mixture was stirred at $100^{\circ} \mathrm{C}$ (calibrated external temperature) for 22 h .

The mixture was then diluted with sat. aq. sodium citrate solution (25 ml) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 ml) and the organics were then separated, filtered through phase-separating filter paper before concentration under reduced pressure. An internal standard (1,3,5-trimethoxybenzene, $42 \mathrm{mg}, 0.25 \mathrm{mmol}, 0.33$ equiv.) and the crude mixture was dissolved in $\mathrm{CDCl}_{3}(5 \mathrm{ml})$ and a ${ }^{1}$ H NMR was recorded to determine conversion of starting material upon integration of the signals highlighted below (80\%).

IV General Experimental Procedure A:

Pyridine N-oxide ($4.50 \mathrm{mmol}, 6.0$ equiv.), thiazole (0.75 mmol , 1.0 equiv.), $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (620 mg , $2.25 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(4.5 \mathrm{mg}, 2.6 \mathrm{~mol} \%)$, and tetrabutylammonium bromide (TBAB, $48 \mathrm{mg}, 0.15 \mathrm{mmol}, 0.2$ equiv.), 2-Dicyclohexylphosphino-2',4', 6^{\prime} 'triisopropylbiphenyl ($36 \mathrm{mg}, 0.075 \mathrm{mmol}, 10 \mathrm{~mol} \%$), Pyridine ($116 \mu \mathrm{l}, 1.50 \mathrm{mmol}, 2.0$ equiv.) and distilled de-ionised water ($1.00 \mathrm{ml}, 55.55 \mathrm{mmol}$) were charged into a 10 ml biotage microwave vial. The vial was then sealed with a "crimp-cap" and the mixture was stirred at $100^{\circ} \mathrm{C}$ (calibrated external temperature) for 22 h .

The mixture was then diluted with sat. aq. sodium citrate solution (25 ml) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 ml) and the organics were then separated, filtered through phase-separating filter paper before concentration under reduced pressure. The crude residue was then purified by silica gel chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right)$.

V General Experimental Procedure B:

Pyridine N -oxide ($4.50 \mathrm{mmol}, 6.0$ equiv.), thiazole ($0.75 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (620 mg , $2.25 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(17 \mathrm{mg}, 10 \mathrm{~mol} \%)$, and tetrabutylammonium bromide (TBAB, 48 mg , $0.15 \mathrm{mmol}, 0.2$ equiv.), 2-Dicyclohexylphosphino-2', $4^{\prime}, 6^{\prime}$ 'triisopropylbiphenyl (36 mg , $0.075 \mathrm{mmol}, 10 \mathrm{~mol} \%$), Pyridine ($116 \mu \mathrm{l}, 1.50 \mathrm{mmol}, 2.0$ equiv.) and distilled de-ionised water ($1.00 \mathrm{ml}, 55.55 \mathrm{mmol}$) were charged into a 10 ml biotage microwave vial. The vial was then sealed with a "crimp-cap" and the mixture was stirred at $100{ }^{\circ} \mathrm{C}$ (calibrated external temperature) for 48 h .

The mixture was then diluted with sat. aq. sodium citrate solution (25 ml) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 ml) and the organics were then separated, filtered through phase-separating filter paper before concentration under reduced pressure. The crude residue was then purified by silica gel chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right)$.

VI Determination of Kinetic Isotope Effect

Pyridine- $\mathrm{d}_{5} \mathrm{~N}$-oxide ($230 \mathrm{mg}, 2.30 \mathrm{mmol}, 3$ equiv.), pyridine N-oxide ($219 \mathrm{mg}, 2.30 \mathrm{mmol}$, 3 equiv.), 4-Methyl-2-phenylthiazole ($130 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ ($620 \mathrm{mg}, 2.25$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(4.5 \mathrm{mg}, 2.6 \mathrm{~mol} \%)$, and tetrabutylammonium bromide (TBAB, 48 mg , $0.15 \mathrm{mmol}, 0.2$ equiv.), 2-Dicyclohexylphosphino-2', $4^{\prime}, 6^{\prime}$-triisopropylbiphenyl (36 mg , $0.075 \mathrm{mmol}, 10 \mathrm{~mol} \%$), Pyridine ($116 \mu \mathrm{l}, 1.50 \mathrm{mmol}, 2.0$ equiv.) and distilled de-ionised water ($1.00 \mathrm{ml}, 55.55 \mathrm{mmol}$) were charged into a 10 ml biotage microwave vial. The vial was then sealed with a "crimp-cap" and the mixture was stirred at $100{ }^{\circ} \mathrm{C}$ (calibrated external temperature) for 22 h .

