Electronic Supplementary Information

Construction of core-shell Fe₂O₃@SnO₂ nanohybrids for gas sensors by a simple flame-assisted spray process

Yunfeng Li, Yanjie Hu,^{*} Hao Jiang, Xiaoyu Hou and Chunzhong Li^{*}

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and

Engineering, East China University of Science & Technology, Shanghai 200237, China

*To whom correspondence should be addressed.

E-mail: czli@ecust.edu.cn (Prof. C. Z. Li) and huyanjie@ecust.edu.cn (Dr. Y. J. Hu)

Fax: +86 21 64250624; Tel: 86- 21- 6425- 0949;

Fig.S1 SEM image of flame sprayed pure Fe₂O₃ particles without the encapsulation of SnO₂.

Fig.S2 EDS of flame sprayed Fe₂O₃@SnO₂ NHs.

Fig.S3 (a) SEM image and (b) the corresponding EDS line scanning results of core-shell $Fe_2O_3@SnO_2$ particles. (As shown in Fig.S3b, it is noted that the distribution of Sn atoms is relatively uniform along the marked yellow arrow. The Fe atoms show a high-level content in the centre of particles. These results demonstrate that the core is composed of Fe_2O_3 component and the shell is assembled by SnO_2 .)

Fig.S4 (a) SEM image, (b) the corresponding EDS and (c-f) elemental mapping images of core-shell Fe₂O₃@SnO₂ particles. (Fig.S4 shows the elements mapping distribution of more particles in a single SEM image in detail. Obviously, it is found that Fe atoms are mainly in central of particles, compared to Sn atoms. The mapping results clearly demonstrate that the obtained Fe₂O₃/SnO₂ NHs have typical core-shell structures.)

Fig.S5 SEM and TEM images of core-shell Fe₂O₃@SnO₂ NHs: (a, b) bubbler temperature at 15 °C; (c, d) 45°C

Fig.S6 Nitrogen adsorption and desorption isotherm and the corresponding pore-size distribution curve (inset) of Fe₂O₃@SnO₂ NHs.

Fig. S7 XRD patterns and corresponding TEM images of flame made (a, d) pure Fe₂O₃, (b, e) pure SnO₂ and (c, f) co-oxidation Fe₂O₃/SnO₂ NPs.

Fig.S8 SEM image of flame co-oxidation Fe₂O₃/SnO₂ nanoparticles.

Flame sprayed powders	BET surface area (m ² /g)	Sensitivity ^b (R _a /R _g)	Response time (s)	Recovery time (s)	
Fe ₂ O ₃	14.8	6.5	10	18	
$Fe_2O_3@SnO_2(15)$	17.3	16.9	13	17	
$Fe_2O_3@SnO_2(30)^a$	21.9	22.8	14	12	
$Fe_2O_3@SnO_2(45)$	19.5	19.6	11	16	
Fe ₂ O ₃ /SnO ₂	11.8	4.6	29	19	
SnO_2	96.6	11.7	17	14	

	01	o .c.	C	1	•	C	C	.1	1 . 1	1
lah	ST.	Specific	surface	area and	oas-sensin	o nertor	mance of	the	obtained	samples
Ian		Specific	Surface	area ana	gus sensin	s perior		unc	obtained	Sumpres

 $Fe_2O_3@SnO_2 (30)^a$: the core-shell NHs was prepared by FASP route with N₂ carrying the SnCl₄ vapor at 30 °C; Sensitivity^b measured at 300 °C with response to 100 ppm ethanol.