Supporting Information

Anion-driven selective colorimetric detection of Hg²⁺ and Fe³⁺ using functionalized silver nanoparticles

Shilpa Bothra^a, Jignasa N. Solanki^b, Suban K Sahoo^{a,*} and John F Callan^c

^aDepartment of Applied Chemistry, SV National Institute of Technology (SVNIT), Surat-395007, India.

^bDepartment of Chemical Engineering, SV National Institute of Technology (SVNIT), Surat-395007, India

^cDepartment of Pharmacy and Pharmaceutical Sciences, School of Biomedical Sciences, The University of Ulster, Northern Ireland, BT52 1SA

*Corresponding author (Dr SK Sahoo): E-mail:suban_sahoo@rediffmail.com; Mob: +91-261-2201814.

Fig. 1S. UV-Vis spectra of β -Alanine Dithiocarbamate, bare AgNPs and β -Alanine Dithiocarbamate modified AgNPs. Inset: Photographic image of bare AgNPs and β -Alanine Dithiocarbamate modified AgNPs.

Fig. 2S. FT-IR Spectra of (a) β -Alanine Dithiocarbamate (ADTC), (b) ADTC functionalized AgNPs and (c) ADTC functionalized AgNPs in the presence of Hg²⁺.

Fig. 3S. DLS data of (a) β -Alanine Dithiocarbamate modified AgNPs (b) β -Alanine Dithiocarbamate modified AgNPs in the presence of 10mM NaCl (c) β -Alanine Dithiocarbamate modified AgNPs in presence of Hg²⁺ (d) β -Alanine Dithiocarbamate modified AgNPs in presence of Hg²⁺ (d) β -Alanine Dithiocarbamate modified AgNPs in presence of Hg²⁺.

Fig. 4S. UV-Vis spectral observations of ADTC functionalized AgNPs at different pH. Inset shows the color change of AgNPs from yellow (pH of AgNPs = 6.71) to colorless (pH = 2.50).

Fig. 5S. Interference for the detection of Hg^{2+} in the presence of equimolar amount of other metal ions.

Fig. 68. Interference for the detection of Fe^{3+} in the presence of equimolar amount of other metal ions.

Fig. 7S. UV-Vis spectra of the functionalized AgNPs at various concentrations of (a) Hg^{2+} from 4.97×10^{-6} to 7.4×10^{-5} M and (b) Fe^{3+} from 4.97×10^{-6} to 5.66×10^{-5} M.

Fig. 8S. Benesi–Hildebrand plots for β -Alanine Dithiocarbamate functionalized AgNPs in the presence of (a) Hg²⁺ [4.97 × 10⁻⁶ - 7.4 × 10⁻⁵ M] and (b) Fe³⁺ [4.97 × 10⁻⁶ - 5.66 × 10⁻⁵ M] ions.

Fig. 9S. Calibration curve for quantification of (a) Hg^{2+} and (b) Fe^{3+} using β -Alanine Dithiocarbamate functionalized AgNPs.

Fig. 10S. Benesi–Hildebrand plots for β – Alanine Dithiocarbamate functionalized AgNPs in the presence of (a) Hg²⁺ in presence of Br⁻and (b) Fe³⁺ in presence of Cl⁻.

Fig. 11S.Calibration curve for quantification of (a) Hg^{2+} in presence of Br and (b) Fe^{3+} in presence of Cl using β - Alanine Dithiocarbamate functionalized AgNPs.

Table 1S. DLS: variation in the average hydrodynamic diameter of AgNPs on addition of different concentration of Hg^{2+} and Fe^{3+} (1.0 X 10⁻³ M).

Sr. No.	Samples	hydrodynamic diameter, d (nm)	
1	ADTC functionalized AgNPs	5.615	
1.	AD TC Tunctionalized Agivi s	5.015	
2.	ADTC functionalized AgNPs + 100μ l Hg ²⁺	58.77	
3.	ADTC functionalized AgNPs + 200μ l Hg ²⁺	78.82	
4.	ADTC functionalized AgNPs + 50μ l Fe ³⁺	68.06	
5.	ADTC functionalized AgNPs + 100μ l Fe ³⁺	91.28	

Table 2S. Comparison of the present AgNPs system for the detection of Hg^{2+} and Fe^{3+} with the previously reported methods.

AgNPs systems	SPR band	LOD	References		
Hg ²⁺					
ADTC- AgNPs	402 nm	4.89 μΜ	Present Study		
ADTC- AgNPs in presence of Br	402 nm	2.54 μM	Present Study		
<i>p</i> -phenylenediamine functionalized AgNPs	411 nm	0.80 µM	[1]		
Unmodified AgNPs	408 nm	2.2 μM	[2]		
Starch stabilized AgNPs	390 nm	~5 ppb	[3]		
Citrate Capped AgNPs	394 nm	6.6 nM	[4]		
Adenosine monophosphate capped AgNPs	423 nm	0.5 nM	[5]		
Fe ³⁺					
ADTC- AgNPs	402 nm	6.18 μM	Present Study		
ADTC- AgNPs in presence of Cl	402 nm	6.08 μM	Present Study		
<i>p</i> -phenylenediamine functionalized AgNPs	411 nm	1.29 μM	[1]		
Calix[4]arene stabilized AgNPs	414 nm	Micromolar	[6]		

References

[1] S. Bothra, J.N. Solanki and S.K. Sahoo, Sensors and Actuators B, 2013, 188, 937.

[2] K. Farhadi, M. Forough, R. Molaei, S. Hajizadeh, A. Rafipour, Sensor Actuat B, 2012, 161, 880.

[3] Y. Fan, Z. Liu, L. Wang, J. Zhan, Nanoscale Res Lett, 2009, 4, 1230.

[4] L. P. Wu, H.W. Zhao, Z. H. Qin, X.Y. Zhao, W.D. Pu, *Journal of Analytical methods in chemistry*, 2012, 2012, Article ID 856947.

[5] H. Tan, B. Liu, Y. Chang, *Plasmonics*, 2012, 2, 9461.

[6] J. Zhan, L. Wen, F. Miao, D. Tian, X. Zhu and H. Li, New J. Chem., 2012, 36, 656.