The mixture was then diluted with sat. aq. sodium citrate solution (25 ml) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 ml) and the organics were then separated, filtered through phase-separating filter paper before concentration under reduced pressure. The crude residue was then purified by silica gel chromatography ($0-5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford a mixture of 2-(4-Methyl-2-phenyl-thiazol-5-yl)-pyridine-d 44 1-oxide and 2-(4-Methyl-2-phenyl-thiazol-5-yl)-pyridine 1-oxide as a yellow solid. The ratio of $\mathbf{3 a}$ to $\mathbf{3 a}-\mathrm{d}_{5}$ was determined by ${ }^{1} \mathrm{H}$ NMR to be 3.5:1.

2-(2,4-Dimethyl-thiazol-5-yl)-pyridine 1-oxide (3a)

The titled compound was prepared from 2,4-dimethyl-thiazole and pyridine N -oxide according to general procedure A. Purified by silica gel chromatography using elution with $0-5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford 3a as a pale yellow solid ($119 \mathrm{mg}, 0.58 \mathrm{mmol}, 77 \%$).
$R_{\mathrm{f}}=0.33\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 19: 1\right) ; \mathrm{mp} 57-58{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.30(\mathrm{dd}, 1 \mathrm{H}$, $\left.J=6.5,0.9 \mathrm{~Hz}, \mathrm{H}_{a}\right), 7.59\left(\mathrm{dd}, 1 \mathrm{H}, J=8.1,1.9 \mathrm{~Hz}, \mathrm{H}_{d}\right), 7.32-7.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{c}\right), 7.17(\mathrm{ddd}, J=$ $\left.7.0,6.5,2.0 \mathrm{~Hz}, \mathrm{H}_{b}\right), 2.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{e}\right), 2.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{f}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.5$, $153.4,143.0,139.7,126.0,125.5,123.6,120.6,18.6,18.4$; HRMS calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{OS}\right]^{+}=207.0587$, found $=207.0585$; FT-IR $\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right) 3349,3089,1656,1480$, 1423, 1256, 1031, 836, 763;

2-(2,4-Dimethyl-thiazol-5-yl)-quinoline 1-oxide (3b)

The titled compound was prepared from 2,4-dimethyl-thiazole and quinoline- N-oxide, according to general procedure \mathbf{A}. Purified by silica gel chromatography using elution with $0-5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford $\mathbf{3 b}$ as a pale yellow solid ($123 \mathrm{mg}, 0.48 \mathrm{mmol}, 64 \%$).
$R_{\mathrm{f}}=0.43\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 19: 1\right) ; \mathrm{mp} 108-109{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.81(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=8.8 \mathrm{~Hz}, \mathrm{H}_{a}\right), 7.87\left(\mathrm{dd}, 1 \mathrm{H}, J=8.1,1.3 \mathrm{~Hz}, \mathrm{H}_{f}\right), 7.83-7.73\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{b}, \mathrm{H}_{c}\right.$ and $\left.\mathrm{H}_{d}\right), 7.65$ (ddd, $\left.1 \mathrm{H}, J=8.1,6.9,1.3 \mathrm{~Hz}, \mathrm{H}_{e}\right), 2.74\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right.$ and $\left.\mathrm{H}_{h}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $167.3,154.3,141.5,139.4,130.9,128.5,128.5,128.0,125.1,121.9,121.4,120.0,19.1,18.7$; HRMS calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{OS}\right]^{+}=257.0743$, found $=257.0743$; FT-IR (film, cm^{-1}) 3055, 2922, 1598, 1451, 1370, 1322, 1295, 809, 748.

2-(2,4-Dimethyl-thiazol-5-yl)-4-methyl-pyridine 1-oxide (3c)

The titled compound was prepared from 2,4-dimethyl-thiazole and 4-Picoline N-oxide according to general procedure B. Purified by silica gel chromatography using elution with $0-5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford $\mathbf{3 c}$ as a pale yellow solid ($119 \mathrm{mg}, 0.54 \mathrm{mmol}, 72 \%$).
$R_{\mathrm{f}}=0.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 19: 1\right) ; \mathrm{mp} 138-139{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.23(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=6.7 \mathrm{~Hz}, \mathrm{H}_{a}\right), 7.40\left(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}, \mathrm{H}_{d}\right), 7.01\left(\mathrm{dd}, 2 \mathrm{H}, J=6.7,2.3 \mathrm{~Hz}, \mathrm{H}_{b}\right), 2.70(\mathrm{~s}, 3 \mathrm{H}$, H_{f}), $2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{e}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{c}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.6,153.3$, 142.4, 139.2, 137.0, 126.6, 124.8, 120.9, 20.8, 18.9, 18.6; HRMS calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{OS}\right]^{+}=$ 221.0743, found $=221.0743$; FT-IR (film, cm^{-1}) 3050, 2919, 1646, 1509, 1439, 1242, 821, 784.

