Electronic Supplementary Information (ESI)

Learn from T-Hg-T and C-Ag-T: Four-input Dual-core Molecular Logic Gate and Its

New Application in Cryptography

Dingyi Tong, Haifeng Duan, Hejing Zhuang, Jungang Cao, Zhonglin Wei, and Yingjie Lin*

Department of Chemistry, Jilin University, Changchun 130012, P. R. China

E-mail: linyj@jlu.edu.cn; Tel:(+86)-431-85168398; Fax:(+86)-431-85168398

CONTENTS

- S2. Material & Instrumentation
- S3. Emission spectra of PyI in EtOH / H₂O mixture (Fig. S1)
- S3. Photo of Pyl in the solid and EtOH solution under UV lamp (Fig. S2)
- S4. Quenching effect by Hg²⁺ and Ag⁺ in different pH (Fig. S3)
- S4. Fluorescence quantum yield (Φ) and % fluorescence quenching of PyI (Table S1)
- S5. Emission spectra of Pyl versus Hg²⁺ or Ag⁺ concentration (Fig. S4 and Fig. S5)

S5. Job plot of Hg²⁺ and Ag⁺ complex formation (Fig. S6)

- S6. Emission spectra of logic gate Pyl with different inputs (Fig. S7)
- S6. Photos of the reversibility of logic gate Pyl (Fig. S8)
- **S7.** UV-Vis spectra of Pyl for Hg²⁺ and Ag⁺ in different pH (Fig. S9)
- S7. Hill equation (Fig. S10 and Table S2)
- S8. Pyl in different pH (Fig. S11 and Scheme S1)
- S8. Fluorescence lifetime spectra of Pyl (Fig. S12)
- S9. The encryption function of the logic gate Pyl (Fig. S13)
- S9. Transcoded by the logic gate Pyl (Table S3)
- S10. The security and reliability of the encryption by Pyl (Fig. S14, Table S4 and Fig. S15)
- S11. International Morse Code alphabet (Fig. S16)
- S11. Electronic engineering symbols for some double-input logic gates (Fig. S17)
- S12. ¹H NMR, ¹³C NMR spectra of Pyl (Fig. S18)
- S13. HRMS data of Pyl (Fig. S19)
- S14. HRMS data of PhI-Ag-PhI (Fig. S20)
- S15. ¹H NMR spectra of PhI and PhI-Ag-PhI (Fig. S21)

Material & Instrumentation

Maleimide was purchased from Energy-Chemical (China). PPh₃ and Benzaldehyde were purchased from GuangFu (China). 1-Formylpyrene was purchased from TCI. Quinine sulphate was purchased from Alfa Aesar. All other common reagents and solvent were received from commercial sources and used without further purification. ¹H and ¹³C NMR spectra were measured in DMSO-*d6* on Bruker-Avance (400 MHz for ¹H and 101 MHz for ¹³C) with TMS as an internal reference. HPLC-HRMS were measured with Bruker MicrOTOF QII. UV-vis absorption spectra were obtained using a Varian-Cary50. All the fluorescence measurements were acquired on a Varian-FLR006 and Edinburgh Instrument FLS920.

Synthesis of Pyl

A mixture of maleimide (116 mg, 1.2 mmol), PPh₃ (315 mg, 1.2 mmol), and acetone (3 ml) was heated under reflux for 2 h. After cooling, the precipitate was filtered and washed with acetone (20 ml), then dried in vacuo and got a colorless solid (308 mg, 0.86 mmol, yield 72%). It was used for the next step without further purification and mixed with 1-Formylpyrene (198 mg, 0.86 mmol) and methanol (5 ml). The mixture was heated under reflux for 3 h, then cooled at room temperature. The resulting precipitate was filtered, washed with methanol (20 mL) and dried in vacuo to give a yellow power **PyI**: 204 mg, 76% yield. Metamorphosed into brown over 260 °C. ¹H NMR (400 MHz, DMSO) δ 11.56 (s, 1H), 8.52 – 8.19 (m, 9H), 8.13 (t, J = 7.6 Hz, 1H), 3.78 (s, 2H). ¹³C NMR (101 MHz, DMSO) δ 175.85, 171.80, 131.57, 130.78, 130.17, 129.50, 129.27, 128.62, 128.53, 128.09, 127.81, 127.29, 126.63, 126.27, 126.10, 125.91, 125.03, 123.95, 123.66, 122.64, 34.76. HRMS (M+H⁺): Cald. For C₂₁H₁₄NO₂ 312.1019; Found: 312.1014.

