Supporting information for

Synergistic Effect for the Preparation of LiMn₂O₄ **Microspheres with High Electrochemical Performance**

Pengli Zhu,*^{a,b} Xiangli Chu,^a Fengrui Zhou,^a Rong Sun*^a and Chingping Wong*^{b,c} ^aShenzhen Institutes of Advanced Technology, Chinese Academy of Science, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China. E-mail: <u>pl.zhu@siat.ac.cn</u> or <u>rong.sun@siat.ac.cn</u> ^bSchool of Materials Science and Engineering, Georgia Institute of Technology,771 Ferst Drive, Atlanta, GA, 30332, USA

Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China, E-mail: cpwong@cuhk.edu.hk

Fig. S1. Photographs of (a) the reaction bottle after adding HCl with 2 min for routine method (left) and 60 min (right), (b,c) below filtrate of the routine method and synergistic method, respectively.

Calculation of the yield of MnO₂

Fig. S2. Thermo gravimetric analysis (TGA) curve of MnO_2 microspheres recorded from ambient to 800 °C with a heating rate of 10 °C·min⁻¹ under air flow.

Theoretical total weight of MnO_2 is calculated based on the chemical reaction equation (1) in the main body of this article. The stoichiomettric relationship between $MnCO_3$ and MnO_2 are as follows:

MnCO ₃	\sim	KMnO ₄	\sim	MnO_2
3 mol		2 mol		5 mol
1.15 g / M[MnCO ₃]				<i>x</i> / M[MnO ₂]

Where M[MnCO₃] and M[MnO₂] is the molecular weight of MnCO₃ (114.95 g mol⁻¹) and MnO₂ (86.94 g mol⁻¹).

In the TGA curve of MnO₂ microspheres, as shown in Fig. S2, we observed a weight loss of 9.2 wt% upon heating, which involves the volatilization of free or crystal water (normally below 200 °C) and the decomposition and release of O₂ from MnO₂: $4MnO_2 \rightarrow 2Mn_2O_3 + O_2$. So when using 1.15 g of MnCO₃, the theoretical weight of MnO₂ is x = 1.45 g. If further minus the water (2~3 wt%) part, the experimental weight of MnO₂ would approximately equal to 1.49 g. The yield of the obtained MnO₂ powders prepared via the routine method and our method is calculated in Table S1, it can be seen that the yield in our experiment is nearly 99%, indicating the completely conversion of MnCO₃ and KMnO₄.

Table S1 The weight and yield of obtained MnO₂ powders.

Reaction time after adding HCl	Routine method	synergistic method
Experimental weight (g)	1.25 g	1.47 g
Yield	~ 84 %	~ 99 %

Fig. S3 N_2 adsorption/desorption isotherms plots of the LiMn₂O₄ microspheres.

Fig. S4 Plots of the peak current density versus the square root of potential scan rate derived from the CV curves of LiMn_2O_4 microspheres. (a) Peak *A1*, (b) Peak *C1*, (c) Peak *A2* and (d) Peak *C2*, respectively.

		5				5	
	Peak A1				Peak Cl		
v	Ε	I_p	D_{Li}	_	Ε	I_p	D_{Li}
(mV/s)	(V)	(mA/cm^2)	$(cm^2 s^{-1})$		(V)	(mA/cm^2)	$(cm^2 s^{-1})$
0.05	4.067	1.07E-01	5.56E-09		3.95	-7.60E-02	8.04E-10
0.10	4.090	1.73E-01	7.30E-09		3.932	-1.19E-01	2.06E-09
0.15	4.109	2.45E-01	9.81E-09		3.914	-1.61E-01	3.41E-09
0.20	4.119	2.97E-01	1.08E-08		3.908	-2.03E-01	4.81E-09
		Peak A2				Peak C2	
v	Ε	I_p	D_{Li}	_	Ε	I_p	D_{Li}
(mV/s)	(V)	(mA/cm^2)	$(cm^2 s^{-1})$		(V)	(mA/cm^2)	$(cm^2 s^{-1})$
0.05	4.187	1.26E-01	4.83E-10	_	4.072	-1.10E-01	5.55E-10
0.10	4.208	1.89E-01	1.29E-09		4.055	-1.62E-01	1.51E-09
0.15	4.224	2.70E-01	2.04E-09		4.042	-2.17E-01	2.54E-09
0.20	4.231	3.29E-01	2.97E-09		4.035	-2.58E-01	3.78E-09

Table S2 Summary of Li⁺ diffusion coefficient determined by CV method.

Morphology	Measurement method	Lithium ion diffusion coefficient $(D \text{ cm}^2 \text{ S}^{-1})$	References
Porous nanorods	CV	$1.74 \times 10^{-9} \sim 1.30 \times 10^{-8}$	[23]
Spherical	CITT	$0.9 \times 10^{-10} \sim 16.3 \times 10^{-10}$	[20]
	PITT	$10^{-9.5} \sim 10^{-11.5}$	[29]
Porous spheres	CV	4.61×10^{-10}	[30]
Porous nanoscaled	CV	$1.40 \times 10^{-8} \sim 3.6 \times 10^{-10}$	[31]

Table S3 Summary of the Lithium ion diffusion coefficient in references

CV: cycling voltammetry

CITT: capacity intermittent titration technique

PITT: potential intermittent titration technique