2-(2,4-Dimethyl-thiazol-5-yl)-5-methyl-pyridine 1-oxide (3d)

The titled compound was prepared from 2,4-dimethyl-thiazole and 3-Picoline N -oxide according to general procedure B. Purified by silica gel chromatography using elution with $0-5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford $\mathbf{3 d}$ as a pale yellow solid ($97 \mathrm{mg}, 0.44 \mathrm{mmol}, 59 \%$).
$R_{\mathrm{f}}=0.32\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 19: 1\right) ; \mathrm{mp} 111{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{a}\right)$, $7.50\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}_{d}\right), 7.16\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}_{c}\right), 2.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{f}\right), 2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{e}\right)$, $2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{b}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.6,153.1,140.7,139.8,134.9,127.4$, 125.7, 121.1, 19.0, 18.6, 18.5; HRMS calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{OS}\right]^{+}=221.0743$, found $=$ 221.0742; FT-IR (film, cm^{-1}) 3390, 3054, 1653, 1517, 1491, 1391, 1266, 1201, 1020, 824, 625.

2-(2,4-Dimethyl-thiazol-5-yl)-6-methyl-pyridine 1-oxide (3e)

The titled compound was prepared from 2,4-dimethyl-thiazole and 2-Picoline N -oxide according to general procedure B. Purified by silica gel chromatography using elution with $0-5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford $\mathbf{3 e}$ as a colourless solid ($95 \mathrm{mg}, 0.44 \mathrm{mmol}, 58 \%$).
$R_{\mathrm{f}}=0.32\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 19: 1\right) ; \mathrm{mp} 62{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 7.62(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 7.6, 2.3 Hz, H_{d}), 7.33-7.25 (m, 2H, H_{b} and H_{c}), $2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{f}\right), 2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{e}\right), 2.45(\mathrm{~s}, 3 \mathrm{H}$, H_{a}) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 167.2,154.0,149.8,143.1,125.2,125.2,124.7,122.2$, 18.6, 18.5, 18.5; HRMS calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{OS}\right]^{+}=221.0743$, found $=221.0742$; FT-IR (film, cm^{-1}) 3340, 1655, 1564, 1446, 1379, 1222, 792.

2-(2,4-Dimethyl-thiazol-5-yl)-4-methoxy-pyridine 1-oxide (3f)

The titled compound was prepared from 2,4-dimethyl-thiazole and 4-Methoxypyridine N-oxide, according to general procedure A. Purified by silica gel chromatography using elution with $0-5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford 3 f as a pale yellow solid (115 mg , $0.49 \mathrm{mmol}, 65 \%$).
$R_{\mathrm{f}}=0.27\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 19: 1\right) ; \mathrm{mp} 79-80{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.25(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=7.4 \mathrm{~Hz}, \mathrm{H}_{a}\right), 7.14\left(\mathrm{~d}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}, \mathrm{H}_{d}\right), 6.78\left(\mathrm{dd}, 1 \mathrm{H}, J=7.4,3.2 \mathrm{~Hz}, \mathrm{H}_{b}\right), 3.90(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{H}_{c}\right), 2.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{f}\right), 2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{e}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.0,157.3,153.5$, 140.4, 122.4, 120.8, 110.9, 110.1, 56.2, 18.7, 18.5; HRMS calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right]^{+}=$ 237.0692, found $=237.0692$; FT-IR (film, cm^{-1}) 3075, 2921, 1620, 1507, 1482, 1296, 1216, 1016, 780.