Synthesis of Phl

This imide derivative was synthesized according to the literature method.¹

Synthesis of PhI-Ag-PhI

PhI (187 mg, 1.0 mmol) was dissolved in 5 mL methanol / DMF. Triethylamine (TEA) (1 equiv.) and AgNO₃ solution (85 mg, 0.5 mmol, in DMF) were then added. The resulting precipitate was filtered, washed with methanol / H_2O and dried in vacuo to give a white power **PhI-Ag-PhI**: 52 mg, yield 22%.

Method for making Pyl fluorescent paper

The filter papers were soaked in the ethanol solution of 10 mM **PyI**. After 0.5 h, they were removed out of solution and dried at room temperature.

(1) (a) Y. Luo, L. Ma, H. Zheng, L. Chen, R. Li, C. He, S. Yang, X. Ye, Z. Chen, Z. Li, Y. Gao, J. Han, G. He, L. Yang and Y. Wei, *J. Med. Chem.*, 2010, **53**, 273; (b) H. M. Albers, L. J. Hendrickx, R. J. van Tol, J. Hausmann, A. Perrakis and H. Ovaa, *J. Med. Chem.*, 2011, **54**, 4619.

Emission spectra of PyI in EtOH / H_2O mixture

Fig. S1 Emission spectra of the PyI (5 μ M) in EtOH and 30~90 % water in EtOH.

Photo of Pyl in the solid and EtOH solution under UV lamp

Fig. S2 Fluorescence of PyI under UV lamp (365 nm) (left) in the solid (right) 5 µM in EtOH solution.

Quenching effect by Hg^{2+} and Ag^+ in different pH

Fig. S3 Emission spectra of **PyI** (5 μ M) in EtOH-PBS buffer (5 mM) (1:4, v/v) (a) in pH 6.13~7.89, without Ag⁺ and Hg²⁺; (b) adding 5 μ M Ag⁺ or Hg²⁺ in pH 6.13~7.89; (c) adding 5 μ M Hg²⁺ in pH 6.13~7.89; (d) The fluorescence intensity at 500 nm without and with 5 μ M Ag⁺ or Hg²⁺ vs pH, ($\lambda_{ex} = 375$ nm).

pН	Compound	Fluorescence quantum yield ^a Φ	% Fluorescence quenching ^{b,c}
6	Pyl	0.39	-
6	Pyl :Hg ²⁺	0.08	77 (92)
8	Pyl	0.45	-
8	Pyl :Ag⁺	0.10	85 (90)
8	Pyl :Hg ²⁺	0.09	87 (93)

Fluorescence quant	um vield (O	D) and % fluorescen	ce quenching of Pyl.
- action coecilies quality			

Table. S1 ^aQuinine sulphate was used as standard whose quantum yield is 0.63 in 0.1N H_2SO_4 at λ_{ex} = 375 nm; ^bcalculated at 0.5 equiv. of metal ions; ^cvalues in parentheses correspond to 1.0 equiv. of metal ions. (EtOH-PBS buffer (5 mM) (1:4, v/v))

Emission spectra of Pyl versus Hg²⁺ or Ag⁺ concentration

Fig. S4 Emission spectra of **PyI** (5 μ M) in EtOH-PBS buffer (5 mM) (1:4, v/v) (a) in pH 6.0, adding different concentrations of Hg²⁺; (b) in pH 8.0, adding different concentrations of Ag⁺; (c) in pH 8.0, adding different concentrations of Hg²⁺, ($\lambda_{ex} = 375$ nm).

Fig. S5 Plots of fluorescence intensity **PyI** (5.0 μ M) at (a) 514 nm versus Hg²⁺ concentration in EtOH-PBS buffer (5 mM, pH = 6.0) (1:4, v/v); (b) 500 nm versus Hg²⁺ and Ag⁺ concentration EtOH-PBS buffer (5 mM, pH = 8.0) (1:4, v/v). (λ_{ex} = 375 nm).

Job plot of Hg²⁺ and Ag⁺ complex formation

Fig. S6 Job plot of Hg^{2+} and Ag^+ complex formation. I₀ is the fluorescence intensity ((a) at 500 nm in pH 6.0; (b, c) at 514 nm in pH 8.0) when $[\text{Hg}^{2+}]$ or $[\text{Ag}^{2+}] = 0. [\text{Hg}^{2+}] + [\text{PyI}] = 0.01 \text{ mM}$ or $[\text{Ag}^+] + [\text{PyI}] = 0.01 \text{ mM}$.

