Supporting information for

Origin of doping enhanced thermoelectric properties of CrSi₂

Tribhuwan Pandey and Abhishek K. Singh

Material Research Centre, Indian Institute of Science, Bangalore-560012

Table: - ST1

Formation energies of neutral defects:

Dopants	Formation energy (eV)	Reference Material	Doping %
Al_{Si}	0.17	Al bulk	4
P _{Si}	0.50	PH ₃	4
V _{Cr}	0.47	V bulk	4
Mn _{Cr}	0.67	Mn bulk	4
Fe _{Cr}	0.17	Fe Bulk	4

Table: - ST2

DFT lattice parameters for the reference materials:

Reference Material	DFT lattice parameter (Å)	Experimental lattice parameter (Å)
Al	4.15	4.05 ^[1]
PH ₃	6.43	6.31 ^[2]
V	2.97	$3.02^{[3]}$
Mn	8.85	8.91 ^[4]
Fe	3.48	3.43 ^[5]
Cr	3.65	3.60 ^[5]
Si	5.50	5.43 ^[6]

Table: - ST3

Defect transition level and corresponding activation temperature:

Dopants	Transition level (eV)	Activation temperature (K)	$T_m^*(K)$
Al_{Si}	0.077 (From VBM)	900	900
P _{Si}	0.064 (From CBM)	750	750
V _{Cr}	0.069 (From VBM)	800	800

Mn _{Cr}	0.077 (From CBM)	900	900
Fe _{Cr}	0.069 (From CBM)	800	800

* T_m is the temperature at which thermopower peaks. As shown in the table this temperature is closely related to the temperature which corresponds to position of defect transition level.

Fig. S1-

The position of defect transition levels across the band gap for different dopants. The dopants and corresponding defect transition levels are denoted on the top of line.

Details of Rigid Band Model Approximation:

To compare with explicit doping results with RBA, we model same doping level under RBA. As explained the doping levels are used for explicit doping are 4%. A doping level 0.12 (n, p/unit cell) is used for Al, P, Mn and V cases. Since Fe doping donated 2 electrons to sample to match the carrier concentration accurately a doping level of 0.24 (n/unit cell) is used in Fe doped case. Since there are three formula units per cell, our assumed doping levels for these calculations give rise to same carrier concentrations.

- [1]- Cooper, A.S. Acta Crystallographica (1, 1948-23, 1967) (1962) 15, p578- p582
- [2]- Natta, G.; Casazza, E. Gazzetta Chimica Italiana (1930) 60, p851-p859
- [3]- Karen, P.; Suard, E.; Fauth, F. Inorganic Chemistry (2005) 44, (23) p8170-p8172
- [4]- Oberteuffer, J.A.; Ibers, J.A. Acta Crystallographica B (24, 1968-38, 1982) (1970) 26, p1499p1504
- [5]- Haglund, J.; Fernandez Guillermet, F.; Grimvall, G.; Korling, M. Physical Review, Series 3. B -Condensed Matter (18, 1978-) (1993) 48, p11685-p11691
- [6]- Toebbens, D.M.; Stuesser, N.; Knorr, K.; Mayer, H.M.; Lampert, G. Materials Science Forum (2001) 378, p288-p293