Supporting Information

A differentially selective chemosensor for ratiometric responses to Zn^{2+} and Al^{3+} in aqueous media with applications for molecular switches

Shyamaprosad Goswami*, Sima Paul and Abhishek Manna

Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711103, West Bengal, India E-mail: spgoswamical@yahoo.com; Fax: +91-3326682916.

CONTENTS

1.	General	2
2.	Job plot by fluorescence method	2
3.	Determination of association constant	3-4
4.	Calculation of the detection limit	4
5.	Competition experiment in water	5
6.	¹ H-NMR, ¹³ C-NMR and Mass spectra	5-8
7.	UV-vis spectra of receptor with different guest cations	9-10
8.	Fluorescence spectra of receptor with different guest cations	11-12
9.	Comparative IR spectra of receptor and complex	13
10	. References	13

1. General:

The chemicals and solvents were purchased from Sigma-Aldrich Chemicals Private Limited and were used without further purification. Melting points were determined on a hot-plate melting point apparatus in an open-mouth capillary and were uncorrected. ¹H-NMR and ¹³C NMR spectra were recorded on Brucker 400 MHz instruments respectively. For NMR spectra, d₆-DMSO was used as solvent with TMS as an internal standard. Chemical shifts are expressed in δ units and ¹H–¹H coupling constants in Hz. UV-vis titration experiments were performed on a JASCO UV-V530 spectrophotometer and fluorescence experiment was done using PTI fluorescence spectrophotometer with a fluorescence cell of 10 mm path. IR spectra were recorded on a JASCO FT/IR-460 plus spectrometer, using KBr discs.

2. Job Plot by fluorescence method:

Figure S1: Job plot diagram of receptor i.e. PMN with (a) Al^{3+} and (b) Zn^{2+} .

A series of solutions containing **PMN** ($c = 2 \times 10^{-5} \text{ ML}^{-1}$), Al(NO₃)₃9H₂O ($c = 2 \times 10^{-4} \text{ ML}^{-1}$) and ZnCl₂ ($c = 2 \times 10^{-4} \text{ ML}^{-1}$) were prepared such that the sum of the total metal ion and **PMN** volume remained constant (2ml). CH₃CN:H₂O (3:7) is used as solvent at pH 7.1 using HEPES buffer. The mole fraction (**X**) of Al³⁺ and Zn²⁺ were varied from 0.1 to 1.0. The corrected fluorescence was plotted against the molar fraction of the Al³⁺ and Zn²⁺ solutions.

3. Determination of the association constant:

Figure S2: Bensei-Hildebrand plot from fluorescence titration spectral data of receptor PMN with (a) Al^{3+} and (b) Zn^{2+} in CH₃CN : H₂O (3: 7) and (c) Al^{3+} in water

The spectra of these solutions were recorded by means of Fluorescence methods. Binding constant was calculated according to the Benesi-Hildebrand equation. K_a was calculated following the equation stated below.

$$1/(F-Fo) = 1/{K(Fmax-Fo) [Al^{3+}]_n} + 1/[Fmax-Fo]$$

 $1/(F-Fo) = 1/{K(Fmax-Fo) [Zn^{2+}]_n} + 1/[Fmax-Fo]$

Here Fo is the fluorescence of receptor in the absence of guest, F is the fluorescence recorded in the presence of added guest, Fmax is fluorescence in presence of added $[Al^{3+}]max$ and $[Zn^{2+}]max$, K is the association constant (M⁻¹). The association constant (K_a) could be determined from the slope of the straight line of the plot of 1/(F-Fo) against 1/[Al³⁺]_n and

 $1/[Zn^{2+}]_n$ respectively. The association constant (K_a) as determined by fluorescence titration method for sensor with Al³⁺ is found to be 1 x 10⁵ M⁻¹ and with Zn²⁺ is found to be 1 x 10⁴ M⁻¹

4. Calculation of the detection limit:

Figure S3: The linear change of fluorescence intensity as a function of (a) $[Al^{3+}]$ at 432 nm and (b) $[Zn^{2+}]$ at 446 nm

The detection limit DL of **PMN** for Al(III) and Zn(II) were determined from the following equation¹:

DL = K* Sb1/S

Where K = 2 or 3 (we take 3 in this case); Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve.

From the graph (a) we get slope = 80518, and Sb1 value is 26100 and from graph (b) we get slope = 98487 and Sb1 value is 96751.68.

Thus using the formula we get the Detection Limit for Al^{3+} is 0.648 μ M i.e. PMN can detect Al^{3+} ion in this minimum concentration and Detection Limit for Zn^{2+} 1.96 μ M.

5. Competition experiment in water:

Figure S4: Fluorescence response of probe PMN in presence of Al^{3+} (1 equiv.) additional various metal ions (10 equiv.) in 20 mM HEPES buffer at pH =7.1

6. ¹H NMR, ¹³C NMR and ESI MS spectra of PMN and Al³⁺ and Zn²⁺ complex of PMN : ¹H NMR spectrum of Receptor i.e. PMN:

¹H NMR spectrum of Receptor i.e. PMN + 1 equiv. Zn²⁺:

¹H NMR spectrum of Receptor i.e. PMN + 1 equiv. Al³⁺:

¹³C NMR spectrum of Receptor:

ESI MS Mass Spectra of PMN:

ESI MS Spectra of Al-Complex of Receptor:

ESI MS Spectra of Zn-Complex of Receptor:

7. UV-vis absorption spectra of PMN with different cations as Ga^{3+} , Fe^{3+} , Ni^{2+} , Co^{2+} , Pb^{2+} , Hg^{2+} , Cu^{2+} , Ag^+ , Cd^{2+} , In^{3+} , Cr^{3+} in $CH_3CN : H_2O$ (3:7, v/v) (The solutions of metal ions were prepared from GaCl₃, FeCl₃, Ni(ClO₄)₂·6H₂O, Co(ClO₄)₂·6H₂O, PbCl₂, HgCl₂, Cu(ClO₄)₂·6H₂O, AgNO₃, Cd(ClO₄)₂·H₂O, Pb(ClO₄)₂, InCl₃ and CrCl₃.6H₂O, respectively in CH₃CN-H₂O)

8. Fluorescence emission spectra of PMN with different cations as Ga^{3+} , Fe^{3+} , Ni^{2+} , Co^{2+} , Pb^{2+} , Hg^{2+} , Cu^{2+} , Ag^+ , Cd^{2+} , In^{3+} , Cr^{3+} in $CH_3CN : H_2O$ (3:7, v/v) (The solutions of metal ions were prepared from GaCl₃, FeCl₃, Ni(ClO₄)₂·6H₂O, Co(ClO₄)₂·6H₂O, PbCl₂, HgCl₂, Cu(ClO₄)₂·6H₂O, AgNO₃, Cd(ClO₄)₂·H₂O, Pb(ClO₄)₂, InCl₃ and CrCl₃.6H₂O, respectively in CH₃CN-H₂O)

9. FT-IR data of PMN and its complex with Al^{3+} and Zn^{2+} ions :

- 10. References:
 - M. Zhu, M. Yuan, X. Liu, J. Xu, J. Lv, C. Huang, H. Liu, Y. Li, S. Wang, D. Zhu, Org. Lett. 2008, 10, 1481-1484