Emission spectra of logic gate PyI with different inputs

Fig. S7 Emission spectra of **PyI** (5 μ M) in EtOH-PBS buffer (5 mM) (1:4, v/v) with different inputs (5 μ M Hg(NO₃)₂, 5 μ M AgNO₃ and 15 μ M Na₂S) (a) in pH 6.0; (b) in pH 8.0, (λ_{ex} = 375 nm).

Photos of the reversibility of logic gate Pyl

Fig. S8 Fluorescence of **PyI** (5 μ M) under UV lamp (365 nm) in EtOH-PBS buffer (5 mM) (1:4, v/v) by alternating addition of (a) Hg²⁺ and S²⁻ in pH 6.0; (b) Hg²⁺ and S²⁻ in pH 8.0; (c) Ag⁺ and S²⁻ in pH 8.0; (d) a little dilute HNO₃ and NaOH in the presence of 5 μ M Ag⁺.

UV-Vis spectra of PyI for Hg^{2+} and Ag^{+} in different pH

Fig. S9 UV-Vis spectra of **PyI** (0.02 mM) in EtOH-PBS buffer (20 mM) (1:4, v/v) (a) in pH 6.0, adding 0.02 mM Ag⁺ or Hg²⁺; (b) in pH 8.0, adding 0.02 mM Ag⁺ or Hg²⁺; (c) in pH 6.0 or pH 8.0, without Ag⁺ or Hg²⁺.

Hill equation²

Hill equation describes the quantitative relationship between the ligand with receptor. Because the quenching efficiency of Ag^+ or Hg^{2+} to fluorescent probe **PyI** are high, the **Hill equation** can be described as the following:

$$\lg \frac{I_0 - I}{I} = n \lg[M] + \lg K_{app}$$

where I_{θ} and I are fluorescence intensities of **PyI** in the absence and presence of Ag⁺ or Hg²⁺ and [*M*] is the concentration of Ag⁺ or Hg²⁺ respectively. By fitting the fluorescence quenching data, the apparent association constant K_{app} and Hill coefficient *n* (the binding of **PyI** to Ag⁺ or Hg²⁺) can then be obtained. (*n*>1, positive cooperativity; *n*=1, noncooperativity and *n*<1, negative cooperativity.)

pН	Compound	IgK_{app}	n	R ²
6	Pyl :Hg ²⁺	9.91	1.7	0.994
8	Pyl :Ag⁺	10.4	1.7	0.992
8	Pyl:Hg ²⁺	8.90	1.5	0.990

Fig. S10 / Table S2. Fluorescence quenching data of PyI by Hg²⁺ and Ag⁺ fitted with Hill equation (solid line).

(2) J. Gao, Y. Lai, C. Wu and Y. Zhao, Nanoscale, 2013, 5, 8242.

Fig. S11 (a) Emission spectra of PyI (5 μ M) in EtOH-PBS buffer (5 mM) (1:4, v/v) in pH 6.0~12.0; (b) The fluorescence intensity at 480 nm vs pH, ($\lambda_{ex} = 375$ nm).

Scheme S1 The conversion of PyI (5 μ M) in the base environment.

Fluorescence lifetime spectra of PyI

Fig. S12 Fluorescence lifetime spectra of **PyI**, **PyI** + CH₃NO₂, **PyI** + Hg²⁺, **PyI** + Hg²⁺ + CH₃NO₂, **PyI** + Ag⁺, **PyI** + Ag⁺ + CH₃NO₂ in EtOH-PBS buffer (1:4, v/v) in pH 8.0.

Fig. S13 The encryption function of the logic gate PyI.

Transcoded by the logic gate Pyl

Table S3. Detailed steps.

Steps	Details
1	ABCD 2346 EAF (Secret letter)
2	A→1010 B→1011 C→1100 D→1101
	2→0010 3→0011 4→0100 6→0110
	E→1110 A→1010 F→1111 (Hexadecimal→Binary)
3	1010→0 1011→1 1100→1 1101→1
	0010→0 0011→1 0100→0 0110→0
	1110→0 1010→0 1111→1 (Outputs by Pyl)
4 ^a	0111→0100→001→
5	→J→L→U (Transcoded by Morse alphabet)
[-1 "0" - "	» / «1» _ « »

[a] "0" = "." / "1" = "-

The security and reliability of the encryption by PyI

Fig. S14 The code book (spy) and the chemical inputs (connector).

Table	S4.	Chemical	input	tubes.
	~ ••	chienneur	mpar	caces.

a1	b1	c1	d1	a0	b0	c0	d0
PBS	Ag⁺	Hg ²⁺	S ²⁻	PBS	H ₂ O	H₂O	H ₂ O
pH=6.0	5 μΜ	5 μΜ	15 µM	pH=8.0	-	-	-

Example:

(Encryption) When the the spy wanted to sent the message "0", he could write "A" in the fluorescent paper.

