Supporting Information

Silica "SHB" chiral Pc-L* copper complexes for halogen-free solvent cyclopropanation reactions.

Brunilde Castano,^{*a*} Paolo Zardi,^{*a*} Yvonne Honneman,^{*a,b*} Anne Galarneau,^{*c*} Emma Gallo,^{*a*} R. Psaro,^{*b*} Alessandro Caselli,^{*,*a*} Vladimiro Dal Santo, ^{*,*b*}

^a Dipartimento di Chimica, Università di Milano, and ISTM-CNR; Via Golgi 21, 20133 Milano, Italy. Fax: (+39)02 5031 4405; Tel: (+39)02 5031 4372; E-mail: <u>alessandro.caselli@unimi.it</u>

^b CNR – Istituto di Scienze e Tecnologie Molecolari, Via C. Golgi 19, 20133 Italy. Fax: +39-02-50314405; Tel: +39-02-50314428; E-mail: <u>v.dalsanto@istm.cnr.it</u>

^c CNRS ICGM ENSCM, 8 Rue de l'Ecole Normale 34296 Montpellier France.

General. NMR spectra were recorded on Bruker Avance 300-DRX or Avance 400-DRX spectrometers. Chemical shifts (ppm) are reported relative to TMS. The ¹H NMR signals of the compounds described in the following have been attributed by COSY and NOESY techniques. Assignments of the resonance in ¹³C NMR were made using the APT pulse sequence and HSQC and HMBC techniques. Infrared spectra were recorded on a BIO-RAD FTS-7 spectrophotometer. Elemental analyses and mass spectra were recorded in the analytical laboratories of Milan University. GC-MS analysis were performed on a Shimadzu GCMS-QP5050A instrument. Optical rotation were measured on a Perkin Elmer instruments model 343 plus; $[\alpha]_D$ values are given in 10^{-1} deg cm² g⁻¹. The water and air sensitive compounds were handled in a dry-box, model "MB-10-Compact". Metal loadings are determined by ICP-OES using a Thermo X Series II apparatus. 15 mg of each sample are mineralized by adding 3 mL of 37% HCl, 1 mL of concentrated HNO₃, 1 mL of 98% H₂SO₄. CO-DRIFT spectra of the samples were recorded using a FTS-60A spectrophotometer consisting of a homemade reaction chamber. After purging the apparatus with ultra-pure He, spectra of the samples were recorded at RT in He and CO flow, before and after catalysis. HPLC analyses were performed on a Hewlett-Packard 1050 instrument equipped with DAI-CEL CHIRALCEL, IB, OJ and AD chiral columns.

Solvents were dried prior use by standard procedures and stored under dinitrogen. α -Methyl styrene was distilled over CaH₂ and stored under dinitrogen. Davisil_1 (Grace Davison, LC 150 Å, 35-70 micron) and Aerosil_2 (380, Evonik) are commercially available. All other starting materials were commercial products and were used as received. Unless otherwise specified, all the reactions were carried out in a dinitrogen atmosphere employing standard Schlenk techniques and magnetic stirring.

MCM-41 materials were prepared accordingly as already reported¹ in large scale in 4 L and 2 L autoclaves, for MCM-41_A and MCM-41_B, respectively, starting from 240 and 120 g Aerosil 200 (Degussa) as source of silica, with a temperature of 105 °C for 1h, following the ratio: 1 SiO₂, 0.1 CTAB, 0.27 NaOH, 32 H₂O. The characteristic (pore diameter, pore volume, surface area) are listed below:

Davisil_1 (Davisil LC150 Å, 35-70 micron): pore diameter 13.3 nm; pore volume 1.1 mL/g; surface area 279 m²/g.

Aerosil_2 (Aerosil 380): surface area 262 m²/g.

MCM-41_A (6124): pore diameter 3.6 nm; pore volume 0.61 mL/g; surface area 827 m²/g.

MCM-41_B (6170): pore diameter 3.6 nm; pore volume 0.73 mL/g; surface area 967 m²/g.

SBA-15 were prepared accordingly to references.^{2, 3} The characteristic (pore diameter, pore volume, surface area) are listed below:

SBA-15_A (MFDC061, prepared at 60 °C): pore diameter 6.7 nm; pore volume 0.69 mL/g; surface area 786 m²/g.

SBA-15_B (**MFDC065**, **prepared at 130** °**C**): pore diameter 9.6 nm; pore volume 1.02 mL/g; surface area 525 m²/g.

Before use, MCM.41 and SBA-15 were calcinated at 550 °C for 8 h in air.

Activation of all silicas was performed in a Schlenk flask at 300 °C for 2-3 h in air, subsequently in high vacuum (at least 10⁻⁵ mbar) overnight.

The synthesis and characterization of copper(I)(Pc-L*) complexes 1^4 and 2^5 were previously collected analytical ethyl-2-methyl-2reported. The data for cis and trans phenylcyclopropanecarboxylate.⁶. cis tert-butyl-2-methyl-2and trans phenylcyclopropanecarboxylate,⁷ cis and trans ethyl-2-phenylcyclopropanecarboxylate,⁸ cis and ethyl-2-*p*-tolyl-cyclopropanecarboxylate,⁹ cis 2-(4and ethyl trans trans chlorophenyl)cyclopropanecarboxylate,⁹ ethyl-2,2-diphenylcyclopropanecarboxylate,⁸ *cis* and *trans* ethvl 2,2-dimethyl-3-(2-methylpropenyl)cyclopropanecarboxylate (ethvl chrvsanthemate).⁷ dimethyl-2-oxabicyclo[3.1.0]hex-3-ene-3,6-dicarboxylate¹⁰ and cis ethyl-2and trans hexylcyclopropanecarboxylate¹¹ are in agreement with those reported in the literature.

