Electronic Supporting Information

Investigation of a copper (I) biquinoline complex for application in dye-sensitized solar cells

Kathryn A. Wills^{*a*}, Humberto J. Mandujano-Ramírez^{*b*}, Gabriel Merino^{*b*}, Davide Mattia^{*a*}, Gerko Oskam^{*b*}, Matthew D. Jones^{*a*}, Simon E. Lewis^{*a*} and Petra J. Cameron^{*a*}*

^a Doctoral Training Centre in Sustainable Chemical Technologies, University of Bath, BA1, BA2 7AY, UK. Fax: +44 (0)1225 386231; Tel: +44 (0)1225 386116; E-mail: <u>p.j.cameron@bath.ac.uk</u> ^b CINVESTAV IPN, Dept Fis Aplicada, Merida 97310, Yucatan, Mexico

Preparation of the electrodes and DSSC assembly

Prior to use, fluorine-doped tin oxide (FTO) glass (Hartford Glass, USA sheet resistance $13\Omega/sq$) was cleaned in a sonicator with heating, in 15 min cycles, in Decon 90 solution, Milli-Q water, isopropanol and ethanol. Unless otherwise stated, a TiO₂ blocking layer was deposited by spray pyrolysis from a 0.2 M solution of diisopropoxytitanium bis(acetylacentonate) in isopropanol onto the cleaned FTO glass before preparation of the TiO₂ film. The glass was heated to ~400 °C and the blocking layer solution was sprayed onto the surface using a hand-held atomiser. The films were deposited by spraying one short burst to the top, middle and bottom of the glass every 10 s for 2.5 min. After cooling, a layer of colloidal TiO₂ paste (Dyesol, DSL 18NR-T, average nanoparticle size 20 nm) was then deposited onto the surface using the doctor blade method. One layer was applied and the film was dried on a hot plate at ~100 °C for 5 min, before a second layer was applied in the same manner. The film was dried again on a hot plate at ~100 °C for 5 min then sintered in an oven at 500 °C for 30 min.

For the counter electrode, two holes were drilled within a 1cm² area of the FTO plate, which was then cleaned following the regime described previously. Platinum was deposited by pipetting a couple of drops of 5 mM hexachloroplatinate solution in isopropanol on the glass, followed by heating at 390 °C for 15 min. Alternatively, the counter electrodes were platinized using an Agar Sputter Coater.

The electrodes were sealed together using Surlyn plastic (Solaronix), with heating to ~100 $^{\circ}$ C on a hot plate while applying pressure with a hand press. The electrolyte was introduced into the cell through the drilled holes in the counter electrode and the holes were sealed using Surlyn and a glass cover slip. The electrolyte used was a solution of 0.03 M I₂, 0.6 M 1-propyl-3-methylimidazolium iodide, 0.1 M guanidine thiocyanate and 0.5 M *tert*-butyl pyridine in a mixture of MeCN and valeronitrile (85:15) unless otherwise stated.

NMR Spectra

-55 -60 -65 -70 -75 -80 -85 -90 -95 ppm

³¹P NMR (CD₃OD)

¹³C NMR (CD₃OD)