(*Decryption*) After getting the secret letter, the connector added (a1, b0, c1, d0) into the fluorescent paper to get the message "0".

Others: By changing the chemical input tubes as following, we could get 384 kinds of code systems by PyI.

Fig. S15 The changing of the chemical input tubes.

International Morse Code alphabet³

Fig. S16 International Morse Code alphabet

(3) http://en.wikipedia.org/wiki/Morse_code

In_1	In_2				Out			
0	0	0	0	1	0	1	0	1
0	1	0	1	0	1	0	1	0
1	0	0	1	0	1	0	0	1
1	1	1	1	0	0	1	0	1
		AND	OR	NOR	XOR	XNOF	R INH	IMP
		Ð-	Ð	\sum	\mathbb{D}	\mathbb{D}	_	Ð

Electronic engineering symbols for some double-input logic gates⁴

Fig. S17 Names, truth tables, and electronic engineering symbols for some double-input logic gates which will be built-up into larger arrays in subsequent sections. INH = INHIBIT. IMP = IMPLICATION.

(4) A. P. de Silva, Chem. Asian J., 2011, 6, 750.

Fig. S18 ¹H NMR, ¹³C NMR spectra of PyI.

HRMS data of Pyl

	Mass S	Spectrum Sn	nartFormul	la Report	
Analysis Info Analysis Name Method Sample Name Comment	F:\博士 论 文\核磁图\1 lc-ms-hr-low.m THG	[HG_P1-F-4_01_7621	.d C Ir	cquisition Date 2)perator E nstrument / Ser# r	2013/5/22 8:00:46 3DAL@CN nicrOTOF-Q II 10351
Acquisition Par Source Type Focus Scan Begin Scan End	ameter ESI Active 50 m/z 3000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 V -500 V 150.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valv	0.4 Bar 180 痰 4.0 l/min ve Waste
Intens. x10 ⁴ 1.0 0.8 31 0.6 0.4 0.2 0.0	623.1483	1000	1500	2000	+MS, 2.8min #167
Meas.m/ 312.101	z # Formula 4 1 C 21 H 14 N O 2	m/z err [ppm] 312.1019 1.7	Mean err [ppm] 1.9	rdb N-Rule 15.5 ok	e [⊤] Con mSigma even 7.51

Fig. S19 HRMS data of PyI

HRMS data of PhI-Ag-PhI

	Ν	lass Spe	ectrum	n Sma	rtForn	nula F	Rep	ort			
Analysis Info Analysis Name Method	F:\博士论文 Ic-ms-br-low	い液质 \tdy.d m				Acquis	sition E	Date 201	3/8/21 ച <i>ര</i> വ	19:51:13	
Sample Name Comment	ic-ms-nr-low.m tdy					Operator BDAL@ Instrument / Ser# micrOT			rOTOF	OF-Q II 10351	
Acquisition Pa	rameter										
Source Type Focus Scan Begin Scan End	ESI Active 50 m/z 3000 m/z	lon Se Se	Polarity t Capillary t End Plate t Collision C	N 3 Offset -{ cell RF 1	egative 500 V 500 V 50.0 Vpp		Set Net Set Dry Set Dry Set Div	oulizer Heater Gas ert Valve	0 1 4 V	.4 Bar 80 癈 .0 l/min /aste	
Intens 8000 - - 186.05 4000 - - 2000 - -	74 481.0181									-MS, 0.4m	in #21
0-L - I+-	، البر الم ر الم	10	00	150	0	2000	· , ,)		2500	· · /· · · / -	m/z
Meas. m 479.01	l/z # Formu ⁷⁹ 1 C 22 H	la 16 Ag N 2 O 4	m/z 479.0166	err [ppn -2	n] Mean (6	err [ppm] -3.4	rdb 15.5	N-Rule ok	e⁻ C even	Con mSig 6	gma 2.37
Intens,										-MS, 0.	4min #21
1000 -		479 0179	481.0181								
800 -											
600 -											
400 -			Î								
200 -		480.0213	3	482.0227							

Bruker Compass DataAnalysis 4.0

printed: 2013/8/24 8:42:36

488

Page 1 of 1

490 m/z

Fig. S20 HRMS data of PhI-Ag-PhI.

0

-0

-1000

¹H NMR spectra of PhI and PhI-Ag-PhI

Fig. S21¹H NMR spectra of PhI and PhI-Ag-PhI.

 -1 -2 -3 -4

2.09

2.10 3.00 1.05

7 6 f1 (ppm)