4-Chloro-2-(2,4-dimethyl-thiazol-5-yl)-pyridine 1-oxide (3g)

The titled compound was prepared from 2,4-dimethyl-thiazole and 4-Methoxypyridine N-oxide, according to general procedure B. Purified by silica gel chromatography using elution with $0-5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford $\mathbf{3 g}$ as a pale yellow semi-crystalline solid $(47 \mathrm{mg}, 0.20 \mathrm{mmol}, 26 \%)$.
$R_{\mathrm{f}}=0.36\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 19: 1\right) ; \mathrm{mp} 160-161^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.22(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=6.9 \mathrm{~Hz}, \mathrm{H}_{a}\right), 7.57\left(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}, \mathrm{H}_{d}\right), 7.14\left(\mathrm{dd}, 1 \mathrm{H}, J=6.9,2.8 \mathrm{~Hz}, \mathrm{H}_{b}\right), 2.67(\mathrm{~s}, 3 \mathrm{H}$, H_{f}), $2.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{e}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.2,154.3,143.9,140.3,131.4$, 125.4, 123.6, 119.7, 18.7, 18.6; HRMS calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{ClS}\right]^{+}=241.0197$ found $=$ 241.0198; FT-IR (film, cm^{-1}) 3078, 1470, 1258, 1239, 1124, 821, 677.

2-(2,4-Dimethyl-thiazol-5-yl)-3-fluro-pyridine 1-oxide (3h)

The titled compounds were prepared from 2,4-dimethyl-thiazole and 4-Methoxypyridine N-oxide, according to general procedure B. Purified by silica gel chromatography using elution with $0-5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford $\mathbf{3 h}$ as a colourless crystalline solid (52 mg , $0.29 \mathrm{mmol}, 31 \%)$.
$R_{\mathrm{f}}=0.40\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 19: 1\right) ; \mathrm{mp} 82-83{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.22(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.7.1 \mathrm{~Hz}, \mathrm{H}_{a}\right), 7.28-7.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{b}\right), 7.15\left(\mathrm{dd}, 1 \mathrm{H}, J=7.5,0.7, \mathrm{H}_{c}\right), 2.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{e}\right), 2.35(\mathrm{~d}, J$ $=2.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{d}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.1,158.4(\mathrm{~d}, J=253.2 \mathrm{~Hz}), 155.4$, $136.7,124.1,124.0,114.7(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 113.4(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 19.3,17.2(\mathrm{~d}, J=5.9 \mathrm{~Hz})$; ${ }^{19} \mathrm{~F}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-112.1 ;$ HRMS calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OFS}\right]^{+}=225.0492$, found $=225.0492 ;$ FT-IR $\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right) 3031,1543,1438,1242,1174,1043,821,722$.

2-(4-Methyl-2-phenyl-thiazol-5-yl)-pyridine 1-oxide (3i)

The titled compound was prepared from 4-Methyl-2-phenylthiazole and pyridine N-oxide according to general procedure A. Purified by silica gel chromatography using elution with $0-5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford $\mathbf{3 i}$ as a colourless solid ($127 \mathrm{mg}, 0.47 \mathrm{mmol}, 63 \%$).
$R_{\mathrm{f}}=0.43\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 19: 1\right) ; \mathrm{mp} 82-83{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.39(\mathrm{dd}, 1 \mathrm{H}, J$ $\left.=6.5,1.2 \mathrm{~Hz}, \mathrm{H}_{a}\right), 8.05-8.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{f}\right), 7.75\left(\mathrm{dd}, 1 \mathrm{H}, J=8.1,1.9 \mathrm{~Hz}, \mathrm{H}_{d}\right), 7.44\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{g}\right.$ and H_{h}), 7.37 (ddd, $1 \mathrm{H}, J=8.1,7.6,1.2 \mathrm{~Hz}, \mathrm{H}_{c}$), $7.23\left(\mathrm{ddd}, 1 \mathrm{H}, J=7.6,6.5,2.0 \mathrm{~Hz}, \mathrm{H}_{b}\right), 2.75$ (s, $3 \mathrm{H}, \mathrm{H}_{e}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.4,154.9,143.1,139.8,133.5,130.3,129.0$, 126.8, 125.8, 125.6, 123.6, 121.3, 19.0; HRMS calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{OS}\right]^{+}=269.0743$ found $=269.0744 ;$ FT-IR $\left(f i l m, \mathrm{~cm}^{-1}\right) 3043,1651,1478,1428,1240,1014,758,685$.