Grafting of [Cu^I(Pc-L*)]CF₃SO₃ complex, 1, on silica. Typical procedure.

Method 1: complex **1** (0.0461 g, 0.0629 mmol) was dissolved in CH_2Cl_2 (10 mL). The resulting colourless solution was added to activated Davisil B (0.400 g), the mixture was stirred at RT for 4 h under inert atmosphere, filtered, washed with CH_2Cl_2 (3 x 5 mL) and dryed overnight to yield the immobilized copper(I) complex.

Method 2: $[Cu(OTf)]_2 \cdot (C_6H_6)$ (0.140 g, 0.277 mmol) was added to a $C_2H_4Cl_2$ (28 mL) solution of Pc-L* (0.371 g, 0.555 mmol). The resulting colorless solution was stirred for 1 h., than it solution was added to activated Davisil B (3.5 g), the mixture was stirred at RT for 4 h under inert atmosphere, filtered, washed with $C_2H_4Cl_2$ (3 x 10 mL) and dryed overnight to yield the immobilized copper(I) complex.

Entry	SiO ₂ support	Impregnation method	Cu loading [wt %]
1 / MCM-41_A_1	MCM-41_A	1	0.62
1 / MCM-41_B_1	MCM-41_B	1	0.54
1 / Davisil_1	Davisil LC150	1	0.66
1 / Aerosil_2	Aerosil 380	2	0.45
1 / SBA-15_A_2	SBA-15_A	2	1.09
1 / SBA-15_B_2	SBA-15_B	2	1.59
1 / SBA-15_B_1	SBA-15_B	1	0,45
2 / Davisil_1	Davisil LC150	1	0.66

Table S1. Impregnation method and Cu loadings (determined by ICP-OES), of [Cu^I(Pc-L*)]CF₃SO₃/SiO₂ samples

Cu loadings between 0.32 and 1.79 wt % were obtained. In general, higher loadings could be achieved using $[Cu^{I}(Pc-L^{*})]CF_{3}SO_{3}$ directly after its synthesis in the dissolved form, without isolation from the solvent.

Figure S1. DRIFT spectra of [Cu^I(Pc-L*)]CF₃SO₃ pure complex (1) in solid state (mixed with KBr), trace 1; 1 / Davisil_1 sample, trace 2; 1 / SBA-15_B_2 sample, trace 3; 1 / MCM-41_A_1 sample, trace 4.

Figure S2. DRIFT spectra of $[Cu^{I}(Pc-L^{*})]CF_{3}SO_{3}/Davisil_{1}$ samples before (1) and after catalysis: 2, 4-chloro styrene + EDA; 3, 4-methyl styrene + EDA; 4, α -methyl styrene + EDA; 5, α -methyl styrene + EDA (after 3 cycles and washing in 1,2-dichloroethane); characteristic bands of cyclopropanation products (pure cyclopropanes) at 2980 and 1730 cm⁻¹.

Figure S3. CO-DRIFT spectra of: 1, 1 / Davisil_1; 2, 1 / MCM-41_A_1; 3, 1 / SBA-15_B_2 samples after catalysis.

References

- 1. T. Martin, A. Galarneau, F. Di Renzo, F. Fajula and D. Plee, *Angew. Chem. Int. Ed.*, 2002, **41**, 2590-2592.
- 2. A. Galarneau, N. Cambon, F. Di Renzo, R. Ryoo, M. Choi and F. Fajula, *New J. Chem.*, 2003, **27**, 73-79.
- 3. A. Galarneau, H. Cambon, F. Di Renzo and F. Fajula, *Langmuir*, 2001, 17, 8328-8335.
- 4. A. Caselli, F. Cesana, E. Gallo, N. Casati, P. Macchi, M. Sisti, G. Celentano and S. Cenini, *Dalton Trans.*, 2008, 4202-4205.
- 5. B. Castano, S. Guidone, E. Gallo, F. Ragaini, N. Casati, P. Macchi, M. Sisti and A. Caselli, *Dalton Trans.*, 2013, **42**, 2451-2462.

- 6. A. Berkessel, P. Kaiser and J. Lex, *Chem. Eur. J.*, 2003, 9, 4746-4756.
- 7. C. J. Sanders, K. M. Gillespie and P. Scott, *Tetrahedron: Asymmetry* 2001, **12**, 1055-1061.
- 8. L. Huang, Y. Chen, G.-Y. Gao and X. P. Zhang, J. Org. Chem. , 2003, 68, 8179-8184.
- 9. Y. Chen, G.-Y. Gao and X. P. Zhang, *Tetrahedron Lett.*, 2005, **46**, 4965-4969.
- 10. C. Böhm, M. Schinnerl, C. Bubert, M. Zabel, T. Labahn, E. Parisini and O. Reiser, *Eur. J. Org. Chem.*, 2000, **2000**, 2955-2965.
- 11. A. G. M. Barrett, D. C. Braddock, I. Lenoir and H. Tone, *J. Org. Chem.*, 2001, **66**, 8260-8263.