2-(2-Methyl-4-phenyl-thiazol-5-yl)-pyridine 1-oxide (3j)

The titled compound was prepared from 2-Methyl-4-phenylthiazole and pyridine N-oxide according to general procedure A. Purified by silica gel chromatography using elution with $0-5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford $\mathbf{3 j}$ as a pale orange oil ($142 \mathrm{mg}, 0.53 \mathrm{mmol}, 71 \%$).
$R_{\mathrm{f}}=0.43\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 19: 1\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.33(\mathrm{dd}, 1 \mathrm{H}, J=6.5,1.3$ $\left.\mathrm{Hz}, \mathrm{H}_{a}\right), 7.55-7.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{g}\right), 7.42-7.36\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{e}\right.$ and $\left.\mathrm{H}_{f}\right), 7.19(\mathrm{dd}, 1 \mathrm{H}, J=8.1,2.0 \mathrm{~Hz}$, H_{d}), 7.12 (ddd, $1 \mathrm{H}, J=7.56 .5,2.0 \mathrm{~Hz}, \mathrm{H}_{b}$), $6.99\left(\mathrm{ddd}, 1 \mathrm{H}, J=8.1,7.5,1.3 \mathrm{~Hz}, \mathrm{H}_{c}\right), 2.78(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{H}_{h}$) ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.4,156.7,143.3,139.7,135.5,129.4,129.0$, 128.9, 127.0, 125.1, 123.9, 121.2, 18.9; HRMS calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{OS}\right]^{+}=$269.0743, found $=269.043 ;$ FT-IR $\left(f i l m, \mathrm{~cm}^{-1}\right) 3061,1493,1481,1276,881,762,701$.

3a ${ }^{1} \mathbf{H}$ Spectrum

3a ${ }^{13} \mathbf{C}$ Spectrum

```
    |
```


3a HRMS

3b ${ }^{1} \mathbf{H}$ Spectrum

3b ${ }^{13}$ C Spectrum

3b HRMS

3c ${ }^{1}$ H Spectrum

3c ${ }^{13}$ C Spectrum

3c HRMS

3d ${ }^{1} \mathbf{H}$ Spectrum

3d ${ }^{13}$ C Spectrum

3e ${ }^{1} \mathbf{H}$ Spectrum

$3 e^{13} \mathrm{C}$ Spectrum

3e HRMS

CH3e MW=220?
$(\mathrm{MeOH}) / \mathrm{MeOH}+\mathrm{NH} 4 \mathrm{OAC}$

Nicky John Wilis 07/05/2013 18:01:25

NL:
9.04 E 6

QMCBRA333-OJ-HNESP\#33-
49 RT: 0.77-1.23 AV: 17 T:
FTMS + p NSI Full ms [120.00-2000.00]

$3 \mathbf{f}^{\mathbf{1}} \mathbf{H}$ Spectrum

3f ${ }^{13}$ C Spectrum

$3 f$ HRMS

$3 g^{1} \mathbf{H}$ Spectrum

3g ${ }^{13}$ C Spectrum

3g HRMS

3h ${ }^{1} \mathbf{H}$ Spectrum

3h ${ }^{13}$ C Spectrum

3h ${ }^{19}$ F Spectrum

[^0]
3h HRMS

CH 3 h MW $=224$?
$(\mathrm{MeOH}) / \mathrm{MeOH}+\mathrm{NH} 4 \mathrm{OAc}$ LTQ Orbitrap XL

3i ${ }^{1} \mathbf{H}$ Spectrum

1.98E4
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{OSH}:$
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~F}_{1} \mathrm{~N}_{2} \mathrm{O}_{1} \mathrm{~S}_{1}$
p (gss, s/p:40) Chrg 1
R: 100000 Res .Pwr . @FWHM

$3 \mathbf{i}^{1} \mathbf{H}$ Spectrum

3i HRMS

$\mathrm{CH} 3 \mathrm{i} \mathrm{MW}=268 ?$
$(\mathrm{MeOH}) / \mathrm{MeOH}+\mathrm{NH} 4 \mathrm{OAC}$
EPSRC National Facility Swansea LTQ Orbitrap XL

Nicky John Wilis
TQ Orbitrap XL

07/05/2013 17:47:45

NL:
1.10E7

QMCBRA329-OJ-HNESP\#34-
42 RT: $0.80-1.03 \mathrm{AV}: 9 \mathrm{~T}$:
FTMS + p NSI Full ms
[120.00-2000.00]

NL:
1.87E4
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OSH}:$
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{1} \mathrm{~S}_{1}$
p (gss, s/p:40) Chrg 1
R: 100000 Res .Pwr. @FWHM

3j ${ }^{1} \mathbf{H}$ Spectrum

3j ${ }^{13}$ C Spectrum

3j HRMS

[^0]: $\begin{array}{llllllllllllllllllllllll}10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 & -210\end